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TRACES OF VANISHING HÖLDER SPACES

KAUSHIK MOHANTA, CARLOS MUDARRA, AND TUOMAS OIKARI

Abstract. For an arbitrary subset E ⊂ R
n, we introduce and study the three vanishing subspaces

of the Hölder space Ċ0,ω(E) consisting of those functions for which the ratio |f(x)−f(y)|/ω(|x−y|)
vanishes, when (1) |x − y| → 0 , (2) |x − y| → ∞ or (3) min(|x|, |y|) → ∞. We prove that the
Whitney extension operator maps each of these vanishing subspaces from E to the corresponding
vanishing spaces defined on the whole ambient space R

n. In fact, this follows as the zeroth order
special case of a more general problem involving higher order derivatives. As a consequence, we
obtain complete characterizations of approximability of Hölder functions Ċ0,ω(E) by Lipschitz and
boundedly supported functions.

1. Introduction and main results

1.1. Introduction. The vanishing Hölder spaces V̇C
ω

Γ(X,Y ), for the scales Γ ∈ {small, large, far},
for normed spaces X,Y and for many moduli of continuity ω, were recently defined and studied by
the two last named authors [15]. In particular, these vanishing Hölder spaces were shown to often
provide a complete description of those Hölder functions approximable by Lipschitz or smooth or
boundedly supported functions. In this article we continue to study the vanishing Hölder spaces
V̇C

ω

Γ(X,Y ), when X = R
n but Y is allowed to be an arbitrary normed space.

We are interested in understanding when a given vanishing scale restricted to a proper subset
E ⊂ R

n, admits a bounded linear extension operator L : V̇C
ω

Γ(E,Y ) → V̇C
ω

Γ(R
n, Y ) to the whole

ambient space. Our answer is that for a completely arbitrary subset E ⊂ R
n, a single linear bounded

extension operator exists and works simultaneously for all the scales Γ ∈ {small, large, far}. We use
the classical Whitney extension operator.

We do not only consider the possibility of extending the function itself, but also its putative

derivatives. In particular, we provide a full description of exactly when a jet A ∈ J̇
m,ω

(E,Y ) is

obtained by restricting a function F ∈ Ċm,ω
Γ (Rn, Y ). This amounts to showing that the Whitney

extension operator maps the vanishing jet spaces J̇
m,ω

Γ (E,Y ) to Ċm,ω
Γ (Rn, Y ), i.e. preserves sep-

arately each of the vanishing scales. See Section 1.2 for the precise definitions and statements of
these results.

One perspective to our results is as follows. The scale of Hölder spaces Ċ0,ω can be seen to
measure the smoothness of a function relative to the modulus ω(t) > 0, and when ω(t) = 0 the
space BMO of bounded mean oscillations is often substituted as the zeroth order way of measuring
smoothness. As opposed to real-valued Hölder functions Ċ0,ω(E,Rn), with E ⊂ R

n arbitrary, being

(K.M.) University of Jyväskylä, Department of Mathematics and Statistics, P.O. Box 35, FI-40014

University of Jyväskylä, Finland

(C.M.) Department of Mathematical Sciences, Norwegian University of Science and Technology,

7941 Trondheim, Norway

(T.O.) University of Helsinki, Department of Mathematics and Statistics, P.O.B. 68, FI-00014,

Helsinki, Finland

E-mail addresses: kaushik.k.mohanta@jyu.fi, carlos.mudarra@ntnu.no, tuomas.v.oikari@helsinki.fi.
Date: December 3, 2024.
2020 Mathematics Subject Classification. 26B35, 42B35, 46E35, 26B05, 46T20.
Key words and phrases. Extension operator, trace space, Hölder space, vanishing Hölder space.

1

http://arxiv.org/abs/2401.14156v3


extendable to the whole ambient space Ċ0,ω(Rn,R) by the classical infimal convolution formula
x 7→ infy∈E{f(y) + Mω(|x − y|)}, for example, this is far from being true for functions in BMO.
Indeed, given a connected open set (a domain) Ω ⊂ R

n, a classical theorem of Jones [12] tells
us that a bounded linear extension operator L : BMO(Ω) → BMO(Rn) exists if and only if Ω is
uniform. With BMO, geometry of the domain appears naturally. A recent result of Butaev and
Gafni [4, Theorem 3] (see also [5]) extends Jones’ result by providing a single bounded extension
operator on BMO(Ω) and also on several of its subspaces determined by approximability by nice
functions, or by having appropriate vanishing mean oscillations. Our results are in the same spirit
as Butaev’s and Gafni’s, but opposed to Jones’; we consider vanishing subspaces, but get rid of all
geometry by reintroducing an order of smoothness ω(t) > 0.

It follows from our results that a single linear and bounded extension operator exists for the
intersection V̇C

ω
of the three vanishing scales. In particular, for the Hölder moduli α(t) := tα,

for α ∈ (0, 1), [15, Theorem 1.13] states that V̇C
α
(Rn) = VMOα(Rn)1, where the latter fractional

vanishing mean oscillation space was defined in Guo et al. [11, Theorem 1.7] and shown to charac-
terizes the off-diagonal Lp → Lq (for 1 < p < q < ∞) compactness of commutators of many singular

integral operators. We also point out that the identification Ċ0,α(Rn,R) = BMOα(Rn,R) of the
Hölder spaces with the spaces of fractional bounded mean oscillation is due to N. G. Meyers [13].

Moreover, the classes V̇C
0,α
small are also called the little Hölder spaces. These are fundamental in the

study of Lipschitz algebras in metric spaces; we refer to the monographs by Weaver [18, Chapters
4 and 8], and for an exposition of these little Hölder spaces in the setting of Ahlfors regular sets we
refer to D. Mitrea, I. Mitrea, and M. Mitrea [14, Chapter 3].

For the extension of Ċ0,ω mappings between subsets of Hilbert spaces, preserving the Ċ0,ω-
seminorms, see Grünbaum and Zarantonello [10], and the monograph [2] by Benyamini and Linden-
strauss. The fundamental starting point for Cm extension of jets in R

n is the celebrated Whitney
Extension Theorem [19]. For Whitney-type Cm,ω extensions of jets in R

n, we refer to the work of
Glaeser [9], and for Whitney-type extensions of jets generated by Sobolev functions in R

n, see, for
instance, the recent paper of Shvartsman [16]. For infinite dimensional results on C1,ω extension
of jets, see the recent paper [1] by Azagra and the second named author of the present paper. For
extension results for functions (instead of jets) of order Cm or Cm,ω, or for Sobolev functions, see
for instance the papers by Brudnyi and Shvartsman [3], by Fefferman [6, 7], by Fefferman, Israel
and Luli [8].

Acknowledgements. We are grateful to the anonymous referee for carefully reading the manu-
script and for their comments, which led to improvements in both clarity and presentation.

K.M. was supported by the Academy of Finland (project no. 323960) and by the Academy of
Finland via Centre of Excellence in Analysis and Dynamics Research (project no. 346310) C.M.
was supported by grant no. 334466 of the Research Council of Norway, “Fourier Methods and
Multiplicative Analysis”. T.O. was supported by the Finnish Academy of Science and Letters, and
by the MICINN (Spain) grant no. PID2020-114167GB-I00.

1.2. Basic definitions and main results.

Definition 1.1. Let ω : (0,∞) → (0,∞) be a modulus of continuity, E ⊂ R
n an arbitrary set,

m ∈ N ∪ {0}, and V a normed space. By an m-jet on E (to V ) we simply understand a family
of m + 1 functions {Ak : E → Lk(Rn, V )}mk=0. For us Lk(Rn, V ) denotes the vector space of all

symmetric k-linear mappings from R
n to V , and the norm we are using on Lk(Rn, V ) is the one

given by
‖T‖ := sup{‖T (u1, . . . , uk)‖V : u1, . . . , uk ∈ S

n−1}.

1We remark that notationally VMOα = CMOα for Guo et al.
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Then we define the trace jet space of Ċm,ω(Rn, V ) to E, denoted by J̇
m,ω

(E,V ), as the vector
space of all m-jets {Ak}

m
k=0 on E so that

‖{Ak}
m
k=0‖J̇m,ω

(E,V )

:= sup

{
‖Ak(x)−

∑m−k
j=0

1
j!Ak+j(y)(x− y)j‖

ω(|x− y|)|x− y|m−k
: x, y ∈ E, k = 0, . . . ,m

}
< ∞.

(1)

It is convenient to clarify that each term Ak+j(y)(x− y)j in the sum of (1) is understood as the

symmetric k-linear mapping (Rn)k → V given by:

Ak+j(y)(x− y)j(u1, . . . , uk) := Ak+j(y)
( j times︷ ︸︸ ︷
x− y, . . . , x− y, u1, . . . , uk

)
, (u1, . . . , uk) ∈ (Rn)k.

In particular, the comparison of the sum of these mappings with Ak(x) in (1) is well-defined. In
addition, since Ak+j(y) is a symmetric (k+ j)-linear mapping (Rn)k+j → V , one can distribute the
j-many vectors x− y among the k+ j entries in any order, resulting in the same symmetric k-linear
mapping as above.

Moreover, it is clear that ‖ · ‖J̇m,ω
(E,V ) defines a seminorm on J̇

m,ω
(E,V ), and it can be made an

actual norm if we fix a point x0 ∈ E and define

|||{Ak}
m
k=0|||Jm,ω(E,V ) := ‖{Ak}

m
k=0‖J̇m,ω

(E,V ) + max
k=0,...,m

‖Ak(x0)‖.

Moreover, if V is a Banach space, this norm is complete, and
(
Jm,ω(E,V ), ||| · |||Jm,ω(E,V )

)
becomes

a Banach space.

Remark 1.2. In the case m = 0, the trace space J̇
0,ω

(E,V ) coincides with the homogeneous Hölder

space Ċ0,ω(E,V ), consisting of those functions f : E → V such that

‖f‖Ċ0,ω(E,V ) = sup
x 6=y
x,y∈E

‖f(x)− f(y)‖

ω(|x− y|)
< ∞.

Let us now look at functions that are defined everywhere in R
n.

Definition 1.3. Let ω : (0,∞) → (0,∞) be a modulus of continuity, m ∈ N∪{0}, and V a normed

space. Then Ċm,ω(Rn, V ) consists of those F : Rn → V of class Cm(Rn, V ) so that

‖F‖Ċm,ω(Rn,V ) = sup
x 6=y

x,y∈Rn

‖DmF (x)−DmF (y)‖

ω(|x− y|)
< ∞.

Here DmF : Rn → Lm(Rn, V ) denotes the mth (total) derivative of F. Under basic assumptions
on the modulus ω, a version of Whitney’s extension theorem says that every m-jet {Ak}

m
k=0 ∈

J̇
m,ω

(E,V ) is the restriction of some F ∈ Ċm,ω(Rn, V ) to E, in the sense that

DkF (y) = Ak(y), y ∈ E, k = 0, . . . ,m.

We recall the construction of the Whitney extension operator and give appropriate references in
Section 3.

In this article, we are insterested in subclasses of the space Ċm,ω(Rn, V ) given by the following
vanishing conditions.
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Definition 1.4. Let ω : (0,∞) → (0,∞) be a modulus of continuity, m ∈ N∪ {0}, n ∈ N, and V a
normed space. We define the vanishing scales

V̇C
m,ω

small(R
n, V ) :=

{
F ∈ Ċm,ω(Rn, V ) : lim

δ→0
sup

x 6=y∈Rn

|x−y|≤δ

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0

}
,

V̇C
m,ω

large(R
n, V ) :=

{
F ∈ Ċm,ω(Rn, V ) : lim

δ→∞
sup

x,y∈Rn

|x−y|≥δ

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0

}
,

V̇C
m,ω

far (Rn, V ) :=
{
F ∈ Ċm,ω(Rn, V ) : lim

δ→∞
sup

x 6=y∈Rn

min(|x|,|y|)≥δ

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0

}
.

Finally we take the intersection of all the scales,

V̇C
m,ω

(Rn, V ) := V̇C
m,ω

small(R
n, V ) ∩ V̇C

m,ω

far (Rn, V ) ∩ V̇C
m,ω

large(R
n, V ).

Let us next consider the following questions.

Problem 1.5. Given an m-jet {Ak : E → Lk(Rn, V )}mk=0 on E, a modulus of continuity ω, and

one of the scales Γ ∈ {small, large, far} defined above, what necessary and sufficient conditions

guarantee the existence of F ∈ V̇C
m,ω

Γ (Rn, V ) so that DkF restricted to E agrees with Ak, for each

k = 0, . . . ,m? Does there exist an extension operator that works simultaneously for all of the three

vanishing subspaces? Can such an extension be defined by means of a linear operator?

For an m-jet {Ak}
m
k=0 ∈ J̇

m,ω
(E,V ), let us denote

R ({Ak}
m
k=0, x, y) := max

0≤k≤m

‖Ak(x)−
∑m−k

j=0
1
j!Ak+j(y)(x− y)j‖

|x− y|m−k
, x, y ∈ E. (2)

We show that full answers to the questions presented in Problem 1.5 can be obtained by assuming
that the jet {Ak}

m
k=0 ∈ V̇J

m,ω
(E,V ) vanishes in an appropriate manner, as described in the next

definition.

Definition 1.6. Let ω : (0,∞) → (0,∞) be a modulus of continuity, E ⊂ R
n an arbitrary set,

m ∈ N ∪ {0}, and V a normed space. We define the vanishing subspaces of jets

V̇J
m,ω

small(E,V ) :=
{
{Ak}

m
k=0 ∈ J̇

m,ω
(E,V ) : lim

δ→0
sup

x 6=y∈E
|x−y|≤δ

R ({Ak}
m
k=0, x, y)

ω(|x− y|)
= 0

}
,

V̇J
m,ω

large(E,V ) :=
{
{Ak}

m
k=0 ∈ J̇

m,ω
(E,V ) : lim

δ→∞
sup

x 6=y∈E
|x−y|≥δ

R ({Ak}
m
k=0, x, y)

ω(|x− y|)
= 0

}
,

V̇J
m,ω

far (E,V ) :=
{
{Ak}

m
k=0 ∈ J̇

m,ω
(E,V ) : lim

δ→∞
sup

x 6=y∈E
min(|x|,|y|)≥δ

R ({Ak}
m
k=0, x, y)

ω(|x− y|)
= 0

}
.

And we define the intersection of the three,

V̇J
m,ω

(E,V ) := V̇J
m,ω

small(E,V ) ∩ V̇J
m,ω

large(E,V ) ∩ V̇J
m,ω

far (E,V ).
4



Before stating our main results, let us finally fix the class of moduli that we consider. We always
assume that ω is non-decreasing and satisfies

lim
t→0

ω(t) = 0, and
s

ω(s)
≤ Cω

t

ω(t)
, whenever 0 < s ≤ t < ∞, (3)

where Cω > 0 is a fixed constant. We also assume the conditions

lim
t→0

t

ω(t)
= 0, (4)

lim
t→∞

ω(t) = ∞, (5)

to deal with the small, and large and far scales, respectively. Now, the following is our main result.

Theorem 1.7. Let ω be a modulus of continuity satisfying (3), E ⊂ R
n an arbitrary set, m ∈

N ∪ {0}, and V a Banach space. For an m-jet {Ak}
m
k=0 ∈ J̇

m,ω
(E,V ), the following hold.

• Provided that (4) is satisfied, the jet {Ak}
m
k=0 admits an extension F ∈ V̇C

m,ω

small(R
n, V ) if

and only if {Ak}
m
k=0 ∈ V̇J

m,ω

small(E,V ).
• Provided that (5) is satisfied, and Γ ∈ {large, far}, the jet {Ak}

m
k=0 admits an extension

F ∈ V̇C
m,ω

Γ (E,V ) if and only if {Ak}
m
k=0 ∈ V̇J

m,ω

Γ (Rn, V ).

• Provided that both (4), (5) hold, the jet {Ak}
m
k=0 admits an extension F ∈ V̇C

m,ω
(Rn, V ) if

and only if {Ak}
m
k=0 ∈ V̇C

m,ω
(E,V ).

Moreover, when E is closed, the result holds when V is merely a normed space, and these extensions

can be defined via the linear Whitney extension operator.

Specifying to the particular case m = 0, we obtain the following.

Corollary 1.8. Let ω be a modulus of continuity satisfying (3), E ⊂ R
n be an arbitrary set and V

a Banach space.

• Provided that (4) is satisfied, f ∈ Ċ0,ω(E,V ) admits an extension F ∈ V̇C
0,ω
small(R

n, V ) if

and only if f ∈ V̇C
0,ω
small(E,V ).

• Provided that (5) is satisfied, and Γ ∈ {large, far}, f ∈ Ċ0,ω(E,V ) admits and extension

F ∈ V̇C
0,ω
Γ (Rn, V ) if and only if f ∈ V̇C

0,ω
Γ (E,V ).

• Provided that both (4), (5) hold, f ∈ Ċ0,ω(E,V ) admits an extension F ∈ V̇C
0,ω

(Rn, V ) if

and only if f ∈ V̇C
0,ω

(E,V ).

Combining Corollary 1.8 with the approximations of globally defined functions [15, Corollary
3.14.], we deduce the following.

Corollary 1.9. Let ω satisfy (3), (4) and (5), let E ⊂ R
n be closed and V be a Banach space.

• If f ∈ V̇C
0,ω
small(E,V ) and ε > 0, there exists G ∈ Lip(Rn, V ) ∩ C∞(Rn;V ) ∩ Ċ0,ω(Rn, V )

such that

‖f −G|E‖Ċ0,ω(E,V ) < ε, ‖G‖Ċ0,ω(Rn,V ) . ‖f‖Ċ0,ω(E,V ).

• If f ∈ V̇C
0,ω

(E,V ) and ε > 0, there exists G ∈ C∞
c (Rn;V ) ∩ Ċ0,ω(Rn, V ) such that

‖f −G|E‖Ċ0,ω(E,V ) < ε, ‖G‖Ċ0,ω(Rn,V ) . ‖f‖Ċ0,ω(E,V ).

Basic notation. Above C∞
c stands for smooth and compactly supported functions and Lip stands

for Lipschitz continuous functions. We denote A . B, if A ≤ CB for some constant C > 0 depending
only on parameters like integration exponents or the dimension of R

n that are not important to
track. Furthermore, we set A ∼ B, if A . B and B . A. Subscripts or variables on constants and
quantifiers, such as, Ca, C(a) and .a, signify their dependence on those subscripts.
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2. Necessity of Theorem 1.7

In this section, we give the proof of the “only if” parts of Theorem 1.7. We begin with the
following elementary observation.

Remark 2.1. If A ∈ J̇
m,ω

(E,V ), then for every r > 1, one has

max
0≤k≤m

sup
z∈E, |z|≤r

‖Ak(z)‖ ≤ C(r,m, ω,A, E) < ∞.

Proof. Write, for each z ∈ E ∩B(0, r) and z0 ∈ E,

‖Ak(z)‖ ≤
∥∥∥Ak(z)−

m−k∑

j=0

1

j!
Ak+j(z0)(z − z0)

j
∥∥∥+ ‖

m−k∑

j=0

1

j!
Ak+j(z0)(z − z0)

j
∥∥∥

≤ ‖A‖J̇m,ω
(E,V )|z − z0|

m−kω(|z − z0|) + C(A, z0,m) max
0≤j≤m

|z − z0|
j

. (r + |z0|)
m−k (ω(r + |z0|) + C(A, z0,m)) .

�

The following Lemma 2.2 is extremely useful both in this and the next section. It shows that the
minimum min(|x|, |y|) ≥ δ defining the vanishing condition V̇J

m,ω

far (E,V ) can be replaced with the
maximum max(|x|, |y|) ≥ δ. We also note that the proof in the case m = 0 is simpler due to the
symmetry of the corresponding R(A, x, y). For a proof in this special case with E = R

n, we direct
the interested reader to [15, Lemma 2.2.].

Lemma 2.2. Let ω satisfy (5), E ⊂ R
n be arbitrary, m ∈ N ∪ {0}, and V a normed space. Then,

we have

V̇J
m,ω

far (E,V ) =
{
A ∈ J̇

m,ω
(E,V ) : lim

δ→∞
sup

x 6=y∈E
max(|x|,|y|)≥δ

R (A, x, y)

ω(|x− y|)
= 0

}
.

Proof. First notice that the vanishing condition of V̇J
m,ω

far (E,V ) is not vacuous if and only if E is

unbounded, and so E is assumed to be unbounded in this proof. Let A = {Ak}
m
k=0 ∈ V̇J

m,ω
(E,V )

and ε > 0. Let M = M(ε) be such that if u, v ∈ E and |u|, |v| > M, then

R (A, u, v) < εω(|u− v|). (6)

Since E is unbounded, we can fix a point z0 ∈ E\B(0,M). Now, by Remark 2.1 and the assumption
(5), we can select K > 0 large enough (and depending on ε,M,ω,E,A) so that

K ≥ 4max (M, |z0|, 1) and max
0≤j≤m

sup
z∈E, |z|≤|z0|

‖Aj(z)‖ ≤ εω(K). (7)

Because |z0| ≥ M, the last bound is also true when |z0| is replaced by M. (Morally speaking, we
take K ≫ M + |z0| to be much bigger than both M and |z0|.)

Now we consider arbitrary x, y ∈ E with the lower bound max(|x|, |y|) ≥ K. Notice that, for
our purposes, we can also assume that M ≥ min(|x|, |y|), as otherwise the desired estimate is true
already by (6). So, for future reference, we are assuming that:

max(|x|, |y|) ≥ K and M ≥ min(|x|, |y|). (8)

Notice that R(A, x, y) is not symmetric with respect to (x, y), and so we must study two non-
symmetric cases.

We start by checking the case |x| ≥ K and |y| ≤ M first. Using the first inequality of (7), the
fact |z0| ≥ M , and the triangle inequality, we see that

|y − z0| ≤ |x− y| and C−1|x− y| ≤ |x− z0| ≤ C|x− y|; (9)
6



for some absolute constant C > 0. Now, using that x, z0 ∈ E \ B(0,M), the relations (9) and the
choice of K in (7), we have, for every 0 ≤ k ≤ m,

∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(y)(x− y)j

∥∥∥

≤
∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(z0)(x− z0)

j
∥∥∥+

∥∥∥
m−k∑

j=0

1

j!
Ak+j(z0)

(
(y − z0)

j − (x− z0)
j
) ∥∥∥

≤ ε|x− z0|
m−k ω(|x− z0|) +C(m) max

0≤j≤m−k
sup

z∈E, |z|≤|z0|
‖Ak+j(z)‖

(
|y − z0|

j + |x− z0|
j
)
,

.Cω ,m,E,‖A‖
V̇J

m,ω
(E,V )

ε|x− y|m−kω(|x− y|) + εω(K) max
0≤j≤m−k

|x− y|j. (10)

Since |x − y| ≥ K −M ≥ K/2 ≥ 1 by (7), we have that w(K) .ω ω(|x − y|) (see condition (3) of
ω) and also |x− y|j ≤ |x− y|m−k for all 0 ≤ j ≤ m− k. These applied to (10) yield the bound

∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(y)(x− y)j

∥∥∥ . ε|x− y|m−kω(|x− y|), k = 0, . . . ,m. (11)

Dividing by the term |x− y|m−kω(|x− y|), and taking the maximum among k = 0, . . . ,m, we arrive
at R(A, x, y)/ω(|x − y|) . ε, which is the desired estimate.

Let us now study the other (non-symmetric) case of (8), that is, when |y| ≥ K, and |x| ≤ M. Let
us write, for every 0 ≤ k ≤ m,

∥∥∥Ak(x)−

m−k∑

j=0

1

j!
Ak+j(y)(x− y)j

∥∥∥

≤
∥∥∥
m−k∑

j=0

1

j!

(
Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

)
(x− y)j

∥∥∥

+
∥∥∥Ak(x)−

m−k∑

j=0

1

j!

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l(x− y)j

∥∥∥

.m

m−k∑

j=0

∥∥∥Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

∥∥∥|x− y|j + max
1≤l+j≤m−k

‖Ak+j+l(x)‖|x − y|l+j

.m

m−k∑

j=0

∥∥∥Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

∥∥∥|x− y|j + max
1≤j≤m

‖Aj(x)‖|x − y|m−k; (12)

where in the last estimate we used that |x− y| ≥ K −M ≥ 1 by virtue of (7), and so |x− y|l+j ≤
|x− y|m−k whenever 1 ≤ l + j ≤ m− k. Now, for the first term in (12), we use the estimates (11)
for each j = 0, . . . ,m− k, but swapping the roles of x and y (note that the estimates of (11) were
obtained for |x| ≥ K and |y| ≤ M). We thus obtain,

m−k∑

j=0

∥∥∥Ak+j(y)−

m−k−j∑

l=0

1

l!
Ak+j+l(x)(y − x)l

∥∥∥|x− y|j

.

m−k∑

j=0

ε|x− y|m−k−jω(|x− y|)|x− y|j .m ε|x− y|m−kω(|x− y|).
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As for the second term in (12), we use the current assumption |x| ≤ M and the second inequality
of (7) to infer that

max
1≤j≤m

‖Aj(x)‖|x− y|m−k ≤ max
1≤j≤m

sup
u∈E, |u|≤M

‖Aj(u)‖|x − y|m−k ≤ εω(K)|x− y|m−k.

But again |x − y| ≥ K −M ≥ K/2 thanks to (7), and so property (3) of ω tells us that ω(K) .ω

ω(|x− y|).
Dividing by |x − y|m−kω(|x − y|) in (12) and combining the above two estimates, we conclude

that

R(A, x, y)

ω(|x− y|)
= max

0≤k≤m

‖Ak(x)−
∑m−k

j=0
1
j!Ak+j(y)(x− y)j‖

|x− y|m−kω(|x− y|)
. ε,

as desired. �

So, let us assume that F ∈ V̇C
m,ω

Γ (Rn, V ) and we will next prove that the restriction of F to
E satisfies the properties from Definition 1.6. While the proof in the case Γ = small is immediate
from Taylor’s theorem, for the scales Γ = large and Γ = far, we need to study a couple of subcases
separately.

The case Γ = small. Because F ∈ Ċm,ω(Rn, V ) we use Taylor’s theorem to write, for each couple
x, y ∈ R

n of distinct points, and each k = 0, . . . ,m:

‖DkF (x)−
∑m−k

j=0
1
j!D

k+jF (y)(x− y)j‖

ω(|x− y|)|x− y|m−k
≤

1

(m− k)!
sup

z∈[x,y]

‖DmF (z)−DmF (y)‖

ω(|x− y|)
. (13)

Let us briefly remind why, in the non-trivial case 0 ≤ k ≤ m− 1, estimate (13) holds in the setting
of normed-valued Cm,ω mappings. Indeed, for each linear and continuous functional v∗ ∈ V ∗, with
‖v∗‖∗ = 1 (meaning the dual norm of V ), we have that v∗ ◦ F ∈ Cm(Rn,R) with

Dj(v∗ ◦ F )(x) = v∗ ◦DjF (x), x ∈ R
m, j = 1, . . . ,m.

Thus, using the notation

‖v∗(A)‖ = sup{‖v∗(A(u1, . . . , uk)) : u1, . . . , uk ∈ S
n−1},

for every k-linear mapping A from R
n to V, and defining

Ax,y,k := DkF (x)−

m−k∑

j=0

1

j!
Dk+jF (y)(x− y)j , x, y ∈ R

n, x 6= y, k = 0, . . . ,m− 1,

Taylor’s theorem applied to v∗ ◦ F gives us, for all k = 0, . . . ,m− 1,

‖v∗ (Ax,y,k) ‖

ω(|x− y|)|x− y|m−k
=

∥∥∥Dk(v∗ ◦ F )(x)−
∑m−k

j=0
1
j!D

k+j(v∗ ◦ F )(y)(x − y)j
∥∥∥

ω(|x− y|)|x− y|m−k

≤
1

(m− k)!
sup

z∈[x,y]

‖Dm(v∗ ◦ F )(z) −Dm(v∗ ◦ F )(y)‖

ω(|x− y|)

=
1

(m− k)!
sup

z∈[x,y]

‖v∗ ◦DmF (z)− v∗ ◦DmF (y)‖

ω(|x− y|)
≤

1

(m− k)!
sup

z∈[x,y]

‖DmF (z)−DmF (y)‖

ω(|x− y|)
.

The Hahn-Banach Theorem in V provided us, for each k, x, y as above, with v∗ ∈ V ∗ so that
‖v∗‖∗ = 1 and ‖v∗(Ax,y,k)‖ = ‖Ax,y,k‖. Together with the previous estimates, this yields (13).

One can continue the estimate (13) by using that DmF ∈ Ċ0,ω(Rn, V ), thus deducing that

the resctriction of {F,DF, . . . ,DmF} to E defines an m-jet in J̇
m,ω

(E,V ). To show that those
8



restrictions actually belong to V̇J
m,ω

small(E,V ) is also very easy: because F ∈ V̇C
m,ω

small(R
n, V ), given

ε > 0 there exists δ > 0 so that

‖DmF (u)−DmF (v)‖ ≤ εω(|u− v|), |u− v| ≤ δ.

Thus, assuming that |x− y| ≤ δ, and as obviously then |z− y| ≤ δ for each z ∈ [x, y], the right hand
side of (13) is bounded from above by C(m)ε.

The case Γ = large. Here we assume (5) for ω and that F ∈ V̇C
m,ω

large(R
n, V ), and estimate (13) in

the following manner. For any ε > 0, let R > 0 so that |u− v| ≥ R implies ‖DmF (u)−DmF (v)‖ ≤
εω(|u − v|). Let us assume that |x − y| ≥ M, where M ≫ R and its value will be specified in a
moment. For those z ∈ [x, y] so that |z − y| ≥ R, it is enough to write

‖DmF (z) −DmF (y)‖

ω(|x− y|)
≤ ε

ω(|z − y|)

ω(|x− y|)
≤ ε.

For those z ∈ [x, y] with |z − y| < R, we see that

‖DmF (z)−DmF (y)‖

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(|z − y|)

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(R)

ω(|x− y|)
.

Due to the assumption (5), if M ≫ R is large enough, then |x− y| ≥ M implies that the last term
can be made smaller than ε. This shows that the jet given by the restriction of {F,DF, . . . ,DmF}

to E belongs to V̇J
m,ω

large(E,V ).

The case Γ = far. Again we assume (5) for ω and that F ∈ V̇C
m,ω

far (Rn, V ). Applying Lemma 2.2

for DmF ∈ V̇C
0,ω
far (R

n,Lm(Rn, V )), it follows that for every ε > 0 there exists R > 0 so that if
u, v ∈ R

n with |u| ≥ R, then

‖DmF (u)−DmF (v)‖

ω(|u− v|)
≤ ε. (14)

Also, by the condition (5), we can find M > 0 (depending on ε, R and ω) so that

M ≥ 2R and ω(2R) ≤ εω(M/2). (15)

Now, let x, y ∈ R
n be such that |x|, |y| ≥ M . By the continuity of DmF, we can find a point z ∈ [x, y]

maximizing the supremum of the right-hand side of (13). In the case where max(|y|, |z|) ≥ R, then

‖DmF (z) −DmF (y)‖ ≤ εω(|y − z|) ≤ εω(|x− y|),

by the bound (14). And when |y|, |z| < R, we can estimate as in the case Γ = large:

‖DmF (z)−DmF (y)‖

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(|z − y|)

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(2R)

ω(|x− y|)
.

But observe that, by the triangle inequality and (15), we get |x−y| ≥ M−R ≥ M/2. In combination
with the second inequality of (15), we infer that the last term is bounded above by

‖F‖Ċm,ω(Rn,V )

ω(2R)

ω(|x− y|)
≤ ‖F‖Ċm,ω(Rn,V )

ω(2R)

ω(M/2)
≤ ‖F‖Ċm,ω(Rn,V )ε . ε.

Thus, we have the desired estimate for all possible z ∈ [x, y], and so (13) gives that the restriction

of {F,DF, . . . ,DmF} to E belongs to V̇J
m,ω

far (E,V ).
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3. Sufficiency of Theorem 1.7

This section is devoted to the “if parts” of Theorem 1.7. We extend a jet from J̇
m,ω

(E,V ) to

a Ċm,ω(Rn, V ) function while simultaneously preserving a given vanishing scale. As before, our
modulus ω : (0,∞) → (0,∞) is non-decreasing, with limt→0 ω(t) = 0, and such that

s

ω(s)
≤ Cω

t

ω(t)
, whenever 0 < s ≤ t < ∞, (16)

for some Cω > 0; or equivalently that

ω(λt) ≤ Cωλω(t), for all λ ≥ 1, t > 0. (17)

The first reduction in the extension Problem 1.5 is to notice that the unique continuous extension
Ā of A ∈ V̇J

m,ω

Γ (E,V ) to the closure Ē of E satisfies

‖Ā‖J̇m,ω
(E,V ) = ‖A‖J̇m,ω

(E,V ), and Ā ∈ V̇J
m,ω

Γ (Ē, V ), (18)

for each scale Γ ∈ {small, far, large}.
Indeed, this is possible since we are assuming that V is a Banach space, and thus the functions

Ak ∈ (A1, . . . , Am) ∈ A map Cauchy sequences of E to Cauchy sequences of Lk(Rn, V ).
Since V is Banach, so is Lm(Rn, V ). Thus if {xj} is Cauchy in E with a limit x̄ ∈ Ē, then

{Am(xj)} is Cauchy in Lm(Rn, V ), by the estimate

‖Am(xj)−Am(xi)‖ . ‖A‖J̇m,ω
(E,V )ω(|xj − xi|) → 0, min(i, j) → ∞.

Thus the limit Ām(x̄) := Am(x̄) ∈ Lm(Rn, V ) is uniquely determined and in this way we extend Am

to Ē. Now the extension of the case k = m − 1, i.e. Am−1 as Ām−1, follows by recursing from the
case k = m above and the definition of (1). Thus for the extension problem, we can assume that
E ⊂ R

n is closed. In fact, only here we need the completeness of V. Thus, if the given set E ⊂ R
n

is closed, Theorem 1.7 holds for V a normed space.
We next describe the linear extension operator defined by the classical Whitney decomposition

and the associated partition of unity. We remark that even if we restrict ourselves to the particular
case m = 0 and V = R, any simple variation of the infimal convolution formula, as mentioned

in the introduction, does not seem to provide an extension operator that maps V̇C
0,ω
Γ (E,R) →

V̇C
0,ω
Γ (Rn,R), for any of the scales Γ ∈ {small, far, large}. Moreover, it is an obvious benefit that

the extension operator is linear, and of course any operator defined through an infimal convolution
formula is automatically non-linear.

Whitney partition of unity. We begin by recalling the main properties of the Whitney decomposition
of an open set into cubes. For a closed set E, the Whitney cubes associated with the open set Rn\E
is a collection Q of dyadic cubes with the following properties:

• There holds that
⋃

Q∈QQ = R
n \E.

• For every Q ∈ Q, there holds that d(Q,E) ≤ diam(Q) ≤ 4d(Q,E).
• If Q,Q′ ∈ Q are two distinct cubes, then int(Q) ∩ int(Q′) = ∅.

To construct a C∞ partition of unity associated with these cubes, for each Q ∈ Q denote Q∗ := 9/8Q
and let pQ ∈ E be a point (not necessarily unique) for which d(E,Q) = d(pQ, Q). A C∞-Whitney
partition of unity is, in particular, a collection of functions {ϕQ : Q ∈ Q} such that each ϕQ is
supported on Q∗. Many relevant properties hold for these families of cubes and functions, and we
refer to [17, Chapter VI] for a detailed exposition of this topic.

Proposition 3.1. The Whitney partition of unity satisfies the following properties.
10



(i) There holds that ⋃

Q∈Q

Q =
⋃

Q∈Q

Q∗ = R
n \ E.

(ii) There exists a dimensional constant N(n) > 0 so that
∑

Q∈Q

1Q∗ ≤ N(n);

i.e. every x ∈ R
n \E is contained in a neighbourhood that intersects at most N(n) cubes of

the family {Q∗ : Q ∈ Q}.
(iii) There exists an absolute constant C > 0 so that for all cubes Q ∈ Q there holds that

|pQ − y| ≤ C|x− y|, whenever x ∈ Q∗, y ∈ E.

(iv) For each Q ∈ Q, there holds that

0 ≤ ϕQ ≤ 1Q∗ , ϕQ ∈ C∞(Rn).

(v) Partition of unity: for all x ∈ R
n \ E, there holds that

∑

Q∈Q

ϕQ(x) =
∑

Q :Q∗∋x

ϕQ(x) = 1,
∑

Q∈Q

DkϕQ(x) = 0, k ∈ N.

Notice that the latter follows from the first and (ii).
(vi) For each k ∈ N, there exists a constant C(n, k) so that for all Q ∈ Q and z ∈ Q∗, there

holds that

‖DkϕQ(z)‖ ≤ C(n, k)d(z,E)−k .

Now, given a jet A = {Ak}
m
k=0 ∈ J̇

m,ω
(E,V ) and a point y ∈ E, we define the polynomial

PA
y : Rn → V, PA

y (x) =
m∑

k=0

1

k!
Ak(y)(x− y)k, x ∈ R

n.

And with these, the Whitney extension operator

W(A)(x) =




A0(x), x ∈ E,∑
Q∈Q

ϕQ(x)P
A
pQ

(x), x ∈ R
n \ E. (19)

Using the properties (ii) and (iv), it is easy to see that Wf ∈ C∞(Rn \E), and for every multi-index
α ∈ (N ∪ {0})n, the α-partial derivative Dα(Wf) : Rn \E → V is given by

Dα(W(A))(x) =
∑

Q∈Q

∑

β≤α

(
α

β

)
DβϕQ(x)D

α−βPA
pQ

(x), x ∈ R
n \ E. (20)

Naturally, for any function G : Rn → V, the β-partial derivative DβG(x) at x ∈ R
n is defined as

DβG(x) =
∂|β|G

∂xβ1
1 · · · ∂xβn

n

(x) = D|β|G(x)
( β1 times︷ ︸︸ ︷
e1, . . . , e1, . . . ,

βn times︷ ︸︸ ︷
en, . . . , en

)
,

where ei is the ith unit vector.

A classical result is that for a V = R valued m-jet A ∈ J̇
m,ω

(E,V ), there holds that

W(A) ∈ Ċm,ω(Rn, V ), ‖W(A)‖Ċm,ω(Rn,V ) ≤ κ(n,m,Cω)‖A‖J̇m,ω
(E,V ), (21)
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for a constant κ(n,m,Cω) depending only on n, m, and the constant Cω from (16). A proof can
be found in [17, Chapter VI, p.175]. However, a small modification of the arguments therein shows

that (21) is satisfied for all A ∈ J̇
m,ω

(E,V ), with an arbitrary normed space V.

Nevertheless, it seems very far from elementary to determine the action of the Whitney extension
operator (19) over the three vanishing scales. For each scale, we study pairs (x, y) and their relative
position with respect to E and |x− y|. Although this separation into cases will be the same for each
scale, we split the proof of Theorem 1.7 into three parts, with each of the scales presenting its own
particular difficulties.

During the proof we will fix an m-jet A ∈ V̇J
m,ω

Γ (E,V ), whose norm ‖A‖J̇m,ω
(E,V ) < ∞ is

considered to be an absolute constant. Moreover, we indicate the dependence on the dimension or
on the order of smoothness m in some estimates by including subscripts, e.g. .n, .m, .n,m . The
same applies for the constant Cω associated with the modulus ω from (16). Thus, when using the
notation A . B, the constant C involved in the estimate A ≤ C · B is allowed to depend on n, m,
‖A‖J̇m,ω

(E,V ) and Cω.

To simplify notation, we denote by F := W(A) the Whitney Extension (19) and also Py = PA
y ,

for each y ∈ E.
We will use several times the estimates of the following Lemma 3.2, which are implicitly proved

in [17].

Lemma 3.2. Let y ∈ E. Let x ∈ R
n\E and ξ = ξ(x) ∈ E be a point that minimizes d(x,E) = |x−ξ|.

Then,

(a) ‖DmF (x)−Am(y)‖ .m,n

∑
Q∗∋x

(
R(A, y, pQ) +R(A, ξ, pQ)

)
,

(b) ‖Dm+1F (x)‖ .m,n

∑
Q∗∋xR(A, ξ, pQ)|x− ξ|−1.

Proof.

(a) Using multi-index notation, the polynomials Py, y ∈ E, can be expressed as

Py(x) :=
m∑

k=0

1

k!
Ak(y)(x− y)k =

∑

|β|≤m

1

β!
Aβ(y)(x− y)β , (22)

where the Aβs are defined as follows. For any multi-index β = (β1, . . . , βn) ∈ (N ∪ {0})n of order
|β| :=

∑n
j=1 βj ≤ m, and y ∈ E, we set

Aβ(y) := A|β|(y)(

β1 times︷ ︸︸ ︷
e1, . . . , e1, . . . ,

βn times︷ ︸︸ ︷
en, . . . , en); (23)

where ei is the ith unit vector. Also, for any such β and z = (z1, . . . , zn) ∈ R
n, we denote

zβ = zβ1
1 · · · zβn

n .

The second identity in (22) follows from the symmetry and the k-linearity of the Aks’ and a basic
combinatorial argument. Thus, for every multi-index α ∈ (N ∪ {0})n of order |α| = m, one has
DαPy(x) = Aα(y), for every x ∈ R

n and y ∈ E. Now, to show part (a) it is enough to show that
for each multi-index α of order |α| = m, there holds that

‖DαF (x)−Aα(y)‖ .m,n

∑

Q∗∋x

(
R(A, y, pQ) +R(A, ξ, pQ)

)
. (24)

Then, using the multilinearity of DmF (x)−Am(y), the bound (a) follows.
12



Also, by property (v),
∑

QDγϕQ(x) = 0 for any multi-index γ with |γ| ≥ 1. These observations

and formula (20) permit to write, for x ∈ R
n \E, y ∈ E, and for a multi-index α of order |α| = m :

DαF (x)−Aα(y) =
∑

Q

Dα(ϕQ · PpQ)(x)−Aα(y) =
∑

Q

ϕQ(x) (Aα(pQ)−Aα(y))+

+
∑

Q

∑

β≤α, β 6=α

(
α

β

)
Dα−βϕQ(x)

(
DβPpQ(x)−DβPξ(x)

)
.

The first term is estimated using the definition of R(A, ·, ·) (2):
∥∥∥
∑

Q

ϕQ(x) (Aα(pQ)−Aα(y))
∥∥∥ ≤

∑

Q∗∋x

‖Aα(pQ)−Aα(y)‖ ≤
∑

Q∗∋x

R(A, y, pQ).

For the second term, we take into account that the polynomials PpQ − Pξ have degree up to m,
and so, for |β| ≤ m,

DβPpQ(x)−DβPξ(x) =
∑

|γ|≤m−|β|

1

γ!

[
Dβ+γ(PpQ − Pξ)(ξ)

]
(x− ξ)γ

=
∑

|γ|≤m−|β|

1

γ!

[
Dβ+γPpQ(ξ)−Aβ+γ(ξ)

]
(x− ξ)γ

=
∑

|γ|≤m−|β|

1

γ!




∑

|δ|≤m−|β+γ|

1

δ!
Aδ+β+γ(pQ)(ξ − pQ)

δ −Aβ+γ(ξ)


 (x− ξ)γ .

Now from the formula (2), it follows that

‖DβPpQ(x)−DβPξ(x)‖ ≤

m−|β|∑

j=0

R(A, ξ, pQ)|ξ − pQ|
m−|β|−j|x− ξ|j . (25)

This estimate and property (vi), and also |α| = m, lead us to

∥∥∥
∑

Q

∑

β≤α, β 6=α

(
α

β

)
Dα−βϕQ(x)

(
DβPpQ(x)−DβPξ(x)

) ∥∥∥

≤ C(n,m)
∑

Q∗∋x

∑

β≤α, β 6=α

|x− ξ|−(m−|β|)‖DβPpQ(x)−DβPξ(x)‖

≤ C(n,m)
∑

Q∗∋x

R(A, ξ, pQ)
m−1∑

k=0

m−k∑

j=0

(
|ξ − pQ|

|x− ξ|

)m−k−j

≤ C(n,m)
∑

Q∗∋x

R(A, ξ, pQ), (26)

where in the last bound we used that |ξ − pQ| ≤ C|x− ξ|, for an absolute constant C, by (iii).

(b) The proof is very similar to that of (a). Since the polynomials have degree up to m, if α is a
multi-index with order |α| = m+ 1, then

DαF (x) =
∑

Q

∑

β≤α,|β|≤m

(
α

β

)
Dα−βϕQ(x)D

βPpQ(x)

=
∑

Q

∑

β≤α,|β|≤m

(
α

β

)
Dα−βϕQ(x)

(
DβPpQ(x)−DβPξ(x)

)
.
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By the estimate (25), the arguments that led us to (26) and to the conclusion of (a), we derive

‖DαF (x)‖ ≤ C(n,m)
∑

Q∗∋x

m∑

k=0

∑

|β|=k

|x− ξ|−(m+1−k)‖DβPpQ(x)−DβPξ(x)‖

≤ C(n,m)
∑

Q∗∋x

R(A, ξ, pQ)|x− ξ|−1.

Then, using the multilinearity of Dm+1F (x) the bound (b) follows. �

Proof of Theorem 1.7 for Γ = small. Given A ∈ V̇J
m,ω

small(E,V ), we show that F ∈ V̇C
m,ω

small(R
n, V ),

i.e. that

lim
|x−y|→0

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0,

uniformly on x, y ∈ R
n. Denote

S(t) := sup

{
R(A, u, v)

ω(|u− v|)
: u, v ∈ E, 0 < |u− v| ≤ t

}
, (27)

understanding that S(t) = 0 if there is no such couple u, v ∈ E with 0 < |u− v| ≤ t. We have that
S(t) → 0 as t → 0 and S(t) ≤ ‖A‖J̇m,ω

(E,V ). We distinguish three possible situations for any couple

of distinct points x, y ∈ R
n, where at least one of them is outside E.

Case 1. Assume x ∈ R
n \ E and y ∈ E.

By the property 3.1 in Proposition (iii), if x ∈ Q∗ and u ∈ E, then |pQ − u| ≤ C|x− u|, for some
absolute constant C > 0. Applying this when u is equal to the given y, and also when u = ξ for
some ξ = ξ(x) ∈ E that minimizes d(x,E) = |x− ξ|, we obtain that

|pQ − y| ≤ C|x− y|, and |pQ − ξ| ≤ C|x− ξ| = C d(x,E) ≤ C|x− y|.

Together with Lemma 3.2(a), and the definition of S, we find that

‖DmF (x)−DmF (y)‖ = ‖DmF (x)−Am(y)‖

.
∑

Q∗∋x

(
R(A, y, pQ) +R(A, ξ, pQ)

)

≤
∑

Q∗∋x

(S(|y − pQ|)ω(|y − pQ|) + S(|ξ − pQ|)ω(|ξ − pQ|))

.n S(C|x− y|)ω(|x− y|),

where we used property (17) of ω in the last inequality. Therefore

‖DmF (x)−DmF (y)‖

ω(|x− y|)
. S(C|x− y|), (28)

and the right-hand side tends to zero as |x− y| → 0.

Case 2. Assume that x, y ∈ R
n \ E and d([x, y], E) ≤ |x − y|. Pick z ∈ [x, y] and p ∈ E

minimizing d([x, y], E) = |z − p|. Then,

|x− p| ≤ |x− z|+ |z − p| ≤ |x− y|+ |x− y| = 2|x− y|

and the same holds for |y − p|. Then |x− p|, |y − p| ≤ 2|x− y| and applying the estimate (28) from
Case 1 (for x ∈ R

n \ E and p ∈ E, and for y ∈ R
n \ E and p ∈ E) we obtain,

‖DmF (x)−DmF (y)‖ ≤ ‖DmF (x)−DmF (p)‖+ ‖DmF (p)−DmF (y)‖

. S(2C|x− y|)ω(2|x − y|),

which is a bound of the correct form.
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Case 3. Assume x, y ∈ R
n \ E, and d([x, y], E) ≥ |x − y|. Here we use the assumption

limt→0 t/ω(t) = 0.
Let us begin with a computation for arbitrary z ∈ R

n \E. Let ξ = ξ(z) ∈ E minimize d(z,E) =
|z− ξ|. Then, using first Lemma 3.2(b), then the definition of S in (27), and lastly the point (iii) of
Proposition 3.1, we get

‖Dm+1F (z)‖ .
∑

Q∗∋z

R(A, ξ, pQ)

|z − ξ|
≤

∑

Q∗∋z

ω(|pQ − ξ|) S(|pQ − ξ|)

d(z,E)
.n

ω(d(z,E)) S(C d(z,E))

d(z,E)
.

In the last inequality, together with (iii), we used the fact that every point of Rn \ E is contained
in at most N(n) cubes Q∗ as well as property (17) of ω. As DmF is differentiable on R

n \ E and
the segment [x, y] lies outside E, by the mean value inequality (for normed-valued mappings) and
the above estimate we obtain

‖DmF (x)−DmF (y)‖

ω(|x− y|)
≤

|x− y|

ω(|x− y|)
sup

z∈[x,y]
‖Dm+1F (z)‖ .n sup

z∈[x,y]
Uz(x, y); (29)

where

Uz(x, y) :=
|x− y|

ω(|x− y|)

ω(d(z,E))

d(z,E)
S(C d(z,E)).

Now we fix z ∈ [x, y] and we consider the behaviour of d(z,E) as |x − y| tends to zero. By
limt→0 S(t) = 0, we have the following: for any ε > 0, let δ > 0 be so that S(t) ≤ ε, whenever t ≤ δ.
First, if C d(z,E) ≤ δ, then by |x− y| ≤ d(z,E) and property (16) for ω, we obtain

Uz(x, y) . S(C d(z,E)) ≤ ε.

On the other hand, if C d(z,E) ≥ δ, we use the property (16) of ω and that S ≤ ‖A‖J̇m,ω
(E,V ) to

bound

Uz(x, y) .δ
|x− y|

ω(|x− y|)
· 1 · ‖A‖J̇m,ω

(E,V ) .
|x− y|

ω(|x− y|)
;

now the right-hand side tends to zero as |x− y| tends to 0, by the condition (4). We conclude from
the above cases and (29) that ‖DmF (x)−DmF (y)‖/ω(|x − y|) → 0 as |x− y| → 0, uniformly. �

Proof of Theorem 1.7 for Γ = large. Let A ∈ V̇J
m,ω

large(E,V ) and we show that F ∈ V̇C
m,ω

large(R
n, V ).

Denote

L(t) := sup

{
R(A, u, v)

ω(|u− v|)
: u, v ∈ E, |u− v| ≥ t

}
,

so that L(t) ≤ ‖A‖J̇m,ω
(E,V ), L is non-increasing, and L(t) → 0 as t → ∞. We understand S(t) = 0

when there are no u, v ∈ E with |u− v| ≥ t.

Case 1. Let x ∈ R
n \ E and y ∈ E.

For each cube Q ∈ Q so that x ∈ Q∗, we have |pQ − y| ≤ C|x − y| for an absolute constant
C; see (iii). Let ξ = ξ(x) ∈ E minimize d(x,E) = |x − ξ|. In this case, although we are letting
|x− y| → ∞, we do not know whether |pQ − y| or |pQ − ξ| are large or not. Therefore, we need to
study the behaviour of |pQ − z|, for z ∈ {y, ξ} as |x− y| → ∞. Given ε > 0, we choose M > 0 large
enough so that L(M) ≤ ε. Note that such an M > 0 exists due to the property lim

t→∞
L(t) = 0. Also,

using ω(∞) = ∞, we find K > M such that ω(t) ≥ ε−1ω(M), provided that t ≥ K.
Let us assume that |x − y| ≥ K, and examine two cases separately. If |pQ − z| ≥ M, then

L(|pQ − z|) ≤ L(M) and so

R(A, z, pQ)

ω(|x− y|)
≤ L(|pQ − z|)

ω(|pQ − z|)

ω(|x− y|)
≤ L(M)

ω(C|x− y|)

ω(|x− y|)
. L(M) ≤ ε. (30)
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On the other hand, if |pQ − z| ≤ M , then the assumption |x− y| > K gives

R(A, z, pQ)

ω(|x− y|)
≤ ‖A‖J̇m,ω

(E,V )

ω(|z − pQ|)

ω(|x− y|)
.

ω(M)

ω(|x− y|)
≤ ε. (31)

We have used that if z ∈ {y, ξ}, then |pQ − z| ≤ C|x− z| ≤ C|x− y|, by virtue of (iii). Thus the
bounds (31) and (30) tell us that regardless of the size of |pQ − z|, we have

R(A, z, pQ)

ω(|x− y|)
. ε, z ∈ {y, ξ}. (32)

From the bound (32), the fact that DmF (y) = Am(y), and Lemma 3.2(a), we obtain

‖DmF (x)−DmF (y)‖

ω(|x− y|)
=

‖DmF (x)−Am(y)‖

ω(|x− y|)
.

∑

Q∗∋x

(
R(A, y, pQ)

ω(|x− y|)
+

R(A, ξ, pQ)

ω(|x− y|)

)
.n ε,

whenever |x− y| ≥ K.

Case 2. Assume x, y ∈ R
n \ E, and d([x, y], E) ≤ |x − y|. Let p = p(x, y) ∈ E minimize

d([x, y], E). Then, again, |x− p|, |y − p| ≤ 2|x − y|. As in Case 1, given ε > 0, there exists M > 0
(independent of x ∈ R

n \ E and p ∈ E) such that: if |x− p| ≥ M, then

‖DmF (x)−DmF (p)‖ ≤ εω(|x− p|) ≤ εω(2|x − y|) . εω(|x− y|). (33)

Now, consider |x− p| ≤ M and let K > 0 be so large that εω(K) > ω(M). Now if also |x− y| ≥ K,
then we have

‖DmF (x)−DmF (p)‖ ≤ ‖F‖Ċm,ω(Rn,V )ω(|x− p|) . ω(M) ≤ εω(K) ≤ εω(|x− y|). (34)

We used above the fact that the Whitney extension is a bounded operator. Combining (33) and
(34), we obtain

sup
|x−y|>K

‖DmF (x)−DmF (p)‖

ω(|x− y|)
. ε. (35)

And the same bound holds with y in place of x; thus by triangle inequality,

sup
|x−y|>K

‖DmF (x)−DmF (y)‖

ω(|x− y|)

≤ sup
|x−y|>K

‖DmF (x)−DmF (p)‖

ω(|x− y|)
+ sup

|x−y|>K

‖DmF (p)−DmF (y)‖

ω(|x− y|)
. ε.

Case 3. Assume x, y ∈ R
n \ E and d([x, y], E) > |x− y|.

For any ε > 0, let M > 0 be so that L(M) ≤ ε and also choose K ≫ M so that εω(K) ≥ ω(M).
For any two points u, v ∈ E, we have either R(A, u, v) ≤ εω(|u − v|) (when |u − v| ≥ M) or
R(A, u, v) ≤ ‖A‖V̇J

m,ω
(E,V )ω(M) (when |u− v| ≤ M). In other words,

R(A, u, v) . max{εω(|u− v|), ω(M)}, for all u, v ∈ E. (36)

Let z ∈ [x, y] and let ξ = ξ(z) ∈ E minimize d(z,E) = |z − ξ|. Employing first Lemma 3.2(b),
then (36), and property (ii) of Proposition 3.1, we derive

‖Dm+1F (z)‖ .n

∑

Q∗∋z

R(A, ξ, pQ)

d(z,E)
.n max

Q∈Q :Q∗∋z

R(A, ξ, pQ)

d(z,E)
(37)

≤ max
Q∈Q :Q∗∋z

max{εω(|pQ − ξ|), ω(M)}

d(z,E)
.n

max{εω(d(z,E)), ω(M)}

d(z,E)
. (38)
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We used the fact that when z ∈ Q∗, then |pQ − ξ| ≤ C|z − ξ|. Then (38) and the mean value
inequality (for normed-valued mappings) give

‖DmF (x)−DmF (y)‖

ω(|x− y|)
≤

|x− y|

ω(|x− y|)
sup

z∈[x,y]
‖Dm+1F (z)‖

.n sup
z∈[x,y]

|x− y|

ω(|x− y|)

max{εω(d(z,E)), ω(M)}

d(z,E)
.

(39)

By property (16) of ω and d(z,E) ≥ |x− y|, for all z ∈ [x, y], we continue,

RHS (39) . sup
z∈[x,y]

max

{
ε,

|x− y|

ω(|x− y|)

ω(M)

d(z,E)

}
≤ max

{
ε,

ω(M)

ω(|x− y|)

}
. (40)

Recalling that εω(K) ≥ ω(M) we conclude

sup
|x−y|>K

‖DmF (x)−DmF (y)‖

ω(|x− y|)
. sup

|x−y|>K

max

{
ε,

ω(M)

ω(|x− y|)

}
≤ ε.

�

Proof of Theorem 1.7 when Γ = far. Here we assume that ω(∞) = ∞. We denote

D(t) := sup

{
R(A, u, v)

ω(|u− v|)
: u, v ∈ E, max(|u|, |v|) ≥ t

}
,

so that D(t) ≤ ‖A‖J̇m,ω
(E,V ) and D is non-increasing, and moreover, thanks to Lemma 2.2, that

D(t) → 0 as t → ∞. We show that

lim
K→∞

sup
x,y∈Rn

min(|x|,|y|)≥K

‖DmF (x)−DmF (y)‖

ω(|x− y|)
= 0.

Case 1. Let x ∈ Rn \ E, y ∈ E. Given ε > 0, let M > 0 be such that D(M) ≤ ε. We
consider |x| ≥ K ≫ M for a large constant K to be soon determined. Let ξ = ξ(x) ∈ E minimize
d(x,E) = |x − ξ|. Applying Lemma 3.2(a) and bearing in mind the property (ii), we find a cube
Qx ∈ Q with x ∈ (Qx)

∗, and z ∈ {ξ, y} so that

‖DmF (x)−DmF (y)‖

ω(|x− y|)
≤

∑
Q∗∋xR(A, y, pQ) +R(A, ξ, pQ)

ω(|x− y|)
.n

R(A, z, pQx)

ω(|x− y|)

≤ min{D(|pQx |),D(|z|), ‖A‖J̇m,ω
(E,V )}

ω(|pQx − z|)

ω(|x− y|)
. (41)

The last inequality is a consequence of the definition of D(t). Now, if either |pQx | ≥ M or
|z| ≥ M, the minimum in the term (41) is smaller than ε due to the choice of M. And because
|pQx−z| ≤ C|x−y| for an absolute constant C > 0 (see (iii)); we conclude that (41) is bounded by an
absolute multiple of ε in this particular case. And if |pQx| ≤ M and |z| ≤ M, then |pQx − z| ≤ 2M,
and so ω(|pQx − z|) . ω(M) and we bound

RHS (41) .
ω(M)

ω(||x| −M |)
.

ω(M)

ω (K −M)
.

By ω(∞) = ∞ the right-hand side is smaller than ε provided that K ≫ M is taken sufficiently
large.

Case 2. Assume x, y ∈ R
n \ E and d([x, y], E) ≤ |x− y|.
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Let ε > 0 and let R > 0 be as in Case 1. Suppose that |x|, |y| ≥ K. Let p ∈ E be such that
d([x, y], E) = d([x, y], p), and then |x− p|, |y − p| ≤ 2|x− y|, as we have already seen several times.
By Case 1 applied to the pairs of points x ∈ R

n \ E, p ∈ E and y ∈ R
n \E, p ∈ E, we have

‖DmF (x)−DmF (p)‖ . εω(|x− p|), ‖DmF (y)−DmF (p)‖ . εω(|y − p|).

Thus the claim follows by triangle inequality.
Case 3. Assume x, y ∈ R

n \ E and d([x, y], E) ≥ |x− y|.
Let ε > 0, and K ≫ M be the parameters we used in Case 1. Note that we can enlarge K if

necessary so as to satisfy

K ≥ 2M and ω(M) ≤ εω(K). (42)

Note that condition (5) guarantees the existence of such K. Let us also assume that |x| ≥ K.
Following the lines (37) and (39), we find z ∈ [x, y], a point ξ = ξ(z) ∈ E minimizing d(z,E) =
|z − ξ|, and a cube Qz ∈ Q with z ∈ Q∗ so that

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.n

|x− y|

ω(|x− y|)

R(A, ξ, pQz)

d(z,E)
. (43)

First of all, observe that when |ξ| ≥ M or |pQz | ≥ M , then R(A, ξ, pQz) ≤ εω(|ξ − pQz |), with
|ξ − pQz | ≤ C|ξ − z| = Cd(z,E). Thus, in this particular subcase, using (16) we can estimate

RHS (43) .
|x− y|

ω(|x− y|)

ω(d(z,E))

d(z,E)
ε .Cω ε. (44)

Therefore, we will assume from now on that |ξ|, |pQz | ≤ M. Now, we look at the last numerator
in (43); observe that, by the definition of R(A, ξ, pQz), and the fact that F extends the jet A from

E to R
n, we can find some k ∈ {0, . . . ,m} and some ξ̃ ∈ [ξ, pQz ] so that

R(A, ξ, pQz) ≤
‖Ak(ξ)−

∑m−k
j=0

1
j!Ak+j(pQz)(ξ − pQz)‖

|ξ − pQz |
m−k

=
‖DkF (ξ)−

∑m−k
j=0

1
j!D

k+jF (pQz)(ξ − pQz)‖

|ξ − pQz |
m−k

. ‖DmF (ξ̃)−DmF (pQz)‖. (45)

Now, since F ∈ Ċm,ω(Rn, V ) with ‖F‖Ċm,ω(Rn,V ) .n,m,Cω ‖A‖J̇m,ω
(E,V ), and |ξ̃−pQz | ≤ |ξ−pQz | ≤

2M, we can combine the estimates (43) and (45) to derive

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.n,m,Cω

|x− y|

ω(|x− y|)

‖DmF (ξ̃)−DmF (pQz)‖

d(z,E)

.‖A‖
J̇
m,ω

(E,V )

|x− y|

ω(|x− y|)

ω(|ξ̃ − pQz |)

d(z,E)
.Cω

|x− y|

ω(|x− y|)

ω(M)

d(z,E)
. (46)

To complete the proof, observe that (42) gives

d(z,E) = |z − ξ| ≥ |z| − |ξ| ≥ K −M ≥ K/2,

and ω(M) ≤ εω(K) .Cω εω(d(z,E)). By plugging this estimate into RHS(46) we obtain

‖DmF (x)−DmF (y)‖

ω(|x− y|)
.

|x− y|

ω(|x− y|)

ω(d(z,E))

d(z,E)
ε .Cω ε;

the last bound being a consequence of (16) and |x− y| ≤ d(z,E).
�
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