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WEAKLY POROUS SETS AND
MUCKENHOUPT A4, DISTANCE FUNCTIONS

THERESA C. ANDERSON, JUHA LEI—IRBACK, CARLOS MUDARRA,
AND ANTTI V. VAHAKANGAS

ABSTRACT. We consider the class of weakly porous sets in Euclidean spaces. As our
first main result we show that the distance weight w(z) = dist(z, E)~¢ belongs to the
Muckenhoupt class A, for some a > 0, if and only if £ C R™ is weakly porous. We
also give a precise quantitative version of this characterization in terms of the so-called
Muckenhoupt exponent of E. When E is weakly porous, we obtain a similar quantitative
characterization of w € Ay, for 1 < p < oo, as well. At the end of the paper, we give an
example of a set £ C R which is not weakly porous but for which w € A, \ A; for every
O<a<land1l<p<oo.

1. INTRODUCTION

Let £ C R", n € N, be a nonempty set. We are interested in the Muckenhoupt A,
properties of the weights

w(x) = wy g(r) = dist(z, E)™, r eR",

where o € R. Previously, these properties have been studied, for instance, in [1, 2, 3, 4, 8, 12].
It is known, by [4, Corollary 3.8(b)], that if the set E is porous, then w, g belongs to the
Muckenhoupt class A; if and only if 0 < a < n — dimu (E); here dimy (F) is the Assouad
dimension of E. Since dim (E) < n if and only if E C R™ is porous (see e.g. [11, Section 5]),
it follows in particular that for each porous set £ C R" there exists some « > 0 such that
Wq, g 1s an Ay weight.

The results in [4] do not apply for nonporous sets, but the bound 0 < a < n — dimy (E)
for admissible o might suggest that w, g cannot be an A; weight for any a > 0 if £ C R" is
not porous, since then dimu (E) = n. However, Vasin showed in [13] that if F is a subset of
the unit circle T C R?, then the weight w, g belongs to the class A;(T), for some a > 0, if
and only if E is weakly porous; see Section 3 for the definition and commentary concerning
this condition.

The definition of weak porosity in [13] is rather specific to the one-dimensional case. Our
first goal in this paper is to extend both this condition and the related characterization of
the A; property of the weight dist(-, £)~®. The underlying ideas are in principle similar to
those in Vasin [13], but the higher dimensional case requires several nontrivial modifications.
In particular, we use dyadic definitions and tools, including a type of dyadic iteration, that
lead to efficient and natural proofs.

Our first main result can be stated as follows.

Theorem 1.1. Let E C R™ be a nonempty set. Then dist(-, E)~* € Ay, for some o > 0, if
and only if E is weakly porous.
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One consequence of Theorem 1.1 is that if £ C R™ is weakly porous, then dist(-, F)~
is locally integrable for some o > 0. This implies that the upper Minkowski dimension of
E N B(z,r) is strictly less than n for every x € R™ and r > 0; see Remark 6.8 for more
details.

Theorem 1.1 is quantitative in the sense that o and the constants in the A; and weak
porosity conditions only depend on each other and n. More precise dependencies are given
in Lemma 4.1 and Lemma 5.3, which prove the necessity and sufficiency in Theorem 1.1,
respectively.

A closely related question is to quantify the precise range of exponents o € R for which the
weight w, g(z) = dist(z, E)~ belongs to the Muckenhoupt class A, for a given 1 < p < 0.
If E C R" is porous, it follows from [4, Corollary 3.8] that w,p € A; if and only if
0 <a<n—dimy(F), and wa g € A,, for 1 <p < oo, if and only if

(1 —=p)(n—dimp(E)) < a <n —dimy (E).

In this paper we obtain the following extension of [4, Corollary 3.8] for weakly porous sets,
given in terms of the Muckenhoupt exponent Mu(FE) that we introduce in Definition 6.1.
For a porous set £ C R" it holds that Mu(F) = n — dima (F), see Section 6 for details.

Theorem 1.2. Assume that E C R"™ is a weakly porous set. Let a € R and define w(zx) =
dist(z, £)~ for every x € R™. Then

(i) we Ay if and only if 0 < a < Mu(F).

(ii) w e Ay, for 1 <p < oo, if and only if

(1 —p)Mu(F) < o < Mu(E). (1)

If we omit the special case @ = 0, in which the connection to the geometry of E is
lost, then in part (i) of Theorem 1.2 the assumption that E is weakly porous is actually
superfluous, and we have the following full characterization.

Theorem 1.3. Assume that E C R"™ is a nonempty set. Let a € R\ {0} and define
w(z) = dist(z, E)~* for every x € R". Then w € Ay if and only if 0 < a < Mu(FE).

By combining Theorems 1.1 and 1.3, we see that F is weakly porous if and only if
Mu(E) > 0; cf. Corollary 6.6 and Remark 6.7 for related comments.

Theorem 1.3 raises the question whether also (1) could provide a full characterization of
Wop € Ay, when a # 0 and 1 < p < oo. In Section 8 we show that this is not the case,
by giving a nontrivial construction of a set £ C R"™ which is not weakly porous (whence
Mu(E) = 0) but still w,p € A, for all 0 < a < 1 and all 1 < p < co. This set illustrates
the delicate interplay between the Muckenhoupt conditions and the distance functions, and
also gives a novel type of an example of weights which are in A, for all 1 < p < oo but not
in A;. Nevertheless, a full characterization of sets £ C R" for which w, g € A, for some
(or all) 1 < p < oo remains an open question.

Another interesting consequence of Theorem 1.2 is the following strong self-improvement
property of A,-distance weights for weakly porous sets: if @ > 0 and E is weakly porous,
then w, g € A, for some 1 < p < 0o (i.e. wo,p € As) if and only if w, g € A;. The example
in Section 8 shows that this is not true for general sets.

The outline for the rest of the paper is as follows. In Section 2 we introduce notation and
recall some definitions and properties of dyadic decompositions and Muckenhoupt weights.
Weakly porous sets are defined in Section 3, where we also examine some of their basic
properties. Theorem 1.1 is proved in Sections 4 and 5. Section 6 contains the definition
of the Muckenhoupt exponent and the proofs of Theorems 1.2 and 1.3, together with some
related results. In Section 7, we give an example of a weakly porous set £ C R™ which is
not porous and compute explicitly the Muckenhoupt exponent of E. Finally, in Section 8
we construct the set £ C R which is not weakly porous, but still w, g € A, forall 0 < a <1
and 1 < p < 0.
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2. PRELIMINARIES

Throughout this paper, we consider R™ equipped with the Euclidean distance and the
n-dimensional Lebesgue (outer) measure. The diameter of a set £ C R™ is denoted by
diam(FE) and |F| is the Lebesgue (outer) measure of E. If z € R™, then dg(x) = dist(z, E)
denotes the distance from x to the set F, and dist(E, F') is the distance between the sets F
and F, that is,

dist(E, F)=inf{|lz —y|:z € £,y € F}.
The open ball with center z € R™ and radius r > 0 is
B(z,r)={yeR": |z —y| <r}.

In this paper, we only consider cubes which are half-open and have sides parallel to the
coordinate axes. That is, a cube in R" is a set of the form

Q= [al,bl) Xoeee X [an,bn),

with side-length ¢(Q) = by —a; = --- = b, —a,. For x € R" and r > 0, the cube with center
x and side length 27r is

Q(z,r) = {yGR" c—r <y;—x; <rforall j = 1,...,n}. (2)
Clearly,

Q(x,7)| = (2r)* and diam(Q(z,r)) = (2v/n)r.
The dyadic decomposition of a cube Qg C R" is

D(Qo) = U D;(Qo),

where each D;(Qy) consists of the 2" pairwise disjoint (half-open) cubes @, with side length
Q) = 2794(Qy), such that
Q= |J @
Q€ED;(Qo)
for every j = 0,1,2,.... The cubes in D((Q)y) are called dyadic cubes (with respect to Q)
and they satisfy following properties:

(D1) Let j > 1 and @ € D;(Qo). Then there exists a unique dyadic cube 7Q) € D;_1(Qo)
satisfying () C 7(). The cube 7@ is called the dyadic parent of @), and @ is called a
dyadic child of 7).
(D2) Every dyadic cube @ € D(Qy) has 2" dyadic children.
(D3) Nestedness property: PN Q € {P,Q, 0} for every P,Q € D(Qo)-
A locally integrable function w in R™, with w(x) > 0 for almost every x € R", is called a
weight in R™.

Definition 2.1. A weight w in R™ belongs to the Muckenhoupt class A; if there exists a
constant C' such that

zeQ

for every cube @ C R"™. The smallest possible constant C' in (3) is called the A; constant of
w, and it is denoted by [w] 4.

][ w(z)dr < C essinf w(z), (3)
Q

Above, we have used the notation

]{410(:5) dx = |—;‘/Aw(1’) dx

for the mean value integral over a measurable set A C R"™ with 0 < |A| < co.
For 1 < p < oo, the class A, is defined as follows.



4 T.C. ANDERSON, J.LEHRBACK, C. MUDARRA, AND A.V. VAHAKANGAS

Definition 2.2. A weight w in R" belongs to the Muckenhoupt class A,, for 1 < p < oo, if
there exists a constant C' such that

]{gw(a:) dx(][Qw(x)ﬁ da:)p_l <c (@)

for every cube @ C R™. The smallest possible constant C'in (4) is called the A, constant of
w, and it is denoted by [w]4,.

We recall that the inclusions A; C A, C A, hold for 1 < p < q. Also, it is immediate that

w € A,, for 1 < p < oo, if and only if w!™ € A, and then [wl_p/]AP, = [w]i‘/p(p_l). Here
p = p%l is the conjugate exponent of 1 < p < oo. See [6, Chapter IV] for an introduction
to the theory of Muckenhoupt weights.

The following elementary property will be useful in Section 6.
Lemma 2.3. Let w € A, for some 1 < p < oo. If w® € A, for some 8> 0, then w € A,.

Proof. Let ¢ > p be large enough so that s = q%l < B and w € A,. Then we have w* € A,
as well, thanks to Jensen’s inequality. The A, condition on a cube ) C R" for w yields

][Qw < [w]a, <][Q wllq)lq = [w]a, (][Q w_s) —1/s . <][Q ws) 1/s

1/s
< [w]a, ([U)s]Al essQinf ws) = [w]a, [w)* essQinfw,

- 1

and thus w € A;. O

3. WEAKLY POROUS SETS

Recall that a set £ C R"™ is porous if there exists a constant ¢ > 0 such that for every
x € R™ and r > 0 there exists y € R” satisfying B(y, cr) C B(z,r) \ E. Equivalently, E is
porous if and only if there is a constant ¢ > 0 such that for all cubes Qg C R” there is a
dyadic subcube @ € D(Qo) such that Q N E = () and |Q| > ¢|Qo].

In [13] Vasin defined weak porosity in the unit circle T C R? as follows: a set £ C T is
weakly porous, if there are constants ¢, > 0 such that if [ C T is an arbitrary arc, then

Dl =1,

where the sum is taken over all (pairwise disjoint) subarcs J; C I that contain no points of
E and satisfy |Ji| > 6|.J|, where J C [ is a lengthwise largest subarc without points of E.
The subarcs that do not intersect E are called free arcs.

We consider an extension of the above definition to R"™.

Definition 3.1. Let £ C R" be a nonempty set.

(i) When P C R™ is a cube, a dyadic subcube @) C D(P) is called E-free if ENQ =
). We denote by M(P) € D(P) a largest E-free dyadic subcube of P, that is,
((M(P)) > ¢(R) if R € D(P) is an E-free dyadic subcube of P. Such a cube need
not be unique, but we fix one of them.

(ii) The set £ C R™ is weakly porous, if there are constants 0 < ¢,d < 1 such that for
all cubes P C R™ there exist N € N and pairwise disjoint E-free cubes @y € D(P),
k=1,...,N, such that |Qx| > J|IM(P)| for all k =1,..., N and

N
> 1Qul = ¢l P]. (5)
k=1
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Instead of dyadic cubes, also general subcubes of P could be used in the definition of
weak porosity. However, the dyadic formulation is convenient from the point of view of our
proofs. Notice also that inequality (5) can be written as

N
Q| =P,
k=1
since the cubes @), ...,Qx are pairwise disjoint. Hence, the weak porosity of a set F can

roughly be described as follows: for every cube P, the union of those disjoint E-free subcubes
that are not too small (compared to the largest E-free cube in P) has measure comparable
to that of P.
The following properties are easy to verify using the definition of weak porosity:
o If £ C R" is porous, then E is weakly porous.
e F C R" is weakly porous if and only if the closure F is weakly porous.
o If £ C R is weakly porous, then |F| = 0. This is a consequence of the Lebesgue
differentiation theorem.
e Weak porosity implicitly implies that for every cube P C R" there exists an E-free
dyadic subcube @ € D(P).

Let £ C R” be a nonempty set. Given a cube P C R"™ and § > 0, we write
F5(P) ={Q € D(P) : |Q| > §|M(P)| and Q N E = 0}.
We denote by Fs(P) the maximal subfamily of the cubes in T (P). That is, each R € .7:\5(13)

is contained in some cube @ € Fs5(P) and if Q € Fs(P), then @ is not strictly contained

in another cube in Fy (P). Observe that the cubes in F5(P) are pairwise disjoint, since two
dyadic cubes are either disjoint, or one of them is strictly contained in the other one. The
weak porosity of F can now be formulated in terms of the sets Fg, since E is weakly porous
if and only if there are constants 0 < ¢, < 1 such that

Z |Q| > ¢c|P| for all cubes P C R™. (6)
QeFs(P)

Indeed, it is clear that (6) implies weak porosity of E. Conversely,

N N
AP <Y Q< Y Y lgcel@l < D> 14l
k=1

QEFs(P) k=1 QEFs(P)

whenever ¢, §, P and Qy, k =1,..., N, are as in Definition 3.1 (ii).
Part (ii) of the next lemma will be important when proving that weak porosity implies
the Aj-property for dist(-, £)~%, for some a > 0; see the proof of Lemma 5.2.

Lemma 3.2. Assume that E C R" is weakly porous set, with constants 0 < c¢,0 < 1. Then
the following statements hold.

(i) Assume that Q@ C R are two cubes such that ENQ # 0 and |IM(Q)| < 4 0| M(R)|.
Then

QI < (1 -2""¢)|R|
(ii) Assume that Q C R are two cubes such that |R| = 2"|Q|. Then there ezists a number
k =k(n,c) € N such that

IM(R)| < 4™ FIM(Q)].
(iii) Assume that Q C R are two cubes. Then there exist constants C' = C(n,c,d) and
o=o(n,c,0) >0 such that

M <o (7)) Mm@l
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Proof. We first remark that the dyadic grids D(Q) and D(R) need not be compatible, and
this is taken into account in the arguments below.

First we show (i). Fix S € Fs(R). We claim that the center zg € R of S belongs to
R\ Q. Assume the contrary, namely, that zg € (). Since S is E-free and @) intersects F,
there exists an F-free dyadic cube T' € D(Q) such that £(T) > £(S)/4. It follows that

IM(Q)| = |T| = 47"[5| = 470 M(R)].

This is a contradiction, since |[M(Q)| < 47"6|M(R)| by assumption. We have shown that
rg € R\ @, and therefore there exists a cube S’ C S\ @ such that |S’| = 27"|S|. Since
{S" : S € Fs(R)} is a pairwise disjoint family of cubes contained in R\ @), we obtain that

IRI—1QI=|R\Q|= > [s=27" > Is|.

SeFs(R) SeFs(R)

By weak porosity, the last term above is bounded below by 27"¢|R|, and reorganizing the
terms gives (1 —27"¢)|R| > |Q] as claimed in (i).
Next we show (ii). If ENQ = 0, then

IM(R)| < |R| = 2"|Q] < 4"671Q| = 4"~ IM(Q).

In this case, we may take k = 1. In the sequel we assume that ENQ # (). Choose k = k(n, ¢)
such that 2/¥ < —L—_ Then there exists a finite sequence

1-2—"¢
Q=R CRICRyC---CR,=R
of cubes such that |R;| - |R;_1|~' = 2"/*. Observe that

k
Z 1‘ 0| ‘Q|

Fix 1<i<k Wehave ) # FNQ C ENR;,_; and R;_; C R;. Moreover,

(1—=27"¢)|Ri| = (1 = 27"¢)2"*|R; | < [Ri]
and therefore the contrapositive of part (i) implies that
(M(Ri—1)| > 47| M(R;)]
forall i =1,2,..., k. This allows us to conclude that
[M(Ro)| = 470 M(Ba)| = (476 | M(Ry)| = -+ = (47"0) [ M(Ry)].

The desired conclusion follows, since Ry = () and R, = R.
Finally, we prove (iii). An easy computation shows that R C AQ, for A = 3¢(R)/((Q).
Here AQ denotes the cube with the same center as () and side-length equal to A\(Q). Then,

for
o ()

we have that R C 2™Q. Hence |[M(R)| < C(n)|M(2mQ)|. Denote by C; = 4"%5=* the
constant in (ii). Then, by iterating (ii) we obtain

MEmQ)| < M) < o) @)
— C(n,e.5) (%) M),

where 0 = o(n, ¢,d). The claim (iii) follows by combining the above estimates. O
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Example 3.3. Unlike for porous sets, inclusions do not preserve weak porosity: there are
sets F' C E such that E is weakly porous but F'is not. For instance, Z is clearly a weakly
porous subset of R, but N C Z is not a weakly porous subset of R. Indeed, assume for
the contrary that N is weakly porous in R with constants 0 < ¢,6 < 1. Consider cubes
Q; =1[0,27), j € N. Observe that Q; C R; = [—27,27). Lemma 3.2 (ii) implies that there is
a constant C' = C(c,d) > 0 such that 29 =|M(R;)|< C|M(Q;)| = C. By choosing j large
enough, we get a contradiction.

4. A, IMPLIES WEAK POROSITY

This section and the following Section 5 contain the proof of Theorem 1.1. We begin by
proving the necessity part of the equivalence in the theorem, that is, if dist(-, £)~® is an A;
weight, then E is a weakly porous set. The straight-forward proof illustrates in a nice way
the connection between the A; condition and the definition of weak porosity.

Lemma 4.1. Let E C R" be a nonempty set, let a« > 0, and write w(z) = dist(z, E)~* for
allx € R™. Ifw € Ay, then E is weakly porous with constants depending on n, o and [w]a, -

Proof. Since dist(-, ) = dist(-, E) and F is weakly porous if and only if E is weakly porous,
quantitatively, we may assume that E is closed. Assume that w € A; and fix 0 < < 1 to
be chosen later. Let P C R™ be a cube and write ¢ = ¢(M(P)) for the sidelength of M(P).

Observe that the set F is of measure zero, since w is locally integrable and w(z) = oo in
E. Since FE is closed, for every x € P\ E we have dist(z, E) > 0 and therefore there exists
an E-free dyadic cube @ € D(P) such that z € ). As a consequence, we can write P\ F
as a disjoint union of maximal E-free dyadic cubes Q € D(P). Let € P\ E such that
T & UQe F5(P) (). Then the maximal E-free dyadic cube ) € D(P) containing z satisfies

Q| < §|M(P)| = de".
Since 7Q) € D(P) is not E-free, we have
dist(z, E) < diam(7Q) < 6Y/"2v/nt.
It follows that
=% < C(n, )5 dist(z, £)™

for every x € (P\ E)\ Uger,p) @ By integrating, and using the fact that E is of measure
zero, we obtain
P Q 1
‘ \UQ;}—(S(P) | < C(n, a)éa/n? dlSt(.ﬁL’, E)fcv dr

| ‘ ‘ | P\UQE}'(;(P)Q

< C’(n,oz)cSO‘/"][ dist(z, E)"“ dx
P

< C(n, @)6“™w] 4, ess i}glf dist(x, E)™“.
S

670{

Denote by y the center of M(P) C P. Then
ess i}glf dist(z, £)™ < dist(y, £)™* < 2%(M(P))"* = 2%¢.
TE
Simplifying, we get
PI- Y lal=|py U Q)< ctas il
QeFs(P) QEFs(P)

It remains to choose § = 6(n, a, [w]4,) > 0 so small that C(n,a)d*"[w]s, < 1, and condi-
tion (6) follows. O
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5. WEAK POROSITY IMPLIES A;

Next, we turn to the sufficiency part of the equivalence in Theorem 1.1, that is, the weak
porosity of E implies that dist(-, F)~® is an A; weight; see Lemma 5.3. The proof applies an
iteration scheme, which is built on an efficient use of the dyadic definition of weak porosity;
see the proof of Lemma 5.2. The following sets ¥ and G¥ will be important in the iteration.

Fix a weakly porous closed set £ C R™ with constants 0 < ¢,0 < 1 and a cube Fy C R".
Recall that Fs(Fp) is the maximal subfamily of the collection

Fs(Py) ={Q € D(R) : Q| > | M(By)| and QN E = 0}.

We will need also the complementary family Gs(F), which is defined to be the maximal
subfamily of the collection

QS(PO):{PED(PO):PCPO\ U Q}-

QeFs5(Po)

Due to the lattice properties of dyadic cubes, we have |Q| > 0| M (Fp)| for all @ € Gs(F).
Indeed, such a cube @ € Gs(F,) cannot be contained in any cube belonging to Fs(F), but,
on the other hand, the dyadic parent 7Q) € D(F,) of ) must intersect some R € F5(Fp).
Consequently R C 7@, and

Q| =27"|7Q| > |R| > §|M(F)].
We let G = { Ry}, F} = Fs(Ry), G} = Gs(Pp),

F= mm, G=_ 6w®n,

Reg} Reg}
and in general, for £k = 3,4, ..., we define
= m®, = gnr.
Reghi™! Regy ™t

Lemma 5.1. Assume that E C R™ is a weakly porous closed set with constants 0 < ¢, < 1.
Let Py C R™ be a cube, and let sets F¥, fork=1,2,..., be as above. Then

PO\E:D U e

k=1QeF}

Proof. Let x € Py \ E. Because F is closed, there exists a dyadic cube @ € D(F,) such
that z € Q and @ N E = (). We claim that @ C (J;—,UF¥. Suppose, for the sake of
contradiction, that @ is not a subset of this union. Because @ ¢ |JF}, there exists Ry € G}
containing Q. Now Q ¢ |JFs(Ry), as Q ¢ |JFZ. Thus there exists Ry € Gs(R;) containing
Q, and again, Q ¢ |J Fs(R2). Repeating this argument, for every k we obtain cubes

RiDR,D---DR,DQ

with R; € Gs(R;_1) and such that Q ¢ |J F5(Ry). Also, because each R; is strictly contained
in R;_;, we must have |R;| < 27"|R;_;|. Then () satisfies

4] )
|Q < S|M(Ry)| < 6|Ri| < mmﬂ < W|P0|-

Letting k — oo, we derive a contradiction. O

Lemma 5.2. Assume that E C R™ is a weakly porous closed set with constants 0 < ¢, < 1.
Let Py C R™ be a cube and let sets F¥, fork =1,2,..., be as above. Then there are constants



WEAK POROSITY AND A4, 9

0<y=79(c,d,n) < % and C = C(c,6,n) > 0 such that

Z Z Q'™ < CIP||M(Fy)| .

k=1 QeF}

Proof. Let 0 < v < %, whose exact value will be fixed later; we remark that both inequalities
v>0and v < % are needed in Lemma 5.3 below. By the definition of F¥, we obtain

Yol > > MBI
QeFE Regi™! QeFs5(R)
<67 Y IMB)TIR]
RegF!
for every k=1,2,.. ..
Next, we show by induction that
Y IMR)TIRI< (1= e)(06) ) M(P)| 7| R (8)
Regy™!
for every k € N. If k = 1, this is immediate since Gi ' = {Py}.
Then we assume that (8) holds for some k € N. Fix R € Gy and let P € G5(R). Since
P is a maximal dyadic cube in R\ Ugez,r @ and F5(R) # () by weak porosity, the dyadic
parent wP intersects a cube @) in Fj(R).

Since 7P, Q) € D(R), we have 7P C Q) or Q C wP by the nestedness property (D3)
of dyadic cubes. Clearly 7P C @ is not possible, as this would lead to the contradiction

PcrPcCQ@C UQ,eﬁ(R) Q'. Therefore Q C mP. By Lemma 3.2 (ii), there exists a constant
o =o(c,0,n) > 0 such that
IM(P)| = o|M(P)|.
Using also the definition of F35(R), we get
IM(P)| =2 o M(nP)| 2 0|Q| = a0l M(R)].
On the other hand, since E is weakly porous, we have by (6) that

> 1rl= (11— X jel) <ol

Pegs(R) QEF5(R)
Applying the two estimates above and the induction hypothesis (8) for k, we obtain

DIMMPITIPIS DY Y (00)TMB)[ P

Pegk Regy~! Pegs(R)

<(06)7 D MBI D |P
Reg(’;_l Pegs(R)
< (06)7 D IM(B)T(1-¢)|R|
Regy™!
< (1=e)(00) (1 =) (08) ) T M(Po)| 77| ol
< (1 =) (@0) ") | M(Po)| | Pyl
This proves (8) for k£ + 1, and thus the claim holds for every k € N, by the principle of
induction.

Now choose 7 = (¢, d,n) € (0,1/n) to be such that (1 — ¢)(c¢d)~" < 1. Observe that

D (M=) (06) )" = Cle,0,6,7) = Cle,6,n) < 0.

k=1
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Hence, by using also (7) and (8), we have

ZZ@P 'Y<Zw > IM(R)| 7R
k=1 QeFy ReGy ™!

[e.e]

< ST5((1 = )(08) ) M(Py) || Bl

< ST M(P)[NP] D (1= ¢)(0) )

< Cle, 0,n)| Po||M(FPy)| 7. O

Lemma 5.3. Assume that E C R" is a weakly porous set with constants 0 < ¢,0 < 1. Then
there are constants 0 < a = a(c,0,n) < 1 and C' = C(n, ¢, ) such that dist(-, £)~* € A;(R")
and [dist(-, E)~*]4, < C.

Proof. Observe that the closure F is also weakly porous. Since dist(-, F) = dist(-, F), we
may assume in the sequel that E is a weakly porous closed set. Throughout this proof C
denotes a constant that can depend on n, ¢ and §. Let 0 < v = y(n,¢,J) < % be as in
Lemma 5.2. Fix a cube Py C R", and assume first that F, is not an E-free cube. Let sets
FE for Pyand k= 1,2,..., be defined as above.

Since yn < 1, we have for every E-free cube () the estimate

/ dist(z, B) " dx < / dist(x,0Q) " dx = C(v,n)(Q)" "™ = C|Q* . 9)
Q Q

In particular, the upper bound yn < 1 implies that the second integral in (9) is finite.
Bearing in mind that |E| = 0, using Lemma 5.1 and combining (9) with Lemma 5.2, we
obtain

1 1 <
dist(z, E) " dr = — dist(z, £) " dr = —~ / dist(z, E) " dx
]{30 ol S A= 2,

< |C| S ST < Clmpy) [

k=1 QeF}

Let x € Py \ E. Since F is closed, the point x is contained in a maximal E-free dyadic cube
Q) € D(R). Recall that P, is not E-free, and so @ is a strict subcube of Py. Furthermore
m() is not E-free due to maximality of (). This implies that

dist(z, F) < diam(7Q) = 2diam(Q) = 2v/nl(Q) < 2v/nl(M(Py)).

Hence,

essinf dist(z, E) ™" > (2¢/n) " U(M(Py)) " = C(n, ¢, §)|M(P)| 77,

reP,

and we conclude that

][ dist(x, £) 7" dx < C essinf dist(x, E) ™7 (10)
P

reP,

It remains to consider the case where F, is an FE-free cube. We study two situations
separately. If dist(P, ) < 2diam(F,), then we have dist(z, ) < 3diam(F,) for every
x € Py, and so

essinf dist(z, )™ > (3diam(P,))” " > C|Py| ™.

reP
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Using (9), together with this observation, we obtain

zePy

][ dist(z, E) """ dx < C|Py|77 < C essinf dist(z, F)". (11)
Py

Finally, we consider the case dist(FPy, F) > 2diam(FP,). If =,y € P, then
dist(z, E) > dist(y, £) — |z — y| > dist(y, £) — diam(Fp)
> dist(y, E) — 3 dist(FPy, ) > 5 dist(y, E).

Hence,
dist(z, )" < C'essinf dist(y, £) "

yeR
for all z € P, and so

][ dist(z, )" dx < C'essinf dist(y, ). (12)
Py yeP

By combining estimates (10), (11), and (12), we see that dist(-, £)™" € A;(R"™), and this
proves the theorem with a = yn. O

6. MUCKENHOUPT EXPONENT

In this section, we introduce the concept of Muckenhoupt exponent and explore its con-
nections to weak porosity and the A, properties of distance weights, for 1 < p < oo. In
particular, we prove Theorems 1.2 and 1.3 at the end of this section.

For a bounded set A C R™ and r > 0, we let N(A,r) denote the minimal number of open
balls of radius r that are needed to cover the set A. Recall that the Assouad dimension
dima (E) of E C R™ is then the infimum of A > 0 such that

R\
N(ENB(z,R),r) < 0(7)
for every x € E and 0 < r < R. Equivalently, dimy(E) = n — codimy(F), where the
Assouad codimension codimp (E) is the supremum of « > 0 such that

E, N B(z, R), R\
B(r. R) SC(r) (13)

for every x € ' and 0 < r < R. Here
E, ={yeR":dist(y,F) <r}

is the open r-neighborhood of E. See e.g. [9, (3.11)] for more details concerning this equiva-
lence, which also follows from Lemma 6.2.

It is well-known that a set £ C R™ is porous if and only if dim (F) < n, or equivalently
codimy (E) > 0, as was already pointed out in the introduction. See e.g. [11, Section 5] or [10,
Theorem 10.25] for details. The following Muckenhoupt exponent can be seen as a refinement
of the Assouad codimension: for porous sets these two agree but the Muckenhoupt exponent
can be nonzero also for nonporous sets; see the comment after Definition 6.1.

Definition 6.1. Let £ C R".
(i) If B(x,r) is a ball in R", we denote by hg(B(x,r)) the supremum of all ¢ > 0 such
that B(y,t) C B(z,r) \ E for some y € B(z,r). If there is no such number ¢ > 0,
then we set hg(B(z,7)) = 0.
(ii) If hp(B(x,R)) > 0 for every z € F and R > 0, then the Muckenhoupt exponent
Mu(FE) is the supremum of the numbers o € R for which there exists a constant C'

such that | : ) (B )
E.NB(z,R hg(B(z, R))\ “
sem <o) )
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for every x € E and 0 < r < hg(B(z,R)) < R. If hg(B(z, R)) = 0 for some x € E
and R > 0, then we set Mu(£) = 0.

Observe that hg(B(z, R)) < R/2if x € E. It is clear from the definition that Mu(E) > 0
for all sets £ C R™, since (14) always holds with o = 0 if hg(B(z, R)) > 0. If E C R" is
porous, then ¢cR < hg(B(z,R)) < R/2 for all z € F and R > 0, showing that Mu(FE) =
codimp (£). On the other hand, if £ C R™ is not porous, then codimy (E) = 0 < Mu(E), and
thus always codimy (£) < Mu(FE). This inequality is strict if and only if £ is weakly porous
but not porous since the weak porosity of E is characterized by Mu(E) > 0, see Corollary 6.6.
As an example, it is straightforward to see that codima(Z) = 0 and Mu(Z) = 1. See also
Section 7 for other examples of such sets.

In Lemma 6.3 below we give for the Muckenhoupt exponent an alternative characteriza-
tion, which resembles the definition of the Assouad dimension. The following estimate will
be applied in the proof of Lemma 6.3.

Lemma 6.2. Let ECR", x € E and 0 <r < R. Then
< |E, N B(x, R)|

Ci(n)N(EN B(z, R/2),7)

< Cy(n)N(E N B(z,2R), ).

zrn
Proof. Let {B(z;, )}, be a cover of EN B(x,2R), with N = N(E N B(z,2R),r). Then

N
E,NB(z,R) C U B(x;,2r),
i=1
and thus
|E. N B(z, R)| < C(n)N(2r)" = Co(n)r"N(E N B(z,2R),r).
This proves the second inequality in the claim.
Conversely, let {B(z;,r)}Y | be a cover of £ N B(x, R/2) such that z; € EN B(x, R/2)

foralli =1,..., N and the balls B(z;,7/2) are pairwise disjoint (such a cover can be found
by choosing {x;}¥ | to be a maximal r-net in £ N B(x, R/2), see [7, p. 101]). Then
N

E.NB(z, R) > | B(xi,7/2),
i=1
and thus
|E. N B(z,R)| > C(n)N(r/2)" > Ci(n)r"N(E N B(z, R/2),r).
This proves the first inequality in the claim. O

Lemma 6.3. Let E C R" be such that hg(B(z, R)) > 0 for every x € E and R > 0. Then
Mu(FE) is the supremum of the numbers o > 0 for which there exists a constant C' such that

N(EN B, R).r) < c(?) (w)_ (15)
for everyx € E and 0 <r < hg(B(z,R)) < R.

Proof. Assume first that o > 0 is such that (15) holds for every € F and 0 < r <
hg(B(z,R)) < R with a constant Cy. Let x € E and 0 < r < hg(B(z,R)) < R. Then
0<r<hg(B(z,R)) <hg(B(z,2R)) < R < 2R, and by Lemma 6.2 and (15) we have

|E,. N B(z, R)| T " . .
.0 §C(n)<R) N(E N B(xz,2R),r)

cctn(z) ()t
< Cn,Cy) (M)a.

r



WEAK POROSITY AND A4, 13

Thus o < Mu(FE).

By the definition of Muckenhoupt exponent, we always have Mu(E) > 0. If Mu(£) = 0
and (15) holds for @ > 0, the preceding computation shows that o = 0 as well, and the result
follows. Then assume that 0 < o < Mu(F) and let z € E and 0 < r < hg(B(z,R)) < R.
By Lemma 6.2 and (14), for o and a constant C,,, we have

N(E0B(z, B).r) < C(n) LI

< o, () (ReE2)

< C(n,Cy) (%) <}“E(B§”’R))) -

Since this holds for every 0 < o < Mu(E), we conclude that Mu(F) is indeed the supremum
of a for which (15) holds for all z € £ and 0 < r < hg(B(z,R)) < R. O

Next, we turn to the relations between the Muckenhoupt exponent and A; weights.
Lemma 6.4 and Theorem 6.5 together characterize the property dist(-, £)~* € A, for a # 0,
in terms of the Muckenhoupt exponent of F; see the proof of Theorem 1.3 after the proof
of Theorem 6.5.

Lemma 6.4. Let E C R™ be a nonempty set and let o € R be such that dist(-, E)~* € A;.
Then 0 < a < Mu(E).

Proof. Assume first that « < 0. Let € E and r > 0. Then

yeQ(x,r)

here the cube Q(z,7) is as in (2). Thus dist(y, £)~* = 0 for almost every y € Q(z,r), which
is a contradiction since dist(-, £)~“ is a weight. Hence o > 0.

The claim holds if & = 0, and so we may assume that a > 0. Then hg(B(z,R)) > 0
for every x € E and R > 0. Indeed, otherwise there exists a ball B(x, R) such that
dist(y, ) = 0 for every y € B(z, R), and therefore dist(-, £)~® is not locally integrable.
This is again a contradiction since dist(-, £)~® is a weight.

Let z € E and 0 < r < hg(B(z,R)) < R, and write F' = E, N B(x, R). Let C be the
constant in the A; condition (3) for dist(-, £)~*. Observe from B(z, R) C Q(x, R) that

he(B(x, R)) < esssup dist(y, E),
YEQ(z,R)

][ dist(y, ) “dy < C essinf dist(y, F)™* = 0;
Q(=,r)

and hence

essinf dist(y, £)" % < hg(B(z, R))™“.
essing dist(y. E) " < hp(B(a, )

Since dist(y, E) < r for every y € F and F C B(z, R) C Q(x, R), using the A; condition (3)
we obtain

|F| < TO‘/ dist(y, ) “dy < r“/ dist(y, E)"*dy
F Q(z,R)

< C17°|Q(, R)|hi(B(x, R)) ™ = C(n, Cy) R(M) |

-
Thus
|E,. N B(x, R)| |F| hg(B(z,R))\
B Rl 1B =N ’
and the claim Mu(E) > « follows. O

Theorem 6.5. Let E C R" be a nonempty set and assume that 0 < o < Mu(E). Then
dist(-, B)~* € A;.
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Proof. 1t suffices to show that there exists a constant C' > 0 such that

][ dist(y, £) “dy < C essinf dist(y, £)™ (16)
B(z,r)

yEB(z,r)

for all z € E and r > 0. Indeed, if dist(Q, F) < 2diam(Q) for a cube @ C R", then
the desired A; property (3) for w = dist(-, £)~“ follows easily from (16) by considering a
ball B = B(x,r) such that x € E, @ C B and |B| < C(n)|@]. On the other hand, if
dist(Q, F) > 2diam(Q), then an argument similar to the one leading to (12) shows that (3)
holds, and thus dist(-, £)~* € A;.

Let A > 0 with Mu(E) > A > «a, and let z € E and r > 0. Observe from inequality
Mu(E) > 0 that 0 < hg(B(z,2r)) < r. Hence, there is j, € N such that

279 < hyp(B(z,2r)) < 277,
Define
Fj={y € B(x,r) : dist(y,E) <2"77r} and A; =F;\ Fj.4,
for j > jo. Since A < Mu(F), there is a constant C; = C1(E, A\, n) such that
| F;| < 2"|Ey2-5, N B(x, 2r)|

|B(z,r)] — |B(z,2r)| B
_A B
< <w> — 2 <w> |

Since A >0 and ENB(x,r) C F; for every j > jo, by letting j — 0o we see in particular
that |20 B(x,r)| = 0. Here r > 0 is arbitrary, and thus |E] = 0.
If y € B(xz,r) \ F, then dist(y, E) < |y — z| < r. Hence,

B(y, dist(y, E)) C B(z,2r) \ E,

and therefore 0 < dist(y, F) < hg(B(x,2r)) < 2770, Tt follows that the union of sets A;
with j > jo covers B(x,r) up to the set £ N B(z,r), which has measure zero. If y € A;,
then 277r < dist(y, ) < 2'7r. In addition, A; C Fj for every j > jo. By combining the
above observations and using (17) we obtain

. . 1O . - LU N
dist(y, F) “dy < ——— / dist(y, F) “dy < —_(27Iy)"
]{3(:1:,7’) |B("L‘7T)| Z Aj ;) |B("L‘7T)|

J=Jo

<Gy i(gjr)wﬂ (M) -

. T
J=Jo

<Cir (M) - i(ga‘)xa

r —
J=Jo

< 0(y sy (LEBLEZON) T (Bl 2y

T r
< C(Cy, N\, a)hg(B(z,2r))™
< C(Ch, A\, ) essinf dist(y, £)“.

yEB(z,r)
This shows that (16) holds, and the claim follows. O

Recall that Theorem 1.3 states, for a nonempty set £ C R™ and v # 0, that dist(-, )~ €
A if and only if 0 < a < Mu(E). We are now ready to prove this.

Proof of Theorem 1.3. If 0 < o« < Mu(F), then dist(-, £)~* € A; by Theorem 6.5. Con-
versely, assume that dist(-, £)~* € A;. Since o # 0 by assumption, Lemma 6.4 implies that
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a > 0. By the self-improvement of A; weights (see [6, pp. 399-400]), there exists s > 1 such
that dist(-, F)7** € A;. Thus we obtain from Lemma 6.4 that 0 < o < sa < Mu(F). O

Since dist(-, F)? € A; holds for all (nonempty) sets £ C R™ (under the interpretation
that 0° = 1), Theorem 1.3 implies that

Mu(F) = sup{a > 0 : dist(-, £)"* € A}

for all nonempty sets £ C R™. On the other hand, by Theorem 1.1 we have dist(-, £)~® € Aj,
for some o > 0, if and only if E is weakly porous. This, together with Theorem 1.3, gives
the following corollary.

Corollary 6.6. A nonempty set E C R" is weakly porous if and only if Mu(E) > 0.
Using Theorem 1.3 and Corollary 6.6, we can prove Theorem 1.2, as follows.

Proof of Theorem 1.2. Since E is weakly porous, we have Mu(E) > 0 by Corollary 6.6.
Therefore, the equivalences in both (i) and (ii) hold if & = 0, and so we may assume from
now on that a # 0. In this case the claim in (i) follows directly from Theorem 1.3.

In part (ii), let 1 < p < oo and assume first that w € A,. Because E is weakly porous,
Lemma 5.3 provides us with some ¢ > 0 for which dist(-, £)~7 € A;(R"). If & > 0, we can
use Lemma 2.3 with f = o/« to deduce that w = dist(-, £)~* € A;. Then Theorem 1.3
implies Mu(E) > «, and so (1) holds. On the other hand, if a < 0, then we have

dist(~,E)_<p__—a1) —w' " € Ay,

where p_To‘l > (. Hence the previous case, for a positive power and the class A,/, shows that

(1—p)Mu(E) <0< _—0‘1 < Mu(E), (18)
p —
which is equivalent to (1).
Conversely, assume that (1) holds for some « # 0. If @ > 0, then w = dist(-, £)™* €
A; C A, by Theorem 1.3. Finally, if o < 0, we observe that (1) is equivalent to (18), where
p_To‘l > (. Thus we may apply the preceding case for the exponent p‘TO‘l > (0 and the class A,

to conclude that dist(-, £)*/®~Y € A,. Hence w = dist(-, E)~® € A,, proving part (ii). O

Remark 6.7. Note that in part (i) of Theorem 1.2 the explicit assumption that E is
weakly porous is needed in the necessity part, since for a = 0 the claim w € A; holds for
all (nonempty) sets £ C R™. However, if & > 0, then we know by Theorem 1.1 that w € A;
can only hold if F is weakly porous, which in turn is equivalent to Mu(E) > 0.

In part (ii) the case @ = 0 again shows that (1) is not necessary for w € A, for general
sets £ C R™. Moreover, if we do not assume weak porosity of E, then even in the case a # 0
the requirement (1) is not necessary for w € A,. This follows from Theorem 8.1, which gives
a set £ C R with Mu(£) = 0, i.e. E is not weakly porous, such that dist(-, £)~* € A, for
al0<a<landalll<p<oo.

Remark 6.8. When E' C R" is a bounded set, the upper Minkowsk: (or boz) dimension
dimy(E) is the infimum of all A > 0 for which there is a constant C' such that

N(E,r) < COr™ (19)

for every 0 < r < diam(FE). Note that (19) is equivalent to the condition that there is a
constant C' such that |E,| < Cr"= for every 0 < r < diam(E); this follows from Lemma 6.2.

If a set £ C R™ is weakly porous and 0 < o < Mu(FE), then dist(-, £)~* € A; by
Theorem 1.3, and so fB(x’R) dist(y, F)~*dy < oo for every x € E and R > 0. Hence, if

x € E and R > 0, then it holds for all 0 < r < diam(F N B(z, R)) < 2R that

|(E N B(:Ea R))r| S Ta/ dlSt(y, E)—a dy S C({L‘, R’ E)Tn—(n—a).
B(z,3R)
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Thus

dimy(EN Bz, R)) <n—a<n.
Since this holds for all 0 < a < Mu(E), we obtain dimy(E N B(z, R)) < n — Mu(E). In
particular, if £ C R" is bounded, then 0 < Mu(E) < n — dimy(E).

On the other hand, the condition that dimy(E N B(xz, R)) < ¢ < n for every x € E and
R > 0 is not sufficient for the weak porosity of E. For instance, if £ C Z C R is not weakly
porous (e.g. £ = N), then we have dimy(E N B(z,R)) =0 < 1 = n for every € E and
R > 0 since EN B(z, R) is a finite set.

See also [14] and the references therein for much more elaborate connections between
Minkowski dimensions and the integrability of distance functions.

7. EXAMPLE OF A WEAKLY POROUS SET

The notions of weak porosity and Muckenhoupt exponent are interesting only if there are
(plenty of ) weakly porous sets which are not porous. Below we construct a family of such sets
in R™ and determine the Muckenhoupt exponents for different values of the parameter v > 0.
These sets are inspired by the often used one-dimensional example {j~7 : j € N}U{0} C R.
For instance, in [5, Section 6] such sets were applied to illustrate the so-called Assouad
spectrum.

Theorem 7.1. Let n € N and v > 0. Then the set

E= G 0B(0,777)u{0} Cc R"

J=1

Yy

is weakly porous with Mu(E) = min{1, 775}

The origin is included in £ in order to have a compact set, but for our purposes this does
not make any essential difference. See Figure 1 for an illustration of the set E.

FIGURE 1. The set F, with n =2 and v = 0.7

By considering the balls B(0,j~7) as j — o0, it is straightforward to verify that E' is not

porous, and hence dima(E) = n. Moreover, special cases of the computations in the proof

of Theorem 7.1 below can be used to show that dimy(F) = max{n — 1, 7151 and so in

combination with Theorem 7.1 we obtain for the set E the identity Mu(E) = n — dimy(E);
compare to Remark 6.8.
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For the proof of Theorem 7.1, we define S* = 9B(0,t) and A* = B (0,t)\ B (0, s) for every
0 < s <t, where we use the notation B(0,0) = (). We begin with the following lemma.

Lemma 7.2. Let B = B(xz, R) C R™ be a ball such that x € S*, with t = j=7 for some
j €N, and BNE = BNS*. Then (14) holds for B if and only if « < 1. Moreover, if « < 1,
then the constant in (14) for B can be chosen to depend on n, v and « only.

47 N B satisfies

7"/7’

(2r) inf  H"(S'NB) <|ALTTNBI<(2r) sup H''(S'NB), (20)

be[t—rt+r] be[t—r,t+r]

Proof. We have hg(B) = R/2, and given 0 < r < hg(B), the set A’_

where H" ! is the normalized Hausdorff measure in R™. For each b € [t — r,t + 7], the set
SN B is a hyperspherical cap within the sphere S?, whose angle oy, satisfies, by virtue of

the law of cosines, that cos(ap) = % Therefore

<ab) R — (b—1)2\"?

sin =——= :

2 4bt

For a sufficiently small constant ¢(v), we have that r < ¢(y)hg(B) implies a; ~ C(v) (£)
for every b € [t —r,t +]; here and below a ~ C(x)b means that C(x)™'b < a < C(*)b. This

leads us to

. o R n—1 o
H' N (S"NB) ~ C(n, " () Y~ C(n, )bt (E) ~ C(n,y)R" 1, (21)

for every b € [t—r,t+r]. The sets A - 1)_7 NB and AE]I} "N B (meaning AE;:B:LT =0
in the case ] = 1) are also contamed in K, N B, but their measures are controlled by

C(n, ’Y)|AJ 7N B|. Bearing in mind this observation and (20) and (21), we obtain
hE( ) ‘ET n B‘ a—n, . —a| AJT+r r\l-e

If @ < 1, the last term is bounded by C(n,, ). On the other hand, if a > 1, then (20) and
(21) yield

B\"|E,NB l1-a
(hEi )) | T|£| | Z C(?’L,’}/,Oz)Ra_nT‘l_aRn_l Z C(?’L,’}/,a) <%> ’

and the last term tends to infinity as r — 0. 0

Proof of Theorem 7.1. First we show that (14) holds for every o with 0 < o« < min{1, L 1+
This implies that Mu(E) > min{1, - g 1 > 0, and thus F is weakly porous, by Corollary 6. 6
Fix 0 < o < min{l, {7} and let B = B(z,R) C R" be a ball with 2 € FE, and let
0 <7 < hg(B). We suppose first that B is contained in B(0, 1). Let k be the largest number
in N and N be the smallest number in NU {oco} such that B ¢ B(0,k7)\ B (0, N~7). We
interpret N~ = 0 and B (0, N~7) = () when 0 € B. It is clear that N > k + 2, since the
center z of B belongs to E. In the case N = k + 2 we have z € S®*D™7 and (14) follows
immediately from Lemma 7.2. Hence we may assume that N > k + 3. Also, observe that

he(B) <1 (k™7—(k+1)7) < 2k ! (22)
and
R>L(k+1)""=(N=1)7")>2L(N—k—2)(N—-1)""" (23)
Now we study two cases.
(i) Suppose dist({0}, B) > diam(B). We have the estimates

(k+1)77 < suplz| < dist({0}, B) + diam(B) < 2dist({0}, B) < 2(N —1)7"
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and so N —1 < C(v)(k+1). Then we have

N N
|E,NB| <> JAITTNBl<Cn)Y rR™ < Cn)(N —k+1)rR"".

J=k

The previous observation, together with (22) and (23), leads us to

he(B) “ |E,. N B| - —a -
< e pl-ep=l(N 11
< T ) | B| <) " ( )

C(n,

C(n,’y)k (I4+7)a 1 a(N . 1)1+’y
(0 1 1)1
< C(n,7) (rk;lﬂ)l “.
The last term is bounded by a constant C(n,~, @) because a < 1 and r < C(y)k~177.
(ii) Now suppose dist({0}, B) < diam(B). Then we have
(2k)77 < (k+1)77 < dist({0}, B) + diam(B) < 2diam(B),

and hence k™7 < 27 diam(B). Given 0 < r < hg(B), denote by jo € N the smallest
number for which

2r>jy" = (o+ 1) = COUo+ 1)
Notice that k < jy and, by the definition of j,, we also have
r<(o—1)7 =5 SCHU - DTS CMg T

This observation permits us to write

jo—1
|E. N B| < |BN A |+|B(0,7," +r)N B| + Z |AJ tal:]
j=k+1

C()( T+r) +JOZ:1 4+ r)" )

Using the inequalities 0 < a < min{l, 72}, k=7 < C(Y)R, ¢(7)jo "7 < r < C(y)jy 7,

and hg(B) < C(y)k~'7, we obtain

hE<B> a‘ETﬂB‘ ny— o, —a — n

) Ty

jo—1

j=k

Jo—1
< C(n ,y)kn'y 1+'y)a a(JO n’Y_i_Z fy_i_,r) 1)
i=k

Jjo—1
S C(n, '7) ((kjol) —(14+7)a kn’y 147 Z 7,1 o - + 7» 1)

Jo—1
< Cln,7) + Cln,y)km =0y 7 mUmein (577 4 jmim)”
j=k

-1

< C(n,7) + Cn,y)km= ey = ot t09e < O(n, v, @),
j=k

where the last inequality follows by comparing the series to |, koo t=1=m+(+7 gt bearing in
mind that o < 775. The cases (i) and (ii) together show that (14) holds when B C B(0,1).
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Now suppose that B = B(z, R) is not contained in B(0,1). In the case r > 1=2— we use
the fact that n — a > 0 to estimate

(hE(B))a BN B|

C(n)|E.r *R*™ < C(n)|§(0, r+1)|r R

r |Bi
r\n—o

In the sequel, we will assume that r < =27,

If v € B\ S', then R > hg(B) > c¢(y)R > c(v) and
|E, N B| <|E.NB(0,1)]+ |E.\ B(0,1)] <|E.-NB(0,1)]+C(n)r

Therefore
B\“|E,NB
(M) B2 < i+ 180 BODD R < o) < Clnna)

where the second inequality follows by using the above case (ii) with B = B(0,1). If z € S*
and R > 1’277 , then we can repeat the preceding argument to show that (14) holds, and

finally, if = E 51 and R < 12— then (14) holds by Lemma 7.2.
Next we show that Mu(F) < mln{l, 175 }- The bound Mu(£) < 1 follows from Lemma 7.2.

Let a > % and consider the ball B = B(0,1). Then hg(B) = =2~ = C(v). Given
0 <7 < 15, let jo € N be the smallest number for which 2r > j;7 — (jo +1)™. Then r is

comparable to ¢(7) ja ~7 and the annuli {AJ _:Jr: o ° , are pairwise disjoint. For sufficiently
small r, we thus have

hE “ T ,ajo_l — n — n
(=) 'E|§|B'26<naw>r > ()" = (7))

=2
Jjo— 1
n Y, o 1 «
]:2
a n—1
> c(n, 7y, )r' %o ((jo — 1) )
—a —y— - a 1—=y(n—-1
(n v, 1 .]0 (.70 - jO ! ) Z C('I’L,’Y, ) - .]0 " )
l—a)(—1- 1 n—1 1 a—n
zdn%)ﬁ " ”my()Zdn% a)jo
The last term goes to infinity as r — 0, since a > {7 Hence (14) does not hold if a > 7,
showing that Mu(E) < {7%. O

8. Ap—DISTANCE SET THAT IS NOT WEAKLY POROUS

In this section we construct a set £ C R such that dist(-, £)™® € A,\A; forall0 < a < 1
and all 1 < p < oo; see Theorem 8.1. Recall that we abbreviate dp = dist(-, E).

Let Ey = {0, 1} and write ¢, =1 — 1 for every n € N. Then, for every n € N, the set F,
is defined as £, = E, jUE} | E2 0 " where:

e F! | is a translation of FE,,_, dilated by the factor t, and whose first point is the
last point of E,,_1,
e F? | is a translation of F,_; whose first point is the last point of E!
Finally, we define E* = |J)_  E, and E = ET U (—E"). Here —E" is the reflection of E*
with respect to the origin. We let @, QL and Q? denote the smallest intervals containing
E,, E} and E? respectively, for every n € NU {0}. See Figure 2 for an illustration of the
ﬁrst steps of the construction.
During the rest of this section, we prove the following theorem for the set E.
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FIGURE 2. First steps of the construction of the set £

Theorem 8.1. Let E C R be as constructed above. Then it holds for all 0 < o < 1 and all
1 < p < oo that dist(-, E)~® € A, \ A1. In particular, the set E is not weakly porous and
Mu(F) = 0.

Proof. Let 0 < @ < 1 and 1 < p < oo. We show in Lemma 8.4 that dist(-, F)~® ¢ Ay,
and the claim dist(-, £)~* € A, follows from Lemma 8.7. Since dist(-, E)~* ¢ A; for every
a > 0, the set E is not weakly porous by Theorem 1.1, and thus Corollary 6.6 implies that
Mu(E) = 0. O

We say that a closed interval [ is an edge of FE if the endpoints of I are two consecutive
points of E. For every n € NU {0}, the following properties hold:

e Each of the intervals @Q,, QL, and Q? has 3" edges of E, of which the middle ones
for n > 1 have lengths equal to tity---t,, tits-- -t t,11, and t1ty - - - L, respectively.

e Each of the intervals Q,, and Q2 contains translated copies of the intervals Qo, . .., @,
distributed in a palindromic manner: both @, and Q? contain from left to right as
well as from right to left intervals @ C Q7 C --- C @}, that are translated copies of
Qo C Q1 C --- C Q,, respectively.

e Each interval Q! contains from left to right as well as from right to left intervals
th1Q) C 1@ C - -+ C t,11Q; that are translated copies of Qy C Q1 C --- C @y
dilated by ¢,,1.

e dp =dg, on Q,.

o [Qul = (2 + 1) Qu_s| for every n € N.

Lemma 8.2. For every n € N and every 8 > —1, we have

Proof. Let n € N and 8 > —1. By the construction of E and the definition of @),,, we obtain

8 _ 8 _ B B B
/ dE = / dEn = /Q dEn_1 + /Ql dE}L_l + /2 dETQL_1
n n n—1 n—

1 n—1
—@+ar?) [

&= (24 157 / &,
Qn—l Qn—l

The claim follows by combining the above identity with the fact |Q,| = (2 +t,)|Qn_1|. O

Lemma 8.3. For every 0 < a <1 and 1 < p < oo, there exists Ny € N, only depending on
a and p, for which

_a_\ p-1
| 2+ tle e i1 2+tlmeN 2+ £ 7T < a’p
O an O — =
S\ 2+, )= 12 S\ 254, 2 +1, = 18(p— 1)

for every n > Nj.
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Proof. Consider the functions

o —1
f) =1 2 o © =1 2 4 ¢\ (24 ¢\’
-8\ e )0 TSI e 211

for t > 0. These functions satisfy f(1) =0, f'(1) = —%, g(1) = ¢'(1) = 0 and ¢"(1) = 9?;?{).
Let € € (0,1/2) be small enough so that |t — 1| < e implies

) = 7 = F(OE =D < Gl = 1]

and
2

a’p
gt) —g(1) =g (Dt —1) = Lg" (D)t — 1)} < ——
l9(t) = g(1) =g (D) = 1) = 39" ()(t = 1) 5 —1)
Taking Ny € N large enough so that Ny > 1/(2¢) it follows that |1 — t,| < e for every
n > Ny, and so the above estimates yield

it — 1)

a a’p

f(tn) > Tom and g(t,) < W

O
Lemma 8.4. For every 0 < a < 1, the weight d,* does not belong to A;.

Proof. Let Ny be the constant in Lemma 8.3 with, say, p = 2; the value of p is irrelevant
here. Applying repeatedly Lemma 8.2, we obtain, for every n € N,

Lo ie m o4 tle
dz* = =k ][ dz* > -k ][ dg*.
][n <,£[1 2+t ) Qo k‘]=;[\fo 2+t Qo

By the first inequality of Lemma 8.3, we have

2+t 2+t -
log<k1;lv 2+tk> Zlo <2+tk )ZZ%

=1ivVo

Y
dz" > exp — ][ dz".

k=No

and it follows that

Since the harmonic series diverges, we see that lim,, . f 0 dz” = oo. On the other hand,

each (), contains edges of £ of length equal to 1, and thus essinfg, d;* = 2*. We conclude
that d;® & Aj. O

Lemma 8.5. For every 0 < a <1 and 1 < p < oo, there exists a constant C = é(a,p) >0

such that
p—1
][ dp(x)"*dz <][ dp(z)rT dx) <C
N N

for every N € NU {0}.
Proof. For N = 0 the claim is clear. Assume that N > 1. By Lemma 8.2,

— 14—\ p—1 B
. ﬁ pl_ 2+t1a N2+tn p—1 Y ﬁ p—1
dg dp; = H dg dp;
QN QN n=1 2 +tn n—1 2+t Qo Qo
_a_\ p—1
Moo gla (24 g, 7 . e\
=11(% ¥t 241 i Ak '
n Qo Qo

n=1
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Let No = No(a,p) € N be as in Lemma 8.3. Then

_a \ p—1
e (nei
0
S AR 241,
No—1 1—a 4245\ P~ N 9
2+1 24t, * ap
< 1 n _—
—Zlog <2+tn)< 241, ) +ZNlS(p—1)n2’
n= n=I»Ng
where the right-hand side is bounded from above by a constant C; = C}(«, p) independent

of N. Hence,
o \ P!l o \ Pl
][ dEoz (][ dgl) S 601][ d;}a (][ dgl) ’
QN QN Qo Qo

and the claim follows. O

Lemma 8.6. For every0 < a <1 and 1 < p < 0o, there ezists a constant C' = C(a, p) > 0

such that ,
.
][ dg(z)™* dx < ][ dp(z)7T dx) <C (24)
Q Q

for every interval Q C [0, +00).

Proof. Observe that () C Qn for some N € N. When () contains at most 4 points of F, it
is straightforward to see that the distance dp satisfies (24) for () and with some constant
(1 only depending on « and p. This includes the case where () is contained in Q.

We prove by induction on N that dE satisfies (24) for every interval @) C @y with the

constant C' = max{12pC C1}, where C is the constant in Lemma 8.5. The case N = 1
has already been proved since C' > (. Hence, we assume that the claim holds for all
n=1,...,N — 1, and we need to verify the claim for all intervals () contained in Q).

The case where Q C Qn_; follows from the induction hypothesis. Thus we may and do
assume that @) is not contained in QQn_;. We do a case study.

(i): Q is contained in one of the intervals Q% _,, Q% ;. In the first case, the interval

Q C QL _, can be written as Q = tyQ*, where Q* is a translation of an interval @ contained
in Qn_1. Then |Q| = ty|Q| and fQ d% = t]l\;rﬁ f@ d% for every 5 > —1. This gives

o \ P71 o o \ 1 o \ P1
][ dy® <][ dg—l) = (t;,“][Ad;JO‘) (t;’v—l ][A dg—l) = ][Ad;j}‘ (][A dg‘l) <C,
Q Q Q Q Q Q

where the last inequality holds by the induction hypothesis. In the second case we have ) C
Q3% _ 1, and inequality (24) follows from the induction hypothesis since @ is now translation

of an interval @\ contained in Qn_1.
(ii): Q intersects both Qx_; and Q% _,. This implies that @Q contains QL,_,, and so

Q] > |Qn 1| = tx|Qn-a] = 2+t Qx| > |QN‘-

Using this estimate together with Lemma 8.5, we obtain

a \ P! 6 6 o \P7!
() ) G )
]{9E<QE Qn| Jo F Qnl Jo ©
_a \ P71 A
§6p][ dz (][ dg-l) <6°C.

(iii): @ contains one of the intervals Qn_1, Q% _;, Q% ;- In this case |Q| > tn|Qn_1| >
£|Qn|. Using that Q C Qu, the desired estimate follows as in the case (ii).




WEAK POROSITY AND A4, 23

(iv): Assume that QN Qn_1 # 0 # QNQL_, but Q N Q% _, = 0. By the construction
of Qn_1, we can find m € {-1,0,...,N — 2} so that @}, C QN Qn-1 C @y, ,, where

Q;, and Q. are translations of @), and Q.41 respectively, and we use the notation

Q*, = 0. This implies |Q N Qn_1| > |Qyn|. Similarly, by the construction of QY _,, there
exists n € {—1,0,..., N — 2} so that tyQ; C Q@ NQN_; C tnQj,, where Qf and Q4
are translations of @Q, and Q,1, respectively, and so |Q N QL ;| > tx|Q.|. Now define
M = max{m,n}. If M = —1, then @ intersects at most 2 edges of F, and the desired
estimate follows with the constant C; from the beginning of the proof. If M > 0, then we

have Q NQn-1 C Q4q and QN Qk_; C tnQ}ysy, and so

/d@g/ d?Eth}V”LB/ d§:(1+t}v+ﬁ)/ d?EgQ/ dy,
Q Qr+1 Qr+1 Qr+1 Qr+1

for every 5 > —1. On the other hand,
QI =1QN QN[ +1Q N QN 1| = [Qu] +tx|Qu]

In |Qnr+1]

>
JQM+H__ 6

=l =

This leads us to

a p—1 o p—1 N
][ 7 <][ dgl) < 12p][ 7 <][ dgl) < 12°C,
Q Q Qr+1 Qrt1

where the last inequality follows from Lemma 8.5.

(v): Assume that Q N QN_; # 0 # QN Q%_; but @ N Qn-1 = 0. Recall that Q%_,
is a translation of (Jy_; that contains, from left to right, translated copies @ C @7 C
e C QN 2 CQy 1 0fQyCQC - CQn_o C Qn_1, respectively. In addition, Q% _,
contains, from right to left, translated copies tnQy_1 D INQNn_3 D -+ D tnQ7 D tnQ;
of Qn_1 D Qn_2 D --- D Q1 D Qo dilated by tx. Now, the argument is identical to the
case (iv). O

Lemma 8.7. Let 0 < a < 1 and 1 < p < o0, and let C = C(a,p) be the constant in

Lemma 8.6. Then .
—
][ dg(x) “dx (][ dp(z)rT dx) < 2PC (25)
Q Q

for every interval QQ C R, and so d; € A,,.

Proof. Given an interval @ C R, we write QT = QN[0, +o0) and @~ = QN (—00,0]. Let Q*
be the largest of the intervals Q1 and —Q~, that is, @* € {Q*,—Q "} and QT U—-Q~ C Q*.
Here —()~ denotes the reflection of )~ with respect to the origin. Because F is symmetric
with respect to the origin, we can write

/d;:/ dg“+/ dg“:/ dg“+/ d;“§2/ dze.
Q Q+ Q- Q+ Q- -

The same argument shows that fQ dp ' <2 fQ* di . Because |Q| > |Q*| and Q* is contained
in [0,00), we can use Lemma 8.6 to conclude that

_a p—1 _oa p—1
][ A <][ dgl) < 2P][ dy” (][ dgl) < 2°C, 0
Q Q * *
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