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CHARACTERIZATIONS FOR ARBITRARY BÉKOLLÉ-BONAMI WEIGHTS

CARLOS MUDARRA AND KARL-MIKAEL PERFEKT

Abstract. We precisely characterize the relationships between the reverse Hölder inequality, the
Fujii-Wilson condition, the Békollé-Bonami Bp condition, the B∞ condition, and the reverse Jensen
inequality, for arbitrary weights in the unit disc. This is achieved by introducing new side conditions
that turn out to be necessary and sufficient. The side conditions are simple and testable, and can
be interpreted as integral versions of the much stronger condition of bounded hyperbolic oscillation,
which has been considered earlier in the literature.

1. Introduction and Main results

The Békollé-Bonami class Bp(D) was introduced in [2, 3] in order to classify the weights w in
the unit disc D such that the Bergman projection, as well as the associated maximal function [21],
is bounded on Lp(D, w), 1 < p < ∞. The Békollé-Bonami condition is similar in form to the
Muckenhoupt Ap condition [18]; one simply replaces the basis of all balls with the much sparser
basis of all Carleson squares in the definition.

The limiting class A∞ = ∪p>1Ap plays a major role in the classical weighted theory of harmonic
analysis. Accordingly, there are a large number of equivalent characterizations of A∞ weights. For
example a weight w belongs to A∞ if and only if any of the following conditions apply: w satisfies
a reverse Hölder inequality [5, 14, 15], w satisfies the Fujii–Wilson condition [9, 22], w satisfies
a condition of quantitative absolute continuity [8, 19], or if w satisfies reverse Jensen exponential
inequality [13]. For a detailed exposition on classical results concerning Ap weights, we refer the
reader to [10, Chapter IV] and [12, Chapter 7].

In the setting of Békollé-Bonami weights, the equivalence between any two of these conditions
turns out to be false. The recent preprint [11] demonstrates this through many illustrative examples.
We refer also to the influential paper [7] where variants of the A∞-condition are studied for general
bases (in particular, for the basis of Carleson squares). The primary obstacle is that pointwise
estimates of the form

w ≤ const ·Mw (1.1)

fail for maximal functions M formed from sparse bases of sets.
A natural subclass of weights w in which the equivalences between the various concepts of B∞

are restored, was identified relatively recently [1]. Namely, the class of weights w which are constant
in top-halves of Carleson squares, that is, weights of bounded hyperbolic oscillation in the unit disc.
Note that the pointwise estimate (1.1) holds under this condition. Further studies of Békollé-Bonami
for this class and other subclasses of weights can be found in [4, 6, 11, 17].

The purpose of this article is to characterize the pairwise equivalences between various notions of
B∞ in terms of necessary and sufficient side conditions. We begin by defining these key conditions,
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2 CARLOS MUDARRA AND KARL-MIKAEL PERFEKT

which for Carleson squares Q are formulated in terms of the dyadic maximal function MQ,

MQw(x) = sup
Q′∋x,Q′⊂Q
Q′ dyadic

∫

Q′

w, x ∈ Q,

and the dyadic minimal function mQ,

mQw(x) = inf
Q′∋x,Q′⊂Q
Q′ dyadic

∫

Q′

w x ∈ Q.

More precise definitions of MQ and mQ are given in Section 2.

Definition. Let w be a weight in D.
We say that w satisfies the condition (MLp), when there exist p0 > 1 and C > 0 so that

∫

Q
wp ≤ C

∫

Q
(MQw)

p (MLp)

for all Carleson boxes Q and all 1 < p ≤ p0.
We say that w satisfies condition (Mdw) if there exist constants A > 1 and b ∈ (0, 1) so that

w ({x ∈ Q : w(x) ≥ A ·MQw(x)}) ≤ b · w(Q), (Mdw)

for every Carleson square Q.
We say that w satisfies the condition (mLp) when there exist p0 > 1 and C > 0 so that

1

w
∈ L1/(p0−1)(D) and

∫

Q

(

1

w

)
1

p−1

≤ C

∫

Q

(

1

mQw

)
1

p−1

(mLp)

for all Carleson boxes Q and all p ≥ p0.
Finally, we say that w satisfies condition (m log) if

∫

D
logw > −∞ and there exists C > 0 so that

∫

Q
log(mQ(w)) ≤

∫

Q
log(Cw) (m log)

for all Carleson boxes Q.

Note that condition (mLp) implies (m log), by a standard limiting argument. Note also that if the
maximal and minimal operators were formed with respect to a basis of sets for which the Lebesgue
differentiation theorem holds, all conditions in the definition would be trivially satisfied. In our
setting, weights of bounded hyperbolic oscillation also satisfy the conditions in an obvious manner,
since the pointwise estimates

C−1mQw(x) ≤ w(x) ≤ CMQw(x), w ∈ Q,

hold for such weights as well. In general, such estimates are far from holding true in the basis of
Carleson squares, even for Bp weights with the reverse Hölder inequality, cf. Example 5.2.

We are ready to state our main results. The precise definitions of the various B∞-type conditions
are given in Section 2. We only note here that we have chosen B∞(D) itself to mean the weakest
form of the quantitative absolute continuity condition, and for Blog(D) to denote the class of weights
which satisfy a reverse Jensen inequality with respect to the exponential.

Theorem 1.1. The following are equivalent.

(a) w satisfies the Fujii-Wilson condition (FW) and condition (Mdw).
(b) w belongs to B∞(D).

Theorem 1.2. The following are equivalent.

(a) w satisfies the Fujii-Wilson condition (FW) and condition (MLp).
(b) w satisfies a reverse Hölder inequality (RHI).
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In Theorem 1.2 it is actually enough to verify the inequality of (MLp) for one sufficiently small
number p (depending on the Fujii-Wilson constant), cf. Remark 4.6.

Our other main theorems are as follows.

Theorem 1.3. The following are equivalent.

(a) w is a Bq(D) weight for some 1 ≤ q < ∞.
(b) w belongs to B∞(D) and satisfies condition (mLp).

Theorem 1.4. The following are equivalent.

(a) w is a Blog(D) weight.
(b) w belongs to B∞(D) and satisfies condition (m log).

Combining Theorems 1.2 and 1.3 with the fact that every Bq weight satisfies the Fujii-Wilson con-
dition and that the reverse Hölder inequality implies the B∞ property, we also obtain the following
result.

Corollary 1.5. The following are equivalent.

(a) w satisfies a reverse Hölder inequality (RHI) and property (mLp).
(b) w ∈ Bq(D) for some 1 ≤ q < ∞ and w satisfies property (MLp).

The paper is organized as follows. In Section 2 we recall some elementary definitions and various
classes of weights and maximal and minimal operators that have been previously considered in
the literature. Section 3 contains various lemmata adapted to the setting of the Carleson square
basis, providing alternative arguments and slight improvements in some cases. In Section 4 we
prove Theorems 1.1–1.4. In Section 5 we also characterize the logarithms of Bp-weights in terms
of bounded mean oscillation. Additionally, we provide two examples of weights that showcase the
optimality of our theorems.

Notation. As usual, for any two nonnegative quantities A and B depending on a number of
parameters, we write that A . B or B & A if there exists a constant C ∈ (0,∞) such that
A ≤ CB. Furthermore, we write A ≈ B whenever there exist constants C1, C2 ∈ (0,∞) such
that C1A ≤ B ≤ C2A. This notation is used where the exact magnitude of the constants is not
of interest. We indicate the dependence on a variable x of the implied constant with a subscript,
A .x B,

2. Preliminaries and classical conditions

Throughout this paper, we consider the unit disc D equipped with the two-dimensional Lebesgue
measure. If E ⊂ D, the Lebesgue measure of E is denoted by |E|. If |E| > 0 and f is a nonnegative
measurable function, we will denote

∫

E
f =

1

|E|

∫

E
f.

Also, in the unit circle T, we consider the normalized Lebesgue measure, so that |T| = 1 and for
every arc I ⊂ T, the measure |I| of I is simply the normalized length of I as an arc.

By a weight in D, we understand a function w ∈ L1(D) with 0 < w(x) < ∞ for almost every
x ∈ D. For a measurable set E ⊂ D, we will frequently use the notation

w(E) :=

∫

E
w(x) dx, wE :=

∫

E
w =

1

|E|

∫

E
w(x) dx,

where in the latter definition we naturally assume that |E| > 0.
The basis of sets over which we will be modeling our conditions for weights is the collection of

Carleson squares of the disc. Namely, if I ⊂ T in an arc, which can be open, closed, or half-open,
the Carleson box QI associated with I is the set

QI := {z ∈ D : z/|z| ∈ I and 1− |I| < |z| < 1}.



4 CARLOS MUDARRA AND KARL-MIKAEL PERFEKT

A computation shows that

|QI | ≤ 4
∣

∣

∣
Q 1

2
I

∣

∣

∣
, and

∣

∣QI \Q(1−ε)I

∣

∣ ≤ 2ε|QI |, ε ∈ (0, 1), I arc of T. (2.1)

The top-half TI of the square QI is the set

TQI
:= TI := {z ∈ D : z/|z| ∈ I and 1− |I| < |z| < 1− |I|/2}.

Now, if we fix a half-open interval (or arc) I of T, we may consider the collection D(I) of all the
right-open dyadic subarcs of I, which are obtained by recursively bisecting the interval I. We also
write

D(QI) = {QJ : J ∈ D(I)}.

Observe that if x ∈ Q = QI , then there exists a unique J ∈ D(I) with x ∈ TJ .
In some of our proofs, it will be useful to consider maximal operators with respect to more

general measures. In connection with this, let us define doubling measures and doubling weights
with respect to Carleson boxes.

Definition 2.1 (Doubling measures and weights). We say that a measure µ on D is doubling when
there is some C > 0 so that

µ(QI) ≤ Cµ
(

Q 1
2
I

)

for all arcs I ⊂ T. Here 1
2I denotes that arc of T with the same center as I and length |I|/2. Note

that then there is another constant C so that

µ(QI) ≤ Cµ(QI′), (2.2)

for any arc I and I ′ ∈ D(I) with |I ′| = |I|/2.
In addition, we say that a weight w in D is doubling when the corresponding weighted measure

w(x) dx is doubling on D, that is, there exists C > 0 so that

w(QI) ≤ Cw
(

Q 1
2
I

)

for all arcs I of T.

In this paper, we will deal precisely with the following maximal operators over Carleson boxes.

Definition 2.2 (Maximal Operators). Given a function f ∈ L1
loc(D), the maximal function M f of

f is the measurable function

Mf(x) := sup
I⊂T arc

XQI
(x) ·

∫

QI

|f |, x ∈ D.

Also, for a measure µ in D, an f ∈ L1
loc(D, µ), and a Carleson box QI , the dyadic µ-maximal function

with respect to QI is the function

Mµ
QI

f(x) := sup
J∈D(I)

XQI
(x) ·

∫

QJ

|f |dµ, x ∈ QI .

When the underlying measure is the Lebesgue measure, we simply write MQI
f. Moreover, when no

confusion is possible, we will use Mµ
Q or MQ in place of Mµ

QI
or MQI

.

Now, we consider the corresponding dyadic minimal function for Carleson squares. This will
allow us to formulate some of our characterizations in a very neat manner. In the setting of cubes
in R

n, the non-dyadic minimal function was introduced by D. Cruz-Uribe and C.J. Neugebauer,
establishing the corresponding weighted Lp-inequalities; see [5, Theorem 3.1].

Definition 2.3 (Dyadic Minimal Operator). For arcs I, one can also define the dyadic minimal
operator:

mQI
f(x) := inf

J∈D(I)
XQJ

(x) ·

∫

QJ

|f |, x ∈ QI .
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Remark 2.4. If w is a weight in D and Q is a Carleson square, then

0 < mQw(x), MQw(x) < ∞, for all x ∈ Q.

Indeed, if x ∈ Q = QI0 , there exists a unique I ∈ D(I0) so that x ∈ TI . By the properties of the
dyadic intervals, there are only finitely many J ∈ D(I0) with x ∈ QJ . Therefore

MQw(x) = max
J∈D(I0), x∈QJ

∫

QJ

w < ∞

as a maximum of finitely many finite terms. Similarly, using the fact that
∫

E w > 0 for all E ⊂ D

with |E| > 0, one shows that mQw(x) > 0.

Definition 2.5 (The Fujii-Wilson property and reverse Hölder inequality). A weight w on D satisfies
the Fujii-Wilson condition when

[w]FW := sup

{∫

QI
M(w · XQI

)
∫

QI
w

: I arc of T

}

< ∞. (FW)

On the other hand, we say that w satisfies a reverse Hölder inequality when there is p > 1 so that

[w]RHIp := sup







∫

QI
wp

(

∫

QI
w
)p : I arc of T







< ∞. (RHI)

It is important to mention that in [1], the class of weights with the Fujii-Wilson property is
denoted by B∞ . Our definition of B∞ and the rest of the Bp classes is as follows.

Definition 2.6 (B∞ and Békollé-Bonami weights). Let w be a weight in D.
We say that w is a B∞(D)-weight if there are constants α, β ∈ (0, 1) so that for every arc I ⊂ T

and every measurable set E ⊂ QI , one has

|E| ≤ α|QI | =⇒ w(E) ≤ βw(QI). (B∞)

W say that w is a Bp(D)-weight, 1 < p < ∞, if

[w]p := sup
I arc of T

(
∫

QI

w

)(
∫

QI

w
1

1−p

)p−1

< ∞. (Bp)

We say that w is a Blog(D)-weight if
∫

D
logw > −∞ and

[w]log := sup
I arc of T

(∫

QI

w

)

exp

(

−

∫

QI

logw

)

< ∞, (Blog)

where we understand that exp(−∞) = 0.

Regarding the classes defined in Definition 2.6, the following information is well known.

• The condition (B∞) is analogous to the A∞(Rn)-condition for cubes considered by C. Fef-
ferman and B. Muckenhoupt [8].

• In the limiting case p → 1, we get the class B1(D), consisting of those w with

sup
I arc of T

(∫

QI

w

)

· ess sup
QI

(

1

w

)

< ∞.

One therefore has, by virtue of the Jensen Inequality, that B1(D) ⊂ Bp(D) ⊂ Bq(D) for
1 ≤ p ≤ q.

• Furthermore, Jensen’s inequality for the convex function t 7→ exp(−t) shows that Bp(D) ⊂
Blog(D) for all 1 ≤ p < ∞.

Less elementary, but still well known, is the inclusion Blog(D) ⊂ B∞(D).

Lemma 2.7. If w ∈ Blog(D) for 1 ≤ p < ∞, then w ∈ B∞(D) as well.
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Proof. A very direct proof of this result is in [13, Theorem 1] in the setting of cubes in R
n, but its

proof is valid for general measure spaces and bases. For a different proof, proving other interesting
conditions on the way, see [7, Theorem 4.1]. �

We will make use of the following equivalent form of B∞.

Lemma 2.8. A weight w ∈ B∞(D) if and only if there are constants α, β ∈ (0, 1) such that

w

(

{x ∈ Q : w(x) ≥
1

α
wQ}

)

≤ βw(Q),

for all Carleson boxes Q.

Proof. This is well known and a proof can be found, for instance, in [7, Theorem 3.1] for general
measure spaces and bases. �

Concerning the connection between Bp weights and the reverse Hölder inequality (RHI), perhaps
the only easy implication is given by the following lemma, based on a direct application of the
classical Hölder inequality. We have chosen to include it for the sake of completeness.

Lemma 2.9. If w satisfies a reverse Hölder inequality, then w ∈ B∞(D).

Proof. Let p > 1 the exponent for which w satisfies the (RHI). Also, let I ⊂ T be an arc, and
E ⊂ QI a measurable set. Applying first the classical Hölder inequality and then (RHI), we get

w(E)

|QI |
=

∫

QI

w · XE ≤

(
∫

QI

wp

)1/p( |E|

|QI |

)1/p′

≤ [w]
1/p
RHIp

(
∫

QI

w

)(

|E|

|QI |

)1/p′

,

which, after simplifying leads to

w(E)

w(QI)
≤ [w]

1/p
RHIp

(

|E|

|QI |

)1/p′

.

It is then immediately seen that w satisfies the (B∞) condition. �

3. Preparatory lemmas

3.1. Calderón-Zygmund decompositions. We will make frequent use of Calderón-Zygmund
decompositions for the dyadic maximal function with respect to Carleson squares. In this setting,
the Calderón-Zygmund squares {Qλ

j } of a function f ≥ 0 over a cube Q provide an exact partition

of the set Q ∩ {MQf > λ}. Unlike the classical setting, we cannot necessarily relate this set to the
distributional set Q ∩ {f > λ}, due to the falsity of estimates of the type f . Mf .

We begin with an elementary observation.

Lemma 3.1. Let I0 ⊂ T, and F ⊂ D(I0) a subcollection. Let F∗ be the collection of maximal arcs
of F : those I ∈ F that are not strictly contained in any larger I ′ ∈ F . Then

• Every I ∈ F is contained in a unique I∗ ∈ F∗. And so, every QI , I ∈ F , is contained in a
unique QI∗ , I

∗ ∈ F∗.
•
⋃

I∈F I =
⋃

I∗∈F∗ I∗ and
⋃

I∈F QI =
⋃

I∗∈F∗ QI∗.
• The intervals of F∗ are mutually disjoint. Thus, {QI∗}I∗∈F∗ are mutually disjoint.

Proof. It follows from the fact that if I, I ′ ∈ D(I0), then I ∩ I ′ ∈ {∅, I, I ′}, and that any chain
I1 ⊂ I2 ⊂ · · · has I0 as an upper bound, thus stopping after finitely many steps. �

The previous lemma enables us to obtain the Calderón-Zygmund decomposition of a function,
with almost all the properties that one has in the setting of cubes in R

n. We include the well known
proof for completeness.
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Lemma 3.2. Let µ be a doubling measure in D, let f : D → [0,∞] be a nonnegative L1(D, µ)
function, let I ⊂ T be an arc, denote Q = QI , and assume

∫

Q f dµ ≤ λ > 0. Then, there is a

countable collection of arcs {Ij}j ⊂ D(I) such that

• {Ij}j are pairwise disjoint.
• For every j,

λ <

∫

QIj

f dµ ≤ C(µ)λ.

• Any J ∈ D(I) that properly contains some Ij satisfies
∫

QJ
f dµ ≤ λ.

• {x ∈ Q : Mµ
Qf(x) > λ} =

⋃

j QIj . Consequently,

λ · µ
(

Q ∩ {Mµ
Qf > λ}

)

≤

∫

Q∩{Mµ
Qf>λ}

f ≤ C(µ) · λ · µ
(

Q ∩ {Mµ
Qf > λ}

)

. (3.1)

In the case where µ is the Lebesgue measure on D, one can take C(µ) = 4.

Proof. Define F := {J ∈ D(I) :
∫

QJ
f dµ > λ}, and assume that F 6= ∅, as otherwise the claim

holds vacuously. Consider the maximal arcs F∗ of F as in Lemma 3.1, and set {Ij}j := F∗. The
first property and the first inequality of the second follow immediately. For the upper bound for
∫

QIj
f dµ, note that Ij is strictly contained in I (by the assumption

∫

Q f dµ ≤ λ), and so there

is a dyadic parent J ∈ D(I) of Ij , which satisfies µ(QJ) ≤ C(µ)µ(QIj) by the doubling property
(2.2). Note that (2.1) gives µ(QJ) ≤ 4µ(QIj ) when µ is the Lebesgue measure. Moreover, by the

maximality of Ij, we must have
∫

QJ
f dµ ≤ λ, and so

∫

QIj

f dµ ≤
1

µ(QIj)

∫

QJ

f dµ ≤ λ
µ(QJ)

µ(QIj)
≤ C(µ)λ.

The third claim is a consequence of the maximality of the Ij’s. For the last property, note that if
Mµ

Qf(x) > λ with x ∈ QI , then there is J ∈ D(I) so that QJ contains x and
∫

QJ
f dµ > λ. Thus

QJ ∈ F , and so it is contained in some QIj with Ij ∈ F∗, whence x ∈ QIj . The reverse inclusion is
a consequence of the second claim. �

3.2. The maximal and minimal operators for doubling weights.

Lemma 3.3. Let w be a weight in D, and Q0 := QI0 a Carleson square. Then

M(w · XQ0)(x) = sup
I⊂I0

XQI
(x) ·

∫

QI

w, x ∈ Q0.

Furthermore, if w is doubling in D, then

M(w · XQ0)(x) ≈ MQ0w(x), x ∈ Q0.

and also

mQ0w(x) ≈ inf
I⊂I0

XQI
(x) ·

∫

QI

w, x ∈ Q0, (3.2)

with implied constants depending only on w.

Proof. Let x ∈ Q0 and Q = QI be a Carleson box associated with I ⊂ T and x ∈ Q. In the case
where |I| ≥ |I0|, we simply estimate

∫

Q
(w · XQ0) ≤

∫

Q0

w.
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Now, if |I| < |I0|, since x ∈ QI ∩QI0 , it is clear, by shifting I inside I0, that there exists an interval
I ′ ⊂ I0 containing I ∩ I0 with |I ′| = |I|. Therefore QI′ ⊂ Q0, x ∈ Q0 ∩QI ⊂ QI′ , and

1

|QI |

∫

QI

w · XQ0 ≤
1

|QI′ |

∫

QI′

w · XQ0 =
1

|QI′ |

∫

QI′

w.

This proves the first equality.
Assume now that w is doubling. Let x ∈ Q0, and I ⊂ I0 an arc with x ∈ QI ⊂ Q0. Let k ∈ N∪{0}

so that

2−k−1|I0| ≤ |I| ≤ 2−k|I0|.

Denote Dj(I0) := {J ∈ D(I0) : |J | = 2−j |I0|} for every j ∈ N∪ {0}. Note that I intersects at most
2 intervals of the family Dk(I0), as otherwise I would intersect at least 3 intervals of Dk(I0), thus
containing some I ′ ∈ Dk(I0) with |I| > |I ′| = 2−k|I0|, a contradiction. Let I1, I2 ∈ Dk(I0) those for
which I1 ∩ I, I2 ∩ I 6= ∅. Since Dk(I0) defines a partition of I0, we have that I ⊂ I1 ∪ I2. Also, note
that

1

2
|Ij | ≤ |I| ≤ |Ij |, j = 1, 2.

This implies that QI ⊂ QI1 ∪QI2 and, according to (2.1),

1

4
|QIj | ≤ |QI | ≤ |QIj |, j = 1, 2.

Assume that QI1 is the box containing x. If J := I1 ∪ I2 (not necessarily a dyadic sub-interval of
I0), one has that 2|I1| = |J |, and by the doubling property of w:

w(QI) ≤ w(QJ ) .w w(QI1).

Therefore, we have the estimate

1

|QI |

∫

QI

w .w
1

|QI1 |

∫

QI1

w ≤ MQ0w(x).

But also, since |I| ≥ |I1|/2, |I2|/2 we have that |I| ≥ |J |/4. Since I ⊂ J, the doubling condition of
w tells us that w(QI) &w w(QJ) and therefore

1

|QI |

∫

QI

w ≈
1

|QI1 |

∫

QI

w &w
1

|QI1 |

∫

QJ

w ≥
1

|QI1 |

∫

QI1

w ≥ mQ0w(x). �

Remark 3.4. If w is a doubling weight, then Lemma 3.3 shows that conditions (MLp) and (Mdw)
can be formulated with M(w · XQ) in place of the dyadic maximal function MQw.

Similarly, for doubling weights w, the conditions (mLp) and (m log) can be reformulated with the
minimal function defined in the right-hand side of (3.2) instead of mQw.

3.3. The Fujii-Wilson property and the class B∞(D). Here we establish two important lemmas
concerning (B∞) weights and the Fujii-Wilson (FW) property.

The implication (B∞) =⇒ (FW) was proven in [7, Theorem 6.1] for the Carleson square basis
in the half-plane. There, the authors used an argument based on a discretized version of the usual
maximal function. Here we offer an alternative proof based on Calderón-Zygmund decompositions
at arbitrarily large scales, making use of the fact that for doubling weights w one can replace
M(w · XQ) with MQw; see Lemma 3.3.

Lemma 3.5. Let w be a weight in D with the (B∞) condition. Then w is doubling and satisfies the
Fujii-Wilson property (FW).

Proof. Let α, β ∈ (0, 1) be as in the (B∞)-condition.
We will first verify that w is a doubling weight. For each arc I ⊂ T, and ε ∈ (0, 1) consider the

box Eε = QI \ Q(1−ε)I ; where (1 − ε)I has same center as I and length (1 − ε)|I|. By (2.1), we
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get that |Eε| ≤ 2ε|QI |. Thus we can take ε = ε(α) > 0 small enough so that |Eε| ≤ α|QI |, and
therefore w(Eε) ≤ βw(QI). In other words,

w(Q(1−ε)I) ≥ (1− β)w(QI).

Iterating this inequality, we get that

w
(

Q 1
2
I

)

≥ (1− β)N(α)w(QI),

for a natural number N(α) depending only on α.
We now show the Fujii-Wilson property for w. Fix a Carleson box Q, and let λ > 1 be large

enough so that 4/λ ≤ α. Then, for each k ∈ N ∪ {0}, let {Qj
k}j be the dyadic Calderón-Zygmund

subcubes of Q of level wQ · λk from Lemma 3.2. We define the sets

F j
k := Qj

k \
⋃

l

Ql
k+1, Ej

k := Qj
k \ F

j
k . (3.3)

Observe that if l, j are indices so that Qj
k ∩Ql

k+1 6= ∅, then, by the properties of the dyadic cubes,

we have either Qj
k ⊂ Ql

k+1 or Ql
k+1 ⊂ Qj

k. But since
∫

Ql
k+1

w > wQλ
k+1 > wQλ

k,

the first situation is impossible, by the maximality of Qj
k as a cube of level wQλ

k. Therefore,

Ql
k+1 ⊂ Qj

k. This observation will be taken into account to estimate the Lebesgue measure of Ej
k,

in combination with the properties of the Calderón-Zygmund cubes (see Lemma 3.2):

|Ej
k| = |Qj

k \ F
j
k | =

∑

{l :Qj
k∩Q

l
k+1 6=∅}

|Qj
k ∩Ql

k+1| ≤
∑

{l :Qj
k∩Q

l
k+1 6=∅}

|Ql
k+1|

≤
∑

{l :Qj
k∩Q

l
k+1 6=∅}

w(Ql
k+1)

wQ · λk+1
≤

w(Qj
k)

wQ · λk+1
≤

4wQ · λk

wQ · λk+1
|Qj

k| =
4

λ
|Qj

k| ≤ α|Qj
k|.

By the (B∞) condition, we get that w(Ej
k) ≤ βw(Qj

k), from which

w(F j
k ) ≥ (1− β)w(Qj

k), for all k, j. (3.4)

It is clear that Q∩{MQw > wQ} can be written as the disjoint union the sets {F j
k}k,j, by (3.3) and

the trivial fact that MQw is always larger than wQ. Using (3.4), we have
∫

Q∩{MQw>wQ}
MQw =

∑

k

∑

j

∫

F j
k

MQw ≤
∑

k

∑

j

wQλ
k|F j

k | ≤
∑

k

∑

j

|F j
k |

|Qj
k|
w(Qj

k)

≤
1

1− β

∑

k

∑

j

w(F j
k ) =

1

1− β
w(Q) =

1

1− β

∫

Q
w,

whence
∫

Q
MQw =

∫

Q∩{MQw=wQ}
MQw +

∫

Q∩{MQ>wQ}
MQw ≤ |Q|wQ +

1

1− β

∫

Q
w =

2− β

1− β

∫

Q
w.

Now, since we have already proved that w is doubling, Lemma 3.3 can be combined with the above
to conclude that

∫

Q
M(w · XQ) ≤ C(w)

∫

Q
MQw ≤ C(w, β)

∫

Q
w,

thus obtaining the Fujii-Wilson inequality.
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�

The proof of the following lemma is a slight modification of [15, Lemma 2.2], adapted to the
basis of Carleson squares. In the proof we also prioritize obtaining a better power p, at the cost of
a worse multiplicative constant, cf. Remark 4.6.

Lemma 3.6. Assume that w satisfies the Fujii-Wilson condition (FW), and denote L = [w]FW.
Then, for every

1 < p <
4L

4L− 1
one has

∫

Q
(MQw)

p ≤
L

1− 4L/p′

(∫

Q
w

)p

,

for every Carleson square Q. Here p′ is the dual index to p.

Proof. Fix a Carleson square Q = QI , and for each λ ≥
∫

Qw, consider the Calderón-Zygmund

intervals {Iλj }j at level λ of w as in Lemma 3.2, denote the corresponding boxes by {Qλ
j }j , Q

λ
j = QIλj

,

and also denote Ωλ := Q ∩ {MQw > λ}. Then, using the estimate (FW) for Q, we have the bound
MQw(Ωλ) ≤ Lw(Q), which allows us to write

∫

Q
(MQw)

p dx =

∫ ∞

0
(p− 1)λp−2(MQw)(Ωλ) dλ

=

∫ wQ

0
(p− 1)λp−2(MQw)(Ωλ) dλ+

∫ ∞

wQ

(p − 1)λp−2(MQw)(Ωλ) dλ

≤ L(wQ)
p−1w(Q) +

∫ ∞

wQ

(p− 1)λp−2





∑

j

∫

Qλ
j

(MQw)(x) dx



 dλ.

Given x ∈ Qλ
j , if x ∈ Q′ = QJ for some J ∈ D(I), then either Q′ ⊂ Qλ

j or
∫

Q′ w ≤ λ, as a

consequence of the maximality of the Calderón-Zygmund cubes; see Lemma 3.2. Therefore the
supremum defining MQw(x) satisfies

MQw(x) = sup
J∈D(I), J⊂Iλj

XQJ
(x) ·

∫

QJ

w = sup
J∈D(Iλj )

XQJ
(x) ·

∫

QJ

w = MQλ
j
w(x), x ∈ Qλ

j .

This observation says that the last integral coincides with

∫ ∞

wQ

(p − 1)λp−2





∑

j

∫

Qλ
j

(MQλ
j
w)(x) dx



 dλ.

By (FW) and the properties from Lemma 3.2 and, in particular, (3.1), this term is smaller than

L

∫ ∞

wQ

(p − 1)λp−2





∑

j

∫

Qλ
j

w(x) dx



 dλ = L

∫ ∞

wQ

(p− 1)λp−2w (Q ∩ {MQw > λ}) dλ

≤ 4L

∫ ∞

wQ

(p− 1)λp−1|Q ∩ {MQw > λ}|dλ

≤ 4L

∫ ∞

0
(p− 1)λp−1|Q ∩ {MQw > λ}|dλ ≤

4L(p − 1)

p

∫

Q
(MQw)

p.

Inserting this back into the inequality, averaging the integrals over Q, and using the upper bound
for p from the assumption, we deduce the desired inequality. �
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4. Optimal characterizations: proofs of the main results

In this section, we prove our main results in the following order: Theorem 1.1, Theorem 1.2, and
then jointly Theorems 1.3 and 1.4.

4.1. Characterizing (B∞) in terms of (FW). In this subsection, we prove Theorem 1.1. Let us
begin with some observations concerning the condition (Mdw).

Remark 4.1. Let w be a weight in D.

(1) Condition (Mdw) for w is equivalent to saying that there are A > 1 and b ∈ (0, 1) so that

w ({x ∈ Q : w(x) < A ·MQw(x)}) ≥ (1− b) · w(Q)

for all Carleson boxes Q. In other words, in terms of the weighted w-measure, the set of
points Q where w is dominated by the dyadic maximal function contains a uniform portion
of Q.

(2) A natural stronger version of (Mdw) is as follows:

For any b ∈ (0, 1) there is A > 1 s.t. w ({x ∈ Q : w(x) ≥ A ·MQw(x)}) ≤ b · w(Q), (Mdw+)

for every Carleson box Q. We will show in Corollary 4.4 that this opens up for a character-
ization of absolute continuity in a stronger sense than that of (B∞).

(3) If w is a doubling weight, then (Mdw) and (Mdw+) can be rewritten with the maximal
function M(w · XQ) in place of the dyadic maximal function MQw, due to Lemma 3.3.

Lemma 4.2. If w ∈ B∞(D), then w satisfies condition (Mdw).

Proof. By Lemma 2.8, condition (B∞) implies the existence of constants α, β ∈ (0, 1) with

w
(

{x ∈ Q : w(x) ≥
wQ

α
}
)

≤ βw(Q)

for all Carleson boxes Q. The trivial pointwise estimate wQ ≤ MQw(x), x ∈ Q, thus yields

w

(

{x ∈ Q : w(x) ≥
1

α
MQw(x)}

)

≤ w
(

{x ∈ Q : w(x) ≥
wQ

α
}
)

≤ βw(Q),

which is (Mdw) for A = 1/α and b = β. �

Lemma 4.3. If w satisfies (FW) and (Mdw), then w ∈ B∞(D).

Proof. Let A > 1 and b ∈ (0, 1) be as in (Mdw), and denote by L = [w]FW the Fujii-Wilson (FW)
constant of w. Let A∗ > 1 be a large parameter whose value will be specified at the end of the proof,
depending on A, b, and L.

Using (Mdw) we can estimate

w ({x ∈ Q : w(x) ≥ A∗ · wQ})

≤ w ({x ∈ Q : w(x) ≥ A ·MQw(x)}) + w ({x ∈ Q : A∗ · wQ ≤ w(x) < A ·MQw(x)})

≤ b · w(Q) + w ({x ∈ Q : A∗ · wQ ≤ w(x) < A ·MQw(x)}) . (4.1)
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We now focus on estimating the second term of (4.1). We first apply the Hölder inequality for some
1 < p < 4L/(4L− 1), and then Lemma 3.6 precisely for that p:

w ({x ∈ Q : A∗ · wQ ≤ w(x) < A ·MQw(x)})

=

∫

Q∩{A∗·wQ≤w≤A·MQw}
w(x) dx ≤

∫

Q∩{A∗·wQ≤w≤A·MQw}
A ·MQw(x) dx

≤

∫

Q∩{MQw≥(A∗/A)·wQ}
A ·MQw(x) dx

≤ A

(
∫

Q
(MQw)

p

)1/p

|Q ∩ {MQw ≥ (A∗/A) · wQ}|
1/p′

≤ A

(

L

1− (4L)/p′

)1/p

|Q|
1
p
−1

w(Q) |Q ∩ {MQw ≥ (A∗/A) · wQ}|
1/p′ . (4.2)

Using first Markov’s Inequality and then the Fujii-Wilson (FW) condition, one has

|Q ∩ {MQw ≥ (A∗/A) · wQ}| ≤
A

A∗ · wQ

∫

Q
MQw ≤

A

A∗ · wQ
L · w(Q) =

A · L

A∗
|Q|.

Plugging this estimate into (4.2), we deduce

w({x ∈ Q : A∗ · wQ ≤ w(x) < A ·MQw(x)})

≤ A

(

L

1− (4L)/p′

)1/p

|Q|
1
p
−1

w(Q)

(

A · L

A∗
|Q|

)1/p′

=
C(A,L, p)

(A∗)1/p′
w(Q), (4.3)

for a constant C(A,L, p) > 0 depending only on A,L, and p. Now, we choose A∗ large enough so
that

C(A,L, p)

(A∗)1/p′
≤

1− b

2
.

From (4.1) and (4.3) we conclude that

w ({x ∈ Q : w(x) ≥ A∗ · wQ}) ≤ bw(Q) +
1− b

2
w(Q) =

1 + b

2
w(Q),

where (1 + b)/2 < 1. By Lemma 2.8, this shows that w ∈ B∞(D). �

Proof of Theorem 1.1. It follows by combining Lemmas 3.5, 4.2, and 4.3. �

With an almost identical proof, one can obtain the following equivalence.

Corollary 4.4. For a weight w in D, the following statements are equivalent.

(a) w satisfies (FW) and (Mdw+).
(b) For every β ∈ (0, 1) there exists α ∈ (0, 1) so that if Q is a Carleson box and E ⊂ Q is

measurable with |E| ≤ α|Q|, then w(E) ≤ βw(Q).

Proof. If (a) holds, it is clear from the proof of Lemma 4.3 that w satisfies the following property:

for any β ∈ (0, 1) there is α ∈ (0, 1) with w

(

{x ∈ Q : w(x) ≥
1

α
wQ}

)

≤ βw(Q) (4.4)

for all Carleson boxes Q. This is known to be equivalent to (b) for arbitrary weights and general
bases.

The other direction follows the proofs of Lemmas 4.2 and 4.3 almost verbatim. �
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4.2. Characterizing the Reverse Hölder Inequality in terms of (FW).

Lemma 4.5. Let w be a weight in D satisfying (RHI) with exponent p0 > 1, that is,
∫

Q
wp0 ≤ C

(
∫

Q
w

)p0

,

for a constant C ≥ 1 and all Carleson squares Q. Then, for every 1 ≤ p ≤ p0 and Q, we have that
∫

Q
wp ≤ C

∫

Q
(MQw)

p,

with the same constant C as above. That is, condition (MLp) holds.

Proof. Let 1 ≤ p ≤ p0. Note that the estimate MQw(x) ≥
∫

Q w for all x ∈ Q gives

(∫

Q
(MQw)

p

)1/p

≥

(∫

Q

(∫

Q
w

)p)1/p

=

∫

Q
w.

Applying first Jensen’s Inequality and then (RHI), we get
(
∫

Q
wp

)1/p

≤

(
∫

Q
wp0

)1/p0

≤ C1/p0

∫

Q
w ≤ C1/p0

(
∫

Q
(MQw)

p

)1/p

,

which yields the desired inequality. �

Proof of Theorem 1.2. Assume first that (a) holds. If p0 > 1 is as in (MLp), take 1 < p ≤ p0 smaller
than 4L/(4L − 1), where L = [w]FW. Applying condition (MLp) for p and Lemma 3.6, we get

(∫

Q
wp

)1/p

≤ C

(∫

Q
(MQw)

p

)1/p

≤ C

(

L

1− 4L/p′

)1/p ∫

Q
w.

This is the p-reverse Hölder inequality, which can be rewritten as
∫

Q
wp ≤ Cp L

1− 4L/p′

(
∫

Q
w

)p

.

Conversely, if (b) holds, then Lemmas 2.9, 3.5, and 4.5 give (a). �

Remark 4.6. In the previous proof, we really only needed the inequality (MLp) for a single exponent
p satisfying

1 < p <
4[w]FW

4[w]FW − 1
.

4.3. Characterizing Bq and Blog weights in terms of B∞.

Lemma 4.7. If w ∈ Bp0(D), with 1 < p0 < ∞, then

∫

Q

(

1

w

) 1
p−1

≤ [w]
1

p0−1
p0

∫

Q

(

1

mQw

) 1
p−1

for all Carleson boxes Q and all p ≥ p0. In other words, w satisfies condition (mLp) with constants

p0 and C = [w]
1

p0−1
p0 .

Proof. The Bp0 condition for w is precisely
(∫

Q
w

)(∫

Q
w

1
1−p0

)p0−1

≤ [w]p0 ,
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for all Carleson boxes Q, and by Jensen’s inequality we get, for all p ≥ p0, that
(∫

Q
w

)(∫

Q
w

1
1−p

)p−1

≤ [w]p0 . (4.5)

Now, by the pointwise estimate
∫

Q w ≥ mQw(x)XQ(x), we get

(
∫

Q
w

) 1
1−p

≤ (mQw)
1

1−p · XQ.

Integrating over Q we obtain
(
∫

Q
w

) 1
1−p

≤

∫

Q
(mQw)

1
1−p ,

and thus
∫

Q
w ≥

(∫

Q
(mQw)

1
1−p

)1−p

,

for all boxes Q. This estimate and (4.5) lead us to
(∫

Q
w

1
1−p

)p−1

≤ [w]p0

(∫

Q
(mQw)

1
1−p

)p−1

≤ [w]
p−1
p0−1
p0

(∫

Q
(mQw)

1
1−p

)p−1

,

after using that [w]p0 ≥ 1. This is the desired estimate. �

Lemma 4.8. If w ∈ Blog(D), then
∫

Q
log

(

mQw

[w]log

)

≤

∫

Q
logw

for all Carleson boxes Q. Consequently, (m log) holds.

Proof. By the pointwise estimate
∫

Q w ≥ mQw(x) for all x ∈ Q, we get

log

(
∫

Q
w

)

≥ log (mQw(x)) , x ∈ Q.

Integrating over Q we derive that

log

(∫

Q
w

)

≥

∫

Q
log (mQw) ,

and thus
∫

Q
w ≥ exp

(∫

Q
log (mQw)

)

for all boxes Q. This estimate and the definition of the (Blog) condition gives us that

exp

(
∫

Q
log (mQw)

)

≤

∫

Q
w ≤ [w]log exp

(
∫

Q
logw

)

.

Taking logarithms and rearranging, we get the desired inequality. �

Our next goal is to show that conditions (mLp) (resp. (m log)) are sufficient for a B∞ weight to
satisfy a (Bp) (resp. (Blog)) property.

Lemma 4.9. Let w ∈ B∞(D), with parameters α and β. Then there is a constant C = C(w) such
that

|Q ∩ {1/mQw > λ}| ≤
C(w)λ

1− β
w (Q ∩ {1/w > λα}) , (4.6)

for all Carleson boxes Q and λ > 1/wQ.
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Proof. For all Carleson square Q denote E = Q ∩ {w ≥ wQ/α}. By Markov’s inequality, we have
that |E| ≤ α|Q| and so

w (Q ∩ {w ≥ wQ/α}) ≤ βw(Q). (4.7)

Now let dµ := w dx, which is a doubling measure by Lemma 2.9. So, for each box Q and λ >
∫

Qw−1 dµ = 1/wQ, let {Qj}j be the Calderón-Zygmund cubes at height λ for the function w−1

with µ as the underlying measure, cf. Lemma 3.2. We then have that

λ <
1

wQj

≤ C(w)λ, for all j. (4.8)

Combining (4.7) and (4.8), we get

w(Qj) = w
(

Qj ∩ {w ≥ wQj/α}
)

+ w
(

Qj ∩ {w < wQj/α}
)

≤ βw(Qj) + w (Qj ∩ {w < 1/(λα)}) ,

and thus

w(Qj) ≤
1

1− β
w (Qj ∩ {w < 1/(λα)}) .

This estimate, along with (4.8) and the properties of the Calderón-Zygmund boxes lead us to

|Q ∩ {Mµ
Q(w

−1) > λ}| =
∣

∣

∣

⋃

j

Qj

∣

∣

∣
≤ C(w)λ

∑

j

w(Qj)

≤
C(w)λ

1− β

∑

j

w (Qj ∩ {w < 1/(λα)})

≤
C(w)λ

1− β
w (Q ∩ {w < 1/(λα)}) .

This is the desired inequality, since for all x ∈ Q = QI , one has

Mµ
Q(w

−1)(x) = sup
QJ∋x, J∈D(I)

∫

QJ
w−1 dµ

µ(QJ)
= sup

QJ∋x, J∈D(I)

|QJ |

w(QJ )

=
1

inf
QJ∋x, J∈D(I)

w(QJ)
|QJ |

=
1

mQw(x)
. �

Lemma 4.10. Let w ∈ B∞(D). Then, the following hold.

(i) If w satisfies (mLp), then w ∈ Bq(D) for some 1 ≤ q < ∞.
(ii) If w satisfies (m log), then w belongs to Blog(D).

Proof. We begin with part (i), for which we assume (mLp), and let p0 be as in that condition.
Letting ε0 := 1/(p0 − 1) and 0 < ε ≤ ε0, condition (mLp) and Lemma 4.9 yield, for an arbitrary
Carleson square Q, and a constant C > 0,

∫

Q
w−ε ≤ C

∫

Q
(mQw)

−ε = C

∫ ∞

0
ελε−1|Q ∩ {1/mQw > λ}|dλ

≤ C

∫ 1/wQ

0
ελε−1|Q|dλ+ C

∫ ∞

1/wQ

ελε−1|Q ∩ {1/mQw > λ}|dλ

≤ C
|Q|

(wQ)ε
+C

∫ ∞

0
ελεw (Q ∩ {1/w > λα}) dλ

= C
|Q|

(wQ)ε
+

Cε

(1 + ε)α1+ε

∫

Q
w−ε.
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Dividing by |Q|, we deduce that
∫

Q
w−ε ≤ C(wQ)

−ε +
Cε

(1 + ε)α1+ε

∫

Q
w−ε.

Now, condition (mLp) implies that w−ε0 ∈ L1(D), and so, by Hölder’s Inequality, also w−ε ∈ L1(D).
For sufficiently small ε > 0 we thus conclude that

(
∫

Q
w

)ε ∫

Q
w−ε ≤

C

1− Cε
(1+ε)α1+ε

.

This shows that w ∈ Bq(D) for q = 1 + 1/ε.
For part (ii), assume that w satisfies (m log). If

∫

Q logw = +∞, (Blog) trivially holds. We may

therefore assume
∫

Q logw ∈ R. Using condition (m log), we find a constant c > 0 such that, for all

boxes Q,
∫

Q
log

(c · wQ

w

)

≤

∫

Q
log

(

wQ

mQw

)

=

∫ ∞

1

1

t
|Q ∩ {1/mQw(x) ≥ t/wQ}|dt =

∫ ∞

1/wQ

1

t
|Q ∩ {1/mQw > t}|dt.

By Lemma 4.9, the last term is not greater than

C(w)

1− β

∫ ∞

1/wQ

w (Q ∩ {1/w > αt}) dt ≤
C(w)

1− β

∫ ∞

0
w (Q ∩ {1/w > αt}) dt

=
C(w)

(1− β)α

∫ ∞

0
w (Q ∩ {1/w > t}) dt =

C(w)

(1− β)α

∫

Q

1

w
dw =

C(w)

(1− β)α
|Q|.

Here α and β are the (B∞)-constants of w. Dividing by |Q|, there is thus a constant C ′ = C ′(w)
such that

∫

Q
log

(c · wQ

w

)

≤ C ′,

which yields that w ∈ Blog(D). �

Combining the lemmatas in this section, we have now proven Theorems 1.3 and 1.4. Similarly
to Remark 4.6, the proof of Theorem 1.3 shows that it is sufficient to check the inequality (mLp)
for one sufficiently large p, depending on the parameters of the (B∞)-condition and the doubling
constant of w. We choose not to make this explicit.

5. Further results and examples

5.1. Bp-weights and bounded mean oscillation. In the classical setting, one obtains the func-
tions of bounded mean oscillation by taking logarithms of Muckenhoupt weights. This is a conse-
quence of the celebrated John–Nirenberg inequality [16]. The connection between Békollé–Bonami
weights and BMO(D) was explored in [17], with bounded hyperbolic oscillation as a key side con-
dition.

In general it is natural to consider the larger class of functions f ∈ BMOC(D) for which

‖f‖BMOC
:= sup

I arc of T

∫

QI

|f − fQI
| < ∞,

where the supremum is taken only over the basis Carleson squares. Similarly, we say that f ∈ L1(D)
satisfies the John–Nirenberg inequality with respect to Carleson squares when there are constants
C and b > 0 such that

|{x ∈ Q : |f(x)− fQ| > t}| ≤ C exp(−bt)|Q| (JN)
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for all t > 0 and all Carleson squares Q.
We outline the proof of the following characterization of logarithms of Bp-weights. Note that a

side condition is necessary, since f(z) = − 1
|z| , z ∈ D, is an example of a function f ∈ BMOC(D)

such that eεf ∈ L1(D) for every ε > 0, but eεf is never a Bp(D)-weight for any 1 < p < ∞.

Theorem 5.1. Let 1 < p < ∞ and f ∈ L1(D). Then the following statements are equivalent.

(a) There exists ε > 0 such that that eεf ∈ Bp(D).
(b) f satisfies the John-Nirenberg inequality (JN).
(c) f ∈ BMOC(D) and there are constants C,A, a > 0 such that

|{x ∈ Q : |f(x)− fQ| −AMQ(f − fQ)(x) > t}| ≤ C exp(−at)|Q| (Mexp)

for every t > 0 and Carleson square Q.

Proof sketch. By scaling, it is sufficient to consider p = 2. It is clear that (b) implies (c). That (a)
and (b) are equivalent has an identical proof to the corresponding result for the basis of cubes in
R
n, cf. [10, Corollary 2.18].
It remains to show that (c) implies (b). The key is that f ∈ BMOC(D) implies the existence of

constants K, k > 0 so that

|{x ∈ Q : MQ(f − fQ)(x) > t}| ≤ K|Q| exp (−kt/‖f‖BMO) (5.1)

for every t > 0 and Q. This can be proved by imitating the arguments of [20, pp. 64–66], taking
Lemma 3.2 into account and replacing the sets Q ∩ {|f − fQ| > t} with Q ∩ {MQ(f − fQ) > t}
at the appropriate points. Clearly, (5.1) in conjunction with (Mexp) allows us to derive (JN) for
sufficiently small b > 0. �

5.2. Examples. We finish the paper with two examples of weights demonstrating the optimality
of our results. First we give an example of a weight which is not dominated by any of its maximal
functions. In particular, it falls outside of the frameworks considered in [1, 4, 6, 17].

Example 5.2. We shall consider a radial weight w(z) = v(1 − |z|), z ∈ D, where

v(r) =











x−k, 2−k−1 < r ≤ 2−k−1(1 + 2−k−1)

k + 1, 2−k−1(1 + 2−k−1) < r ≤ 2−k(1− 2−k−2),

xk, 2−k(1− 2−k−2) < r ≤ 2−k,

k = 0, 1, 2, . . . ,

for a given number 1 < x < 2. Then the following hold:

(1) w satisfies a reverse Hölder inequality;
(2) w satisfies (mLp) and w ∈ Bq(D) for some 1 < q < ∞;
(3) w · XQ 6. MQw and mQw 6. w · XQ, with constants independent of the Carleson box Q.

To see this, note that for any q ∈ R and Carleson square Q with

2−n−1 < dist(Q, 0) ≤ 2−n,

we have that

∫

Q
wq ≈ 2n

∞
∑

k=n

2−k(kq + 2−k(x−qk + xqk)) ≈































nq, 1
2 < xq ≤ 2,

1, xq = 1
2 ,

(x2 )
n, 2 < xq < 4,

( 1
2x )

n, 1
4 < xq < 1

2 ,

∞, otherwise.

Therefore w ∈ RHIp if and only if 1 ≤ p ≤ log 2
logx , and w ∈ Bq(D) if and only if 1 + logx

log 2 < q ≤ ∞. In

view of Theorems 1.2 and 1.3, w must then satisfy (mLp) and (MLp) (and thus (m log)). This can
also be verified directly.
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Next we give an example of a very poorly behaved weight with the Fujii-Wilson condition, demon-
strating that side conditions are a must. Furthermore, the example shows that one cannot replace
the maximal function MQw with the general maximal function Mw in condition (MLp).

Example 5.3. We again consider a radial weight w : D → [0,∞),

w(reiθ) =







v(r)
r , r > 1/2,

2v(1/2), r ≤ 1/2,

where

v(x) =
2e

− 1
(1−x)2

(1− x)3
, 0 < x < 1.

The following hold.

(1) w ∈ L∞(D), so that, in particular w is a weight in D.
(2) w satisfies the Fujii-Wilson condition.
(3) w(x) . Mw(x) for all x ∈ D, but w · XQ 6. MQw, with a constant independent of Q.
(4) w is not doubling. In particular, w does not satisfy the (B∞) property, and thus no reverse

Hölder inequality holds for w. Moreover, in accordance with Theorem 1.1, w cannot satisfy
(Mdw).

Observe that the function

(0, 1) ∋ x 7→
e
− 1

(1−x)2

1− x
(5.2)

is decreasing. Therefore, for |z| > 1/2,

Mw(z) ≈ sup
1/2≤a≤|z|<1

∫ 1
a v

1− a
= sup

1/2≤a≤|z|<1

e
− 1

(1−a)2

1− a
= 2e−4.

Since w is bounded, we conclude that w(z) . Mw(z), z ∈ D.
Suppose now that Q is a Carleson square with dist(Q, 0) = b ≥ 1/2. Then, for z ∈ Q, using again

that the function in (5.2) is decreasing, we see that

M(w · XQ)(z) ≈ sup
1/2≤a≤|z|<1

∫ 1
a v · X[b,1)

1− a
= sup

1/2≤a≤|z|<1

e
− 1

(1−max(a,b))2

1− a

≤ sup
1/2≤a≤x<1

e
− 1

(1−b)2

1− b

1−max(a, b)

1− a
≤

e
− 1

(1−b)2

1− b
.

This shows that w · XQ 6. M(w · XQ), as otherwise there would exist a constant C > 0 such that

2e
− 1

(1−|z|)2

(1− |z|)3
≤ C

e
− 1

(1−b)2

1− b
, |z| ∈ (b, 1), b ∈ [1/2, 1),

which would imply that (1− b)2 ≥ 1/(2C) for all b ∈ [1/2, 1). In particular, w · XQ 6. MQw.
The same computation shows that w satisfies the Fujii-Wilson condition, since

M(w · XQ)(z) .
e
− 1

(1−b)2

1− b
≈

∫

Q
w, z ∈ Q, dist(Q, 0) = b ≥ 1/2.

and consequently
∫

Q
M(w · XQ) .

∫

Q
w.
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Finally, to check that w is not a doubling weight, note that for b ∈ (1/2, 1) we have

w(Q)

w(12Q)
≈

e
− 1

(1−b)2

e
− 1

((1−b)/2)2

=
e
− 1

(1−b)2

e
− 4

(1−b)2

= e
3

(1−b)2 ,

which diverges as b → 1−.
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