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Abstract. Given an open subset Ω of a Banach space and a Lipschitz function u0 : Ω → R, we
study whether it is possible to approximate u0 uniformly on Ω by Ck-smooth Lipschitz functions which
coincide with u0 on the boundary ∂Ω of Ω and have the same Lipschitz constant as u0. As a consequence,
we show that every 1-Lipschitz function u0 : Ω → R, defined on the closure Ω of an open subset Ω
of a finite dimensional normed space of dimension n ≥ 2, and such that the Lipschitz constant of the
restriction of u0 to the boundary of Ω is less than 1, can be uniformly approximated by differentiable
1-Lipschitz functions w which coincide with u0 on ∂Ω and satisfy the equation ‖Dw‖∗ = 1 almost
everywhere on Ω. This result does not hold in general without assumption on the restriction of u0 to
the boundary of Ω.

1. Introduction and main results

Throughout this paper, for every metric space (E, d) and every function f : E → R, we will denote
the Lipschitz constant of f on E by Lip(f,E), that is,

Lip(f,E) := inf{L > 0 : |f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ E}.
Also, if λ ≥ 0, we will say that f : E → R is λ-Lipschitz on E whenever |f(x) − f(y)| ≤ λd(x, y) for
every x, y ∈ E. We will denote by B(x0, r) the closed ball centered at x0 and with radius r > 0 with
respect to the metric on E. Finally, for any Banach space X with norm ‖ · ‖, the dual norm on X∗

will be denoted by ‖ · ‖∗.
In this paper we deal with the following problem.

Problem 1.1. Let X be a Banach space, let u0 : Ω→ R be a Lipschitz function defined on the closure
of an open subset Ω of X and let k ∈ N ∪ {∞}. Given ε > 0, does there exist a function v : Ω→ R of
class Ck(Ω) with Lip(v,Ω) ≤ Lip(u0,Ω), v = u0 on ∂Ω and |u0 − v| ≤ ε on Ω ?

In finite dimensional spaces, the integral convolution with mollifiers provides uniform approximation
by C∞ functions preserving the Lipschitz constant of the function to be approximated. However this
approximation does not necessarily preserve the value of u0 on ∂Ω. On the other hand, it was proved
in [4, Theorem 2.2] an approximation theorem for locally Lipschitz functions defined on open subsets
of Rn which implies that for any continuous function δ : Ω → (0,+∞), and any locally Lipschitz
function u0 there exists a function v of class C∞ satisfying (among other properties) that

|u0(x)− v(x)| ≤ δ(x) and |Dv(x)| ≤ Lip(u0, B(x, δ(x)) ∩ Ω) + δ(x), x ∈ Ω.

Using the above result with δ(x) = min{ε, dist(x, ∂Ω)} we get a smooth Lipschitz approximation v of
u0 that extends continuously to Ω by setting v = u0 on ∂Ω. The function v has Lipschitz constant
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arbitrarily close to Lip(u0,Ω), but bigger than Lip(u0,Ω) in general. Thus this does not yield any
answer to Problem 1.1.

In the infinite dimensional case, it was proved in [2, Theorem 1] that any Lipschitz function defined on
an open subset Ω of a separable Hilbert space (or even a separable infinite dimensional Riemannian
manifold) can be approximated in the C0-fine topology by C∞ functions whose Lipschitz constant can
be taken to be arbitrarily close to the Lipschitz constant of u0, i.e., for any given continuous function
δ : Ω→ (0,+∞) and r > 0, there exists v of class C∞ such that

|u0(x)− v(x)| ≤ δ(x), x ∈ Ω and Lip(v,Ω) ≤ Lip(u0,Ω) + r.

One can find in [3, 9, 11] some results on approximation of Lipschitz functions by Ck-smooth Lipschitz
functions in more general Banach spaces. In these results, the approximating function preserves the
Lipschitz constant of the original function up to a factor C0 ≥ 1, which only depends on the space
and is bigger than 1 in general.

In this paper we show that the answer to Problem 1.1 depends on the relation between Lip(u0, ∂Ω)
and Lip(u0,Ω). Let us now state our main results in this direction.

Theorem 1.2. Let X be a finite dimensional normed space, or a separable Hilbert space or the space
c0(Γ), for an arbitrary set of indices Γ. Let Ω be an open subset of X and let u0 : Ω→ R be a Lipschitz
function such that Lip(u0, ∂Ω) < Lip(u0,Ω). Given ε > 0, there exists a function v : Ω→ R such that
v is of class C∞(Ω), v is Lipschitz on Ω with Lip(v,Ω) ≤ Lip(u0,Ω), v = u0 on ∂Ω and |u0 − v| ≤ ε
on Ω.

For non-separable Hilbert spaces, we have the following.

Theorem 1.3. Let X be a Hilbert space. Let Ω be an open subset of X and let u0 : Ω → R be a
Lipschitz function such that Lip(u0, ∂Ω) < Lip(u0,Ω). Given ε > 0, there exists a function v : Ω→ R
such that v is of class C1(Ω), v is Lipschitz on Ω with Lip(v,Ω) ≤ Lip(u0,Ω), v = u0 on ∂Ω and
|u0 − v| ≤ ε on Ω.

Theorems 1.2 and 1.3 gives a positive answer to Problem 1.1 for the C1(Ω) or C∞(Ω) class, when
Lip(u0, ∂Ω) < Lip(u0,Ω), in certain Banach spaces. These theorems will be proved by combining
approximation techniques in the pertinent space with the following result.

Theorem 1.4. Let k ∈ N∪{∞} and let X be a Banach space with the property that for every Lipschitz
function f : X → R and every η > 0, there exists a function g : X → R of class Ck(X) such that
|f − g| ≤ η on X and Lip(g,B(x0, r)) ≤ Lip(f,B(x0, r + η)) + η for every ball B(x0, r) ⊂ X. Then,
if Ω is an open subset of X, u0 : Ω → R is a Lipschitz function such that Lip(u0, ∂Ω) < Lip(u0,Ω)
and ε > 0, there exists a function v : Ω → R such that v is of class Ck(Ω), v is Lipschitz on Ω with
Lip(v,Ω) ≤ Lip(u0,Ω), v = u0 on ∂Ω and |u0 − v| ≤ ε on Ω.

In Section 5, we will see an example on R2 with the `1 norm showing that Problem 1.1 has a negative
answer (even for the class of functions which are merely differentiable on Ω) if we allow Lip(u0, ∂Ω) =
Lip(u0,Ω). Therefore, one can say that Theorem 1.2 is optimal (in the sense of Problem 1.1), at least
in the setting of finite dimensional normed spaces.

We now consider a subproblem of Problem 1.1 when X is a finite dimensional normed space.

Problem 1.5. Let (X, ‖·‖) be a finite dimensional normed space with dim(X) ≥ 2 and let u0 : Ω→ R
be a 1-Lipschitz function defined on the closure of an open subset Ω of X. Given ε > 0, does there
exist a 1-Lipschitz function w : Ω → R such that w is differentiable on Ω with ‖Dw‖∗ = 1 almost
everywhere on Ω, w = u0 on ∂Ω and |u0 − w| ≤ ε on Ω ?
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Observe that if w = u0 on ∂Ω and Lip(u0, ∂Ω) < 1, then the Mean Value Theorem yields the existence
of x ∈ Ω such that ‖Dw(x)‖∗ < 1. Therefore the function w (if it exists) has no continuous derivative
in this case.

The following theorem gives a positive answer to Problem 1.5 when Lip(u0, ∂Ω) < 1.

Theorem 1.6. Let Ω be an open subset of a finite dimensional normed space (X, ‖·‖) with dim(X) ≥ 2.
Let u0 : Ω → R be a 1-Lipschitz function such that Lip(u0, ∂Ω) < 1. Given ε > 0, there exists a
differentiable 1-Lipschitz function w : Ω → R such that ‖Dw‖∗ = 1 almost everywhere on Ω, w = u0

on ∂Ω and |u0 − w| ≤ ε on Ω.

In Section 5, we prove, using the theory of absolutely minimizing Lipschitz extensions, that if Ω is an
open subset in a 2-dimensional euclidean space and if u0 : ∂Ω→ R is a 1-Lipschitz function, then there
exists a differentiable 1-Lipschitz function w : Ω → R such that ‖Dw‖∗ = 1 almost everywhere on Ω
and w = u0 on ∂Ω. However, Example 5.2 in Section 5 shows that the above theorem is optimal in the
sense of Problem 1.5. Observe that Theorem 1.6 covers the case of homogeneous Dirichlet conditions.
Also, we notice that the above theorem does not hold when X = R. Indeed, if u0 : [0, 1] → R is
1-Lipschitz and differentiable on (0, 1), with |u0(1) − u0(0)| < 1, then a result of A. Denjoy [5] tells
us that either {x : |u′0(x)| < 1} is empty or else it has positive Lebesgue measure. But this subset is
nonempty by the Mean Value Theorem.

The contents of the paper are as follows. In Section 2, we show that in general metric spaces, one can
approximate a Lipschitz function u0 by a function which coincides with u0 on a given subset and has,
on bounded subsets, better Lipschitz constants. In Section 3, we will give the proof of Theorems 1.4,
1.2 and 1.3 with the decisive help of the above result. In Section 4, we use Theorem 1.2 and the results
in [7] to prove Theorem 1.6. Finally, in Section 5, we consider the case Lip(u0, ∂Ω) = Lip(u0,Ω) :
although a partial positive result in the euclidean setting can be obtained, we show that Problem 1.1
does not always have a positive answer in this limiting case.

2. Approximation by functions with smaller Lipschitz constants

Throughout this section, all the sets involved are considered to be subsets of a metric space (X, d) and
all the Lipschitz constants are taken with respect to the distance d. The following result will be very
useful in Section 3 and it is interesting in itself.

Theorem 2.1. Let E and F be two nonempty closed sets such that F ⊂ E, let u0 : E → R be a
K-Lipschitz function such that λ0 := Lip(u0, F ) < K. Given ε > 0, there exists a function u : E → R
such that |u−u0| ≤ ε on E, u = u0 on F and u has the property that Lip(u,B) < K for every bounded
subset B of E.

A crucial step for proving the above theorem is the following lemma. For any two nonempty subsets
A and B of X and for any x ∈ X, we will denote

dist(x,B) := inf{d(x, y) : y ∈ B},
dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B} and diam(A) := sup{d(x, y) : x, y ∈ A}.

Lemma 2.2. Let E and F be two nonempty closed subsets such that F ⊂ E and E \ F is bounded.
Let u0 : E → R be a 1-Lipschitz function, let uµ : F → R be µ-Lipschitz, with µ < 1, let δ ≥ 0 and
assume that |uµ− u0| ≤ δ on F. For every µ < λ < 1, there exists a function uλ : E → R such that uλ
is λ-Lipschitz on E with uλ = uµ on F and |u0 − uλ| ≤ δ + ε(λ, µ,E, F ) on E; where

ε(λ, µ,E, F ) =
1− λ
λ− µ

(λ+ µ)
(

diam(E \ F ) + dist(E \ F , F )
)
> 0

and ε(λ, µ,E, F ) = 0 whenever E \ F = ∅.
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Proof. In the case when E \ F = ∅, we have that E = F and then it is enough to take uλ = uµ. From
now on, we assume that E \ F 6= ∅, we fix µ < λ < 1, and we denote ελ = ε(λ, µ,E, F ). We now
define the strategy of proof of the lemma. We first show that the family

Cλ := {u : E → R : u is λ-Lipschitz on E, u ≤ u0 + δ + ελ on E, u = uµ on F}

is nonempty, and then we define the function uλ by:

(2.1) uλ(x) := sup{u(x) : u ∈ Cλ}, x ∈ E.

In order to prove that the function uλ is the required solution, it will be enough to check that uλ ∈ Cλ
and that u0 ≤ uλ + δ + ελ on E.
1. We now prove that the family Cλ is nonempty. Consider the function

v(x) = sup
y∈F
{uµ(y)− λd(x, y)}, x ∈ E,

and let us see that v ∈ Cλ. Since uµ is λ-Lipschitz (in fact, µ-Lipschitz) on F, it follows from standard
calculations concerning the sup convolution of Lipschitz functions that v is a well-defined λ-Lipschitz
function on E with v = uµ on F. Now, given x ∈ E \ F and y ∈ F let us see that uµ(y)− λd(x, y) ≤
u0(x) + δ + ελ. For every η > 0, we can find a point zη ∈ F with

(2.2) dist(x, F ) + η ≥ d(x, zη).

In the case when uµ(y) − λd(x, y) < uµ(zη) − λd(x, zη), by the assumption that |uµ − u0| ≤ δ on F
together with (2.2) and the fact that dist(x, F ) ≤ ελ, we have that

uµ(y)− λd(x, y) < uµ(zη)− λd(x, zη) ≤ u0(zη) + δ − λd(x, zη) ≤ u0(x) + δ + (1− λ)d(x, zη)

≤ u0(x) + δ + (1− λ) (dist(x, F ) + η) ≤ u0(x) + δ + ελ + (1− λ)η.

In the case when uµ(y)− λd(x, y) ≥ uµ(zη)− λd(x, zη). The fact that uµ is µ-Lipschitz on F yields

uµ(y)− λd(x, y) ≥ uµ(zη)− λd(x, zη) ≥ uµ(y)− µd(y, zη)− λd(x, zη)

≥ uµ(y)− µd(x, y)− µd(x, zη)− λd(x, zη),

which in turn implies

(2.3) (λ− µ)d(x, y) ≤ (λ+ µ)d(x, zη).

Using first that u0 is 1-Lipschitz on E and then (2.3) and (2.2), we obtain

uµ(y)− λd(x, y) ≤ u0(y) + δ − λd(x, y) ≤ u0(x) + δ + (1− λ)d(x, y)

≤ u0(x) + δ +
1− λ
λ− µ

(λ+ µ)d(x, zη) ≤ u0(x) + δ +
1− λ
λ− µ

(λ+ µ) (dist(x, F ) + η)

≤ u0(x) + δ + ελ +
1− λ
λ− µ

(λ+ µ) η.

Hence, in both cases, we have that

uµ(y)− λd(x, y) ≤ u0(x) + δ + ελ +
1− λ
λ− µ

(λ+ µ) η,

and letting η → 0+, it follows that v(x) ≤ u0(x)+δ+ελ for every x ∈ E \ F . This proves the inequality
v ≤ u0 + δ + ελ on E, which shows that v ∈ Cλ.
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2. The function uλ belongs to Cλ because a supremum of λ-Lipschitz functions is a λ-Lipschitz func-
tion, and because inequalities and equalities are preserved by taking supremum. Before proving the
inequality u0 ≤ uλ + δ + ελ on E, we first show that uλ coincides with the function

vλ(x) := inf
y∈F∪Sλ

{uλ(y) + λd(x, y)}, x ∈ E;

where

Sλ =
{
x ∈ E : uλ(x) ≥ u0(x) + δ +

ελ
2

}
.

Observe that, since uµ ≤ u0 + δ on F, Sλ and F are disjoint. Since uλ is λ-Lipschitz on E (and, in
particular, on F ∪Sλ), the function vλ is the greatest λ-Lipschitz extension of uλ from the set F ∪Sλ.
Thus vλ = uλ on F ∪ Sλ and uλ ≤ vλ on E. Hence, by (2.1), we will have that vλ = uλ as soon as we
see that vλ ≤ u0 + δ + ελ on E. Let us define

Gλ = {x ∈ E \ (F ∪ Sλ) : vλ(x) ≥ u0(x) + δ + ελ}.

Claim 2.3. Gλ = ∅.

Assume that Gλ 6= ∅. Since E \ F is bounded, then vλ − u0 is bounded on Gλ and we can define

a := sup
Gλ

{vλ − u0}.

It is obvious that a ≥ δ + ελ. We can pick a point y ∈ Gλ such that

(2.4) vλ(y)− u0(y) ≥ a− ελ
2
.

We next define the function

wλ := max{uλ, vλ − a+ δ + ελ} : E → R.

The function wλ is λ-Lipschitz on E and satisfies the following.
(i) On the set F ∪Sλ, we have vλ = uλ. Since a ≥ δ+ελ, we have that wλ = uλ on F ∪Sλ. In particular
wλ = uµ on F.
(ii) On Gλ, we have, by the definition of a, that vλ − a ≤ u0. Since we always have uλ ≤ u0 + δ + ελ,
the function wλ satisfies wλ ≤ u0 + δ + ελ on Gλ.
(iii) If x ∈ E \ (Gλ ∪ F ∪ Sλ), then

vλ(x)− a < u0(x) + δ + ελ − a ≤ u0(x),

together with uλ ≤ u0 + δ + ελ on E, this implies wλ(x) ≤ u0(x) + δ + ελ.

From the remarks (i), (ii) and (iii) above we obtain that wλ ≤ u0 + δ + ελ on E with wλ = uµ on F.
By (2.1) we must have wλ ≤ uλ on E. But, for the point y ∈ Gλ, (see (2.4)) it follows that

uλ(y) ≥ wλ(y) ≥ vλ(y)− a+ δ + ελ ≥ u0(y) + δ +
ελ
2
.

It turns out that y belongs to Sλ, which is a contradiction since Gλ and Sλ are disjoint subsets. This
proves Claim 2.3.

Finally, because Gλ = ∅, it is clear that vλ ≤ u0 + δ + ελ on E and therefore

(2.5) uλ(x) = vλ(x) = inf
y∈F∪Sλ

{uλ(y) + λd(x, y)}, x ∈ E.
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3. We now show that u0(x) ≤ uλ(x) + δ + ελ for every x ∈ E. Since u0 ≤ uµ + δ = uλ + δ on F, we
only need to consider the situation when x ∈ E \F. Let us fix η > 0. We can find a point zη ∈ F with

(2.6) dist(x, F ) + η ≥ d(x, zη).

Moreover, by (2.5), it is clear that there exists yη ∈ F ∪ Sλ such that

(2.7) uλ(yη) + λd(x, yη) ≤ min {uλ(zη) + λd(x, zη), uλ(x) + η} .

Suppose first that yη ∈ Sλ. In particular yη ∈ E \ F and uλ(yη) ≥ u0(yη) + δ + ελ
2 . Using that u0 is

1-Lipschitz together with (2.7) we obtain

u0(x) ≤ u0(yη) + d(x, y) = u0(yη) + λd(x, yη) + (1− λ)d(x, yη)

≤ uλ(yη)− δ −
ελ
2

+ λd(x, yη) + (1− λ)d(x, yη)

≤ uλ(x) + η − δ − ελ
2

+ (1− λ) diam(E \ F ) ≤ uλ(x) + δ + ελ + η.

Suppose now that yη ∈ F. Using (2.7) and the fact that uλ is µ-Lipschitz on F, we can write

uλ(zη) + λd(x, zη) ≥ uλ(yη) + λd(x, yη) ≥ uλ(zη)− µd(yη, zη) + λd(x, yη)

≥ uλ(zη)− µd(x, zη) + (λ− µ)d(x, yη),

which implies, taking into account (2.6),

(2.8) d(x, yη) ≤
λ+ µ

λ− µ
d(x, zη) ≤

λ+ µ

λ− µ
(dist(x, F ) + η) ≤ ελ

1− λ
+
λ+ µ

λ− µ
η.

Bearing in mind that uλ + δ = uµ + δ ≥ u0 on F and using (2.7) and (2.8) we obtain

u0(x) ≤ u0(yη) + λd(x, yη) + (1− λ)d(x, yη)

≤ uλ(yη) + δ + λd(x, yη) + (1− λ)d(x, yη) ≤ uλ(x) + η + δ + ελ + (1− λ)
λ+ µ

λ− µ
η.

We have thus shown the inequality

u0(x) ≤ uλ(x) + δ + ελ + η + (1− λ)
λ+ µ

λ− µ
η on E.

Letting η → 0+, we conclude that u0(x) ≤ uλ(x) + δ + ελ for every x ∈ E. �

Proof of Theorem 2.1. Without loss of generality we may and do assume that K = 1. Let us fix a
point p ∈ F and set En = (E ∩B(p, n)) ∪ F and Fn = En−1 for every n ≥ 1, where F1 = E0 = F. It
is clear that we can construct an increasing sequence of numbers {λn}n≥1 with λ0 < λ1 and λn < 1
for every n ≥ 1 such that

(2.9)
1− λn

λn − λn−1
(λn + λn−1)

(
diam(En \ Fn) + dist(En \ Fn, Fn)

)
≤ ε

2n

for every n ≥ 1 such that En \Fn 6= ∅. Let us construct by induction a sequence of functions {un}n≥1

such that each un : En → R is λn-Lipschitz on En and satisfy un = un−1 on En−1 and |un − u0| ≤ ε
on En for every n ≥ 1.

Since u0|F is λ0-Lipschitz, we can apply Lemma 2.2 with F1 ⊂ E1, δ = 0, u0 : E1 → R, µ =
λ0, uµ = u0|F1 in order to obtain a λ1-Lipschitz function u1 : E1 → R such that u1 = uµ = u0 on
F1 and |u1 − u0| ≤ ε

2 on E1, thanks to (2.9). Observe that u1 = u0 on F. Now assume that we have
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constructed functions u1, . . . , un respectively defined on E1, . . . , En such that each uk is λk-Lipschitz
on Ek, with uk = uk−1 on Ek−1 = Fk and

|uk − u0| ≤
ε

2
+ · · ·+ ε

2k
on Ek,

for every 1 ≤ k ≤ n. Then we apply Lemma 2.2 with δ = ε/2 + · · · + ε/2n, En = Fn+1 ⊂ En+1, µ =
λn, uµ = un : En → R and u0 : En+1 → R to obtain a λn+1-Lipschitz function un+1 : En+1 → R such
that un+1 = u0 on En and, thanks to (2.9),

|un+1 − u0| ≤
ε

2
+ · · ·+ ε

2n+1
on En+1.

This proves the induction. We now define the function u : E → R as follows: given x ∈ E, we take a
positive integer n with x ∈ En and set u(x) := un(x). Since E =

⋃
n≥1En and each un coincides with

un−1 on En−1, the function u is well defined. Because u = un on each En, we have that

|u− u0| = |un − u0| ≤ ε on En,

which implies that |u− u0| ≤ ε on E. Also, note that u = u0 on F because u = u1 on E1 and u1 = u0

on F ⊂ E1. Finally, given a bounded subset B of E, we can find some natural n with B ⊂ En. This
implies that u = un on B, where un is λn-Lipschitz and λn < 1. �

3. Approximation by smooth Lipschitz functions: Proof of Theorem 1.4

This section contains the proofs of Theorems 1.4, 1.2 and 1.3. Let us start with the proof of Theorem
1.4, so let us assume from now on that X is a Banach space satisfying the hypothesis of Theorem 1.4
for some k ∈ N ∪ {∞}. We will need to use the following two claims.

Claim 3.1. Let Ω ⊂ X be an open subset and let u : Ω → R be a Lipschitz function. For every
continuous function ε : Ω→ (0,+∞) there exists v : Ω→ R of class Ck(Ω) such that
(1) |u(x)− v(x)| ≤ ε(x) for all x ∈ Ω.
(2) ‖Dv(x)‖∗ ≤ Lip(u,B(x, ε(x)) ∩ Ω) + ε(x) for all x ∈ Ω.

Proof. By replacing ε with min{ε, 1
2 dist(·, ∂Ω)}, we may and do assume that ε ≤ 1

2 dist(·, ∂Ω) on Ω,
which implies that B(x, ε(x)) is contained in Ω for every x ∈ Ω. By continuity of ε, for each p ∈ Ω,
there exists 0 < δp ≤ ε(p)/4 such that ε(x) ≥ ε(p)/2 for all x ∈ B(p, δp). The assumption on X implies
in particular that there exists a constant C0 ≥ 1 such that, for every Lipschitz function f : X → R
and every η > 0, there exists a Ck Lipschitz function g : X → R such that |f − g| ≤ η on X and
Lip(g,X) ≤ C0 Lip(f,X). Then, as a consequence of [11, Lemma 3.6], there exists a partition of unity
{ϕn,p}(n,p)∈N×Ω of class Ck(Ω) and Lipschitz such that supp(ϕn,p) ⊂ B(p, δp) for every (n, p) ∈ N×Ω,
and for every x ∈ Ω, there exists an open neighbourhood Ux of x and a positive integer nx such that

If n > nx, then Ux ∩ supp(ϕn,p) = ∅ for every p ∈ Ω.(3.1)

If n ≤ nx, then Ux ∩ supp(ϕn,p) 6= ∅ for at most one p ∈ Ω.

We can assume that u is extended to all of X with the same Lipschitz constant. Using the assumption
on X, we can find a family of Ck(X) Lipschitz functions {vn,p}(n,p)∈N×Ω such that, for every (n, p) ∈
N× Ω,

(3.2) |u− vn,p| ≤
ε(p)

(1 + Lip(ϕn,p))2n+2
on X and

(3.3) Lip(vn,p, B(x0, r)) ≤ Lip(u,B(x0, r + δp)) + δp ≤ Lip(u,B(x0, r + δp)) +
ε(p)

4
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for every ball B(x0, r) contained in Ω. We define the approximation v : Ω→ R by

v(x) =
∑

(n,p)∈N×Ω

vn,p(x)ϕn,p(x), x ∈ Ω.

By the properties of the partition {ϕn,p}(n,p)∈N×Ω, the function v is well defined and is of class Ck(Ω).
Given x ∈ Ω, (3.2) implies

|u(x)− v(x)| ≤
∑

{(n,p) :B(p,δp)3x}

|u(x)− vn,p(x)| ϕn,p(x) ≤
∑

{(n,p) :B(p,δp)3x}

ε(p)

2
ϕn,p(x)

≤
∑

{(n,p) :B(p,δp)3x}

ε(x) ϕn,p(x) = ε(x).

This proves part (1) of our claim. Now, let us estimate ‖Dv(x)‖∗. Since
∑

(n,p) ϕn,p = 1, we have that∑
(n,p)Dϕn,p = 0 on Ω. Then, taking into account that supp(ϕn,p) ⊂ B(p, δp) for every (n, p) ∈ N×Ω,

we can write

Dv(x) =
∑

{(n,p) :B(p,δp)3x}

Dvn,p(x)ϕn,p(x) +
∑

{(n,p) :B(p,δp)3x}

(vn,p(x)− u(x))Dϕn,p(x).

Hence, (3.2) together with (3.1) lead us to

‖Dv(x)‖∗ ≤
∑

{(n,p) :B(p,δp)3x}

‖Dvn,p(x)‖∗ ϕn,p(x) +
∑

{(n,p) : ϕn,p(x)6=0}

ε(p)

(1 + Lip(ϕn,p))2n+2
‖Dϕn,p(x)‖∗

≤
∑

{(n,p) :B(p,δp)3x}

‖Dvn,p(x)‖∗ ϕn,p(x) +
ε(x)

2
.

Note that if p ∈ Ω is such that x ∈ B(p, δp), then ε(x) ≥ ε(p)/2 ≥ 2δp and we can write, by virtue of
(3.3), that

‖Dvn,p(x)‖∗ ≤ Lip(vn,p, B(x, ε(x)− δp)) ≤ Lip(u,B(x, ε(x))) +
ε(p)

4
≤ Lip(u,B(x, ε(x))) +

ε(x)

2
.

Therefore, we obtain

‖Dv(x)‖∗ ≤
∑

{(n,p) :B(p,δp)3x}

(
Lip(u,B(x, ε(x))) +

ε(x)

2

)
ϕn,p(x) +

ε(x)

2
= Lip(u,B(x, ε(x))) + ε(x).

This completes the proof of statement (2).
�

Claim 3.2. Let Ω ⊂ X be an open subset and let u : Ω → R be a K-Lipschitz function with the
property that Lip(u,B) < K for every bounded subset B of Ω. Then, given a continuous function
ε : Ω→ (0,+∞), there exists v : Ω→ R of class Ck(Ω) such that
(1) |u(x)− v(x)| ≤ ε(x) for every x ∈ Ω.
(2) ‖Dv(x)‖∗ < K for all x ∈ Ω.

Proof. Let us define L(r) = Lip(u,B(0, r+1)∩Ω) for every r > 0. The function given by δ(r) = K−L(r)
2 ,

for every r ≥ 0, is positive and nonincreasing. The function δ̃ : [0,+∞)→ R given by

δ̃(t) =

∫ t+1

t
δ(s)ds, t ≥ 0,
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is continuous and satisfies δ̃ ([0,+∞)) ⊂ (0,K) and δ̃ ≤ δ on [0,+∞). Let us define the mapping

ρ : Ω → (0,+∞) by ρ(x) = δ̃(‖x‖) for every x ∈ Ω. Then ρ is continuous and we can replace ε by
min{1, ε, ρ, 1

2 dist(·, ∂Ω)} on Ω. In particular, this implies that B(x, ε(x)) ⊂ Ω for every x ∈ Ω. We

thus have from Claim 3.1 that there exists v ∈ Ck(Ω) such that

|u(x)− v(x)| ≤ ε(x), x ∈ Ω,

and

‖Dv(x)‖∗ ≤ Lip(u,B(x, ε(x))) + ε(x), x ∈ Ω.

Since ε ≤ 1, the ball B(x, ε(x)) is contained in B(0, ‖x‖+ 1)∩Ω. Hence, the last inequality leads us to

‖Dv(x)‖∗ ≤ L(‖x‖) + ε(x) ≤ L(‖x‖) + ρ(x) ≤ K + L(‖x‖)
2

for every x ∈ Ω. This shows that ‖Dv(x)‖∗ < K on Ω. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Assume that X satisfies the hypothesis of Theorem 1.4 for some k ∈ N∪ {∞}.
Let us denote by λ0 and K the Lipschitz constants Lip(u0, ∂Ω) and Lip(u0,Ω) of u0 on ∂Ω and Ω
respectively. By Theorem 2.1, there exists a function u : Ω→ R with

(3.4) |u0 − u| ≤ ε/2 on Ω, u = u0 on ∂Ω,

and the Lipschitz constant of u on every bounded subset of Ω is strictly smaller than K. Now, applying
Claim 3.2 for u, we can find a function v : Ω→ R of class Ck(Ω) such that

(3.5) |u(x)− v(x)| ≤ min
{ε

2
,dist(x, ∂Ω)

}
and ‖Dv(x)‖∗ < K for all x ∈ Ω.

If we extend v to the boundary ∂Ω of Ω by setting v = u on ∂Ω and we use the inequality (3.5), we
obtain, for every x ∈ ∂Ω, y ∈ Ω, that

|v(x)− v(y)| ≤ |u(x)− u(y)|+ |u(y)− v(y)| ≤ K‖x− y‖+ dist(y, ∂Ω) ≤ (1 +K)‖x− y‖.

This proves that the function v is continuous on Ω. Therefore, the fact that v is K-Lipschitz on Ω is
a consequence of the following well-known fact.

Fact 3.3. If w : Ω→ R is continuous on Ω, is differentiable on Ω, is K-Lipschitz on ∂Ω and satisfies
‖Dw(x)‖∗ ≤ K for every x ∈ Ω, then w is K-Lipschitz on Ω.

It only remains to see that v is ε-close to u0. Indeed, by using (3.4) and (3.5) we obtain

|u0 − v| ≤ |u0 − u|+ |u− v| ≤
ε

2
+
ε

2
= ε on Ω.

�

3.1. Finite dimensional and Hilbert spaces. We are now going to prove that if X is a finite
dimensional space or a Hilbert space, then X satisfies the assumption of Theorem 1.4 with k =∞ in
the separable case and with k = 1 in the non-separable case.

Lemma 3.4. Let X be a separable Hilbert space or a finite dimensional normed space. Given a K-
Lipschitz function f : X → R and ε > 0, there exists a function g of class C∞(X) such that |g−f | ≤ ε
on X and Lip(g,B(x0, r)) ≤ Lip(f,B(x0, r + ε)) + ε for every ball B(x0, r) ⊂ X. On the other hand,
if X is a non-separable Hilbert space, the statement holds replacing C∞ smoothness with C1.
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Proof. Let us first consider that X = Rd is endowed with an arbitrary norm. If f : Rd → R is Lipschitz
and we consider a function θδ : Rd → R of class C∞(Rd) with supp(θδ) ⊆ B(0, δ) and

∫
Rd θδ = 1, it is

well known that the integral convolution fδ = f ∗ θδ is a Lipschitz function of class C∞ such that

Lip(fδ, S) ≤ Lip(f, S +B(0, δ)) for every subset S ⊂ Rd.

In addition, fδ → f uniformly on Rd as δ → 0+. This proves the lemma in the finite dimensional case.

Now, let X be a Hilbert space and let us denote by ‖ · ‖ the norm on X. If g : X → R is a K-Lipschitz
function, then the functions defined by

gλ(x) = inf
y∈X
{f(y) + 1

2λ‖x− y‖
2}, gµ(x) = sup

y∈X
{f(y)− 1

2µ‖x− y‖
2}

for all x ∈ X and λ, µ > 0, are K-Lipschitz as well. Also, it is easy to see that the infimum/supremum
defining gλ(x) and gµ(x) can be restricted to the ball B(x, 2λK) and B(x, 2µK) respectively. Let us
now prove the following relation between the local Lipschitz constants of g and gλ :

(3.6) Lip(gλ, B(x0, r)) ≤ Lip(g,B(x0, r + 2λK)) for every ball B(x0, r) ⊂ X.

Indeed, let us fix a ball B(x0, r), two points x, x′ ∈ B(x0, r) and ε > 0. We can find y ∈ B(x′, 2λK)
such that

g(y) + 1
2λ‖x

′ − y‖2 ≤ gλ(x′) + ε.

The points y and x− x′ + y belong to B(x0, r + 2λK) and then we can write

gλ(x)− gλ(x′) ≤ g(x− x′ + y) + 1
2λ‖x− (x− x′ + y)‖2 − g(y)

− 1
2λ‖x

′ − y‖2 + ε ≤ Lip(g,B(x0, r + 2λK))‖x− x′‖+ ε,

which easily implies (3.6). Similarly, we show that

(3.7) Lip(gµ, B(x0, r)) ≤ Lip(g,B(x0, r + 2µK)) for every ball B(x0, r) ⊂ X.

Now, we consider the Lasry-Lions sup-inf convolution formula for g, that is

gµλ(x) = sup
z∈X

inf
y∈X
{f(y) + 1

2λ‖z − y‖
2 − 1

2µ‖x− z‖
2}

for all x ∈ X and 0 < µ < λ. By the preceding remarks, the function gµλ is K-Lipschitz and satisfies
that

(3.8) Lip(gµλ , B(x0, r)) ≤ Lip(g,B(x0, r + 2(λ+ µ)K)) for every ball B(x0, r) ⊂ X.

Moreover, in [12, 1] it is proved that gµλ is of class C1(X) and gµλ converges uniformly to g as 0 < µ <
λ → 0. Now, given our K-Lipschitz function f : X → R and ε > 0, we can find 0 < µ < λ small
enough so that the function fµλ is K-Lipschitz and of class C1(X), |fµλ − f | ≤ ε/2 on X and, by virtue
of (3.8),

(3.9) Lip(fµλ , B(x0, r)) ≤ Lip(f,B(x0, r + ε)) for every ball B(x0, r) ⊂ X.

If we further assume that X is separable, then we can use [13, Theorem 1] in order to obtain a function
g ∈ C∞(X) such that

|fµλ − g| ≤
ε

2
and ‖Dfµλ −Dg‖∗ ≤ ε on X,

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖. From the first inequality we see that |f − g| ≤ ε on X. The
second one together with (3.9) shows that

Lip(g,B(x0, r)) ≤ Lip(fµλ , B(x0, r)) + ε ≤ Lip(f,B(x0, r + ε)) + ε

for every ball B(x0, r) of X. �
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Combining Lemma 3.4 with Theorem 1.4, we obtain Theorem 1.3 and Theorem 1.2 when X is a
separable Hilbert space or a finite dimensional space.

Remark 3.5. In the case when the function to be approximated vanishes on the boundary, the proof
of Theorem 1.2 for finite dimensional spaces can be very much simplified as we do not need to use
Theorem 2.1. Indeed, if Rn is endowed with an arbitrary norm and u0 : Ω→ R is a Lipschitz function
with u0 = 0 on ∂Ω, given ε > 0, we define the function ϕε : R→ R by

(3.10) ϕε(t) =

 t+ ε
2 if t ≤ − ε

2 ,
0 if − ε

2 ≤ t ≤
ε
2 ,

t− ε
2 if t ≥ ε

2 .

We can assume that u0 is extended to all of Rn by putting u0 = 0 on Rn \ Ω, preserving the Lips-
chitz constant. The function u = ϕε ◦ u0 defined on Rn is Lipschitz because so are u0 and ϕε, and
Lip(u,Rn) ≤ Lip(u0,Rn). Also, since |ϕε(t)− t| ≤ ε/2 for every t ∈ R, it is clear that

|u(x)− u0(x)| = |ϕε(u0(x))− u0(x)| ≤ ε

2
for all x ∈ Rd.

Now we define

v(x) = (u ∗ θδ)(x) =

∫
Rd
u(y)θδ(x− y)dy, x ∈ Rd,

where θδ : Rd → R is a C∞(Rd) such that θδ ≥ 0,
∫
Rd θδ = 1 and supp(θδ) ⊆ B(0, δ). Using the

preceding remarks together with the well-known properties of the integral convolution of Lipschitz
functions with mollifiers, it is straightforward to check that, for δ > 0 small enough, v is the desired
approximating function, i.e, v is of class C∞(Rd) with v = 0 on ∂Ω, Lip(v,Rn) ≤ Lip(u0,Rn) and
|u0 − v| ≤ ε on Ω.

3.2. The space c0(Γ). Let us now prove that the space X = c0(Γ) satisfies the hypothesis of Theorem
1.4 with k =∞. In order to do this, we will use the construction given in [10, Theorem 1] and we will
observe that the local Lipschitz constants are preserved.

Lemma 3.6. If Γ is an arbitrary subset, X = c0(Γ) and f : X → R is a Lipschitz function, then,
for every ε > 0, there exists a function g : X → R of class C∞(X) such that |f − g| ≤ ε on X and
Lip(g,B(x0, r)) ≤ Lip(f,B(x0, r + ε)) for every ball B(x0, r) ⊂ X.

Proof. If K denotes the Lipschitz constant of f, let us consider 0 < η < ε
2(1+K) . Let us define the

function φ : X → X by φ(x) = (ϕ2η(xγ))γ∈Γ for every x = (xγ)γ∈Γ ∈ X, where ϕ2η is defined in (3.10).

Thus φ is 1-Lipschitz and satisfies ‖φ(x)−x‖ ≤ η for every x ∈ X. By composing f with φ we obtain a
function h = f ◦φ satisfying |f−h| ≤ ε

2 and with the property that, for every x ∈ X, there exists a finite
subset F of Γ such that whenever y, y′ ∈ B(x, η2 ) and PF (y) = PF (y′) (here PF (z) =

∑
γ∈F e

∗
γ(z)eγ

for every z ∈ X) we have h(y) = h(y′). Moreover, we observe that if x, y ∈ B(x0, r) ⊂ X, then
φ(x), φ(y) ∈ B(x0, r + η) and therefore

|h(x)− h(y)| ≤ Lip(f,B(x0, r + η))‖φ(x)− φ(y)‖ ≤ Lip(f,B(x0, r + η))‖x− y‖;
which shows that Lip(h,B(x0, r)) ≤ Lip(f,B(x0, r + η)). Now we use the construction of [10, Lemma
6] to obtain the desired approximation g : let us define g as the limit of the net {gF }F∈Γ<ω , where
each gF is defined by

gF (x) =

∫
R|F |

h
(
x−

∑
γ∈F

tγeγ

) ∏
γ∈F

θ(tγ)dλ|F |(t), x ∈ X;

and θ is a even C∞ smooth non-negative function on R such that
∫
R θ = 1 and supp(θ) ⊂ [−cε, cε],

for a suitable small constant c > 0. It turns out that g is of class C∞(X) with |g − h| ≤ ε
2 on X and
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with the property that, for every x ∈ X, there exists a finite subset Fx of Γ such that g(x) = gH(x)
for every finite subset H of Γ containing Fx. See [10, Lemma 6] for details. In addition, we notice that
if x, y ∈ B(x0, r), and we consider finite subsets Fx and Fy of Γ with the above property, then for the
set H = Fx ∪ Fy, we have that

|g(x)− g(y)| = |gH(x)− gH(y)| ≤
∫
R|H|

∣∣∣∣h(x−∑
γ∈H

tγeγ

)
− h
(
y −

∑
γ∈H

tγeγ

)∣∣∣∣ ∏
γ∈H

θ(tγ)dλ|H|(t)

≤ Lip(h,B(x0, r + cε))‖x− y‖
∫

supp(θ)|H|

∏
γ∈H

θ(tγ)dλ|H|(t) = Lip(h,B(x0, r + cε))‖x− y‖.

This shows that

Lip(g,B(x0, r)) ≤ Lip(h,B(x0, r + cε)) ≤ Lip(f,B(x0, r + cε+ η)),

for every ball B(x0, r) ⊂ X. This proves the lemma.
�

Combining Lemma 3.6 with Theorem 1.4, we obtain Theorem 1.2 in the case X = c0(Γ).

4. Approximation by almost classical solutions of the Eikonal equation

Throughout this section X will denote a finite dimensional normed space with dim(X) ≥ 2. At the
end of the section we will complete the proof of Theorem 1.6.

We need to recall the notion of almost classical solutions of stationary Hamilton-Jacobi equations with
Dirichlet boundary condition. This concept was introduced in [6] for the Eikonal equation and was
generalized in [7] as follows.

Definition 4.1. Let Ω be an open subset of X and let F : R × Ω × X∗ → R and u0 : ∂Ω → R
be continuous. A continuous function u : Ω → R is an almost classical solution of the equation
F (u(x), x,Du(x)) = 0 with Dirichlet condition u = u0 on ∂Ω if:

(i) u = u0 on ∂Ω.
(ii) u is differentiable on Ω and F (u(x), x,Du(x)) ≤ 0 for all x ∈ Ω.

(iii) F (u(x), x,Du(x)) = 0 for almost every x ∈ Ω.

In [6, Theorem 4.1] it was proved the existence of almost classical solutions of the Eikonal equation
with homogeneous boundary data, that is, |Dv| = 1 and v = 0 on ∂Ω. This result was generalized in
[7] for an arbitrary function F under certain conditions on F. See [7, Theorem 3.1] or Proposition 4.2
below.

We start by proving a slight refinement of [7, Theorem 3.1] for the existence of almost classical
solutions, in which these solutions can be taken with arbitrarily small supremum norm.

Proposition 4.2. Let Ω ⊂ X be an open subset and let F : R×Ω×X∗ → R be a continuous mapping.
Assume that

(A) F (0, x, 0) ≤ 0 for every x ∈ Ω.
(B) For every compact subset K of Ω there exist constants αK ,MK > 0 such that for all x ∈ K, r ∈

[0, αK ] and x∗ ∈ X∗ with ‖x∗‖∗ ≥Mk we have F (r, x, x∗) > 0.

Then, given ε > 0, there exists a function u ≥ 0 on Ω such that |u| ≤ ε on Ω and u is an almost
classical solution of the equation F (u(x), x,Du(x)) = 0 on Ω with Dirichlet condition u = 0 on ∂Ω.
Moreover, the extension ũ of u defined by ũ = 0 on X \ Ω is differentiable on X.
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Proof. Although [7, Theorem 3.1] was originally stated when X = Rn is endowed with the euclidean
norm, we can easily rewrite its statement (and its proof) for general finite dimensional normed spaces
by using the following proposition, which is an easy consequence of [6, Corollary 3.6].

Proposition 4.3. Suppose that B is a closed ball of X∗. There exists a mapping t : B → SX∗∗ such
that if (σn)n ⊂ B is a sequence with t(σn)(σn+1 − σn) ≥ 0 for every n, then (σn)n converges.

In [7, Theorem 3.1], Ω is decomposed as Ω =
⋃
j≥1Cj , where {Cj}j≥1 is a locally finite family of closed

cubes and the function u satisfies u = 0 on
⋃
j≥1 ∂Cj (because u is the sum of a series of functions all

vanishing on this union). Moreover, it is possible to choose the covering {Cj}j≥1 so that diam(Cj) ≤ ε
for every j ≥ 1, and then, the Mean Value Theorem yields that |u| ≤ ε on Ω.

�

Proof of Theorem 1.6. Given a 1-Lipschitz function u0 : Ω→ R such that u0 is λ0-Lipschitz on ∂Ω for
some λ0 < 1 and given ε > 0, we can find, thanks to Theorem 1.2, a 1-Lipschitz function v : Ω → R
of class C∞(Ω) such that

(4.1) |u0 − v| ≤
ε

2
on Ω, v = u0 on ∂Ω.

Let us define F : Ω×X∗ → R by F (x, x∗) = ‖x∗ +Dv(x)‖∗ − 1, for every (x, x∗) ∈ Ω×X∗. Because
v is 1-Lipschitz on Ω, we have F (x, 0) ≤ 0 for every x ∈ Ω, which means that the function identically
0 is a subsolution to the problem

(4.2)

{
F (x,Du(x)) = 0 on Ω,

u = 0 on ∂Ω,

Also, observe that, whenever ‖x∗‖∗ ≥ 3, we have, for all x ∈ Ω, F (x, x∗) ≥ 1. Hence, Proposition 4.2
provides an almost classical solution u to problem (4.2) such that |u| ≤ ε/2 on Ω. Let us define w = u+v
on Ω. Then w is continuous on Ω and differentiable on Ω with ‖Dw(x)‖∗ = ‖Du(x) +Dv(x)‖∗ ≤ 1 for
every x ∈ Ω and ‖Dw(x)‖∗ = 1 for almost every x ∈ Ω. Also, w satisfies that w = v = u0 on ∂Ω and
|w − v| ≤ ε/2 on Ω. Using Fact 3.3, we obtain that w is in fact 1-Lipschitz on Ω. Finally note that

|u0 − w| ≤ |v − w|+ |u0 − v| ≤
ε

2
+
ε

2
≤ ε on Ω.

This completes the proof of Theorem 1.6.
�

5. The limiting case

In this section we are concerned about constructions of functions u0 with prescribed values on the
boundary of Ω such that u0 is differentiable on Ω and Lip(u0, ∂Ω) = Lip(u0,Ω).

Proposition 5.1. If Ω ⊂ R2 is open and u0 : ∂Ω→ R is 1-Lipschitz for the usual euclidean distance,
then there exists a differentiable 1-Lipschitz function w : Ω→ R such that |∇w| = 1 almost everywhere
on Ω and w = u0 on ∂Ω, i.e, there exist almost classical solutions of the Eikonal equation with boundary
value u0.

Proof. We know by O. Savin’s results in [14] that the Absolutely Minimizing Lipschitz Extension
(AMLE for short) of u0 to Ω is of class C1(Ω). In particular, there exists a 1-Lipschitz extension
v : Ω→ R of u0 such that v ∈ C1(Ω). If we consider the problem

(5.1)

{
|∇u+∇v| = 1 on Ω,

u = 0 on ∂Ω,
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and define F : Ω× R2 → R by F (x, p) = |p+∇v(x)|, x ∈ Ω, p ∈ R2, we have that F is a continuous
function which is easily checked to satisfy the hypothesis of [7, Theorem 3.1] (see Proposition 4.2 in
Section 4) for the existence of an almost classical solution to the problem (5.1). If we denote by u this
solution and we set w = u+ v on Ω, it is clear that w is the desired function. �

We notice that the proof of Proposition 5.1 cannot be adapted for dimension n ≥ 3, because it is
unknown whether or not the AMLE of u0 is of class C1. We only know from the results in [8], that
these AMLE are differentiable everywhere.

Example 5.2. Consider the `1 norm on R2 and define Ω = {(x, y) ∈ R2 : x2 + y2 < 1} and the
function u0(x, y) = |x| − |y| on the boundary ∂Ω of Ω. The function u0 is 1-Lipschitz and all possible
1-Lipschitz extensions of u0 to Ω are not differentiable at (0, 0).

Proof. Given (x, y), (x′, y′) ∈ ∂Ω, we can easily write

|u(x, y)− u(x′, y′)| =
∣∣|x| − |x′|+ |y′| − |y|∣∣ ≤ |x− x′|+ |y − y′| = ‖(x, y)− (x′, y′)‖1,

where the above inequalities are sharp. Thus, u0 is a 1-Lipschitz function on ∂Ω. Now, let u : Ω→ R
be a 1-Lipschitz extension of u0. We have that u(0, 0) ≤ 0 since u(0, 0) + 1 = u(0, 0)− u(0, 1) ≤ 1. On
the other hand, for every x ∈ [−1, 1], we can write

u(x, 0) ≥ u(sign(x), 0)− ‖(sign(x), 0)− (x, 0)‖1 = 1− (1− |x|) = |x|
u(x, 0) ≤ u(0, 0) + ‖(x, 0)− (0, 0)‖1 ≤ |x|;

which implies that u(x, 0) = |x| for every x ∈ [−1, 1]. Therefore u is not differentiable at (0, 0).
�

The above example shows in particular that if u0 is extended to a 1-Lipschitz on Ω and ε > 0,
there is no 1-Lipschitz function v on Ω which is differentiable on Ω, v = u0 on ∂Ω and |u0 − v| ≤ ε
on Ω. Thus Problem 1.1 has a negative solution in the limiting case Lip(u0, ∂Ω) = Lip(u0,Ω). An
example with the same properties can be obtained with the `∞ norm by means of the isometry
T : (R2, ‖ · ‖1)→ (R2, ‖ · ‖∞), T (x, y) = (x+ y, x− y).
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[6] R. Deville and É. Matheron, Infinite games, Banach Space geometry and the Eikonal equation, Proc. Lond. Math.
Soc. 95 (2007), no. 1, 49-68.

[7] R. Deville and J. Jaramillo, Almost classical solutions to Hamilton-Jacobi equations, Rev. Mat. Iberoamericana. 24
(2008), no. 3, 989–1010.

[8] L.C. Evans and C.K. Smart, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differ.
Equ. 42, (2011) 289–299.
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