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Chapter 1

The Complex Plane

Complex numbers appeared already in the 16th century, after Cardano’s progress on the resolution
of the generic cubic equation:

x3 + ax2 + bx+ c = 0, x ∈ R. (1.0.1)

With the substitution x′ = x− a
3 , this equation can be reduced to

x3 + 3px+ 2q = 0, (1.0.2)

for new parameters p, q ∈ R. Cardano showed that if q2 + p3 ≥ 0, the equation (1.0.2) has exactly
one real solution, given by the formula

x =
3

√
−q +

√
q2 + p3 +

3

√
−q −

√
q2 + p3. (1.0.3)

This formula is, a priori, not well-defined in the case where q2+p3 < 0. Some years later, Bombelli
made the following observation: the cubic equation (1.0.2) with p = −5 and q = −2, namely,

x3 − 15x− 4 = 0,

has three different real solutions, despite the fact that q2 + p3 < 0. It turns out that whenever
q2 + p3 < 0, the equation (1.0.2) has three distinct real solutions, whose values can be obtained
from Cardano’s formula (1.0.3), if one makes the correct interpretation of the imaginary number√
q2 + p3. Note that, even if we are able to manage

√
q2 + p3 as a number, the usage of formula

(1.0.3) still requires to understand the meaning of a 3rd root of these imaginary objects.
So, we need to understand complex numbers to find explicit solutions to equations like (1.0.1),

even when these equations have three real solutions.
This is just an instance of the numerous problems in (real) analysis that can only be solved

with the usage of complex analysis. We will see a few of these applications in this course.

1.1 The Field of Complex Numbers

This section is devoted to the rigorous definition of complex numbers and their operations.

Definition 1.1. A complex number is an ordered pair z = (a, b) of real numbers a, b ∈ R. We
define the addition ‘+’ between two complex numbers (a, b) and (c, d) by

(a, b) + (c, d) := (a+ c, b+ d).

So, this operation coincides with the usual sum of vectors in R2. However, we additionally define
a product operation ‘·’ between complex numbers by

(a, b) · (c, d) := (ac− bd, ad+ bc).

This product is clearly commutative: (a, b) · (c, d) = (c, d) · (a, b).
We denote by C the set of all complex numbers equipped with the operations ‘+’ and ‘·’.
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We next define the real and imaginary parts of a complex number, as its orthogonal projection
onto the x-axis and y-axis respectively.

Definition 1.2. Given a complex number z = (a, b) the real part of z is defined by Re(z) = a and
the imaginary part of z is Im(z) = b. The pure imaginary numbers are those z with Re(z) = 0.

The real and imaginary parts of sums and products of complex numbers are:

Re(z + w) = Re(z) + Re(w), Im(z + w) = Im(z) + Im(w),

Re(zw) = Re(z)Re(w)− Im(z) Im(w), Im(zw) = Re(z) Im(w) + Im(z)Re(w).

Now we describe an easier way to express complex numbers and their operations.

Definition 1.3. We define the imaginary unit of C as the complex number i := (0, 1). Note that
then

i2 := i · i = (0, 1) · (0, 1) = (−1, 0).

Now, given z ∈ C, z = (a, b), we can write z as z = a(1, 0) + b(0, 1) for unique real numbers a, b.
Identifying a(1, 0) with a and b(0, 1) with bi, the linear or polynomic expression of z is then

z = a+ bi.

Using this notation, we can define the sum + : C×C → C and the product · : C×C → C between
complex numbers z = a+ bi, w = c+ di as:

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

z · w = (a+ bi) · (c+ di) = (ac− bd) + (ab+ bc)i.

This definition for the addition and the product coincides with those in Definition 1.1.

It is worth noticing that, when regarded as vector spaces over R, the spaces R2 and C are
identical. In particular a (affine R-)line L of C is simply

L = {z = x+ iy ∈ C : Ax+By = D}, with A,B,D ∈ R, (A,B) ̸= (0, 0). (1.1.1)

Naturally, denoting by F -dim(V ) the dimension of the vector/affine space V over the field F, one
has R-dim(C) = 2 and {1, i} is an R-basis of C. Any line L ⊂ C as in (1.1.1) satisfies R-dim(L) = 1.
But of course, if C is thought as a vector space over the field C of scalars (this is verified in Theorem
1.4), then C-dim(C) = 1, and any non-zero complex number provides a C-basis of C.

Theorem 1.4. The set C with the operations ‘+’ and ‘·’ is a field.

Proof. The operations + : C × C → C and · : C × C → C are commutative, as we noted in
Definition 1.1. We next verify the rest of the axioms of a field, namely, for all z, w, ξ ∈ C :

(i) z + (w + ξ) = (z + ξ) + w;

(ii) z · (w · ξ) = (z · w) · ξ;

(iii) z + 0 = z, where 0 denotes 0 + 0i (Definition 1.3) or (0, 0) (Definition 1.1);

(iv) z · 1 = z, where 1 denotes 1 + 0i (Definition 1.3) or (1, 0) (Definition 1.1);

(v) z · (w + ξ) = z · w + z · ξ;

(vi) z + (−z) = 0;

(vii) If z ̸= 0, there exists z−1 ∈ C with z · z−1 = 1.
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Properties purely concerning the addition (i), (iii), (vi) are immediate, since the sum in C is
identical to adding the components of the vectors in R2. Properties (ii) and (v) are tedious but
straightforward: if z = z1 + iz2, w = w1 + iw2 and ξ = ξ1 + iξ2, where z1, z2, w1, w2, ξ1, ξ2 ∈ R.1
Then

z · (w · ξ) = (z1 + iz2) · ((w1ξ1 − w2ξ2) + i(w1ξ2 + w2ξ1))

= z1(w1ξ1 − w2ξ2)− z2(w1ξ2 + w2ξ1) + i (z1(w1ξ2 + w2ξ1) + z2(w1ξ1 − w2ξ2)) .

And

(z · w) · ξ = ((z1w1 − z2w2) + i(z1w2 + z2w1)) (ξ1 + iξ2)

= (z1w1 − z2w2)ξ1 − (z1w2 + z2w1)ξ2 + i((z1w1 − z2w2)ξ2 + (z1w2 + z2w1)ξ1),

confirming that z · (w · ξ) = (z · w) · ξ. Also,

z(w + ξ) = (z1 + iz2)(w1 + ξ1 + i(w2 + ξ2)) = z1(w1 + ξ1)− z2(w2 + ξ2) + i(z1(w2 + ξ2) + z2(w1 + ξ1)),

zw + zξ = z1w1 − z2w2 + i(z1w2 + z2w1) + z1ξ1 − z2ξ2 + i(z1ξ2 + z2ξ1),

which proves (v).

Property (iv) is immediate to check: if z = a+ ib, then z · 1 = (a+ ib)(1 + i 0) = a+ ib.

Finally, to prove (vii), let z = a+ ib, with (a, b) ̸= (0, 0), and observe that the number

z−1 :=
a

a2 + b2
+ i

(−b)
a2 + b2

,

satisfies z · z−1 = 1.

Let us gather some information that we learnt from the proof Theorem 1.4:

• The identity element for the sum is, obviously, the number 0 = 0 + i · 0.

• If z = a+ib ∈ C, the inverse with respect to the sum operation is −z := −a+(−b)i = −a−ib.
Aslo, in the sequel, by z − w (for any two z, w ∈ C) we understand z + (−w).

• The identity element for the product is, obviously, the number 1 = 1 + i · 0.

• If z = a+ ib ∈ C \ {0}, the inverse with respect to the product operation is the number

a− ib

a2 + b2
.

We will denote the inverse of z by z−1 or 1
z or 1/z. In the sequel, for z, w ∈ C with w ̸= 0,

z
w = z/w will denote z · w−1.

Also, we will often denote products of numbers z, w ∈ C by zw, instead of z · w.

We finish this section by defining the integer powers of a complex number in the natural way.

Definition 1.5. Let z ∈ C and n ∈ N. The nth power of z is a complex number zn defined by

zn =

n times︷ ︸︸ ︷
z · · · z .

For n = 0, we define zn := 1. And for n ∈ Z, n < 0, and z ̸= 0, we define zn := (z−1)−n = 1
z−n .

1We will usually use the letters z’s, w’s, ξ’s to denote complex numbers. This is an exception, convenient for the
proof.
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For example, let us determine the powers of i. Using that i2 = −1 and that i−1 = 1/i = −i,
we can easily deduce that

i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i for all n ∈ Z. (1.1.2)

By of the conmutativity of the product, we have the Newton’s binomial formula, and the
ciclotomic formula for complex numbers:

(z + w)n =

n∑
k=0

(
n

k

)
zkwn−k, z, w ∈ C, n ∈ N, (1.1.3)

zn − wn = (z − w)

n−1∑
k=0

zn−1−kwk, z, w ∈ C, n ∈ N. (1.1.4)

The proofs are identical to those of the corresponding identities for real numbers.

1.2 The Conjugate and the Modulus

Definition 1.6. Let z = a+ ib ∈ C. The complex conjugate of z is the complex number

z := a− ib.

Also, the modulus of z is the (nonnegative) real number given by

|z| :=
√
a2 + b2.

It is immediate from the definition of z that

Re(z) =
z + z

2
Im(z) =

z − z

2i
. (1.2.1)

The conjugate z of a complex number z = a + ib is the reflection (a,−b) of the point (a, b)
about the x-axis (the real axis).

Also, if z = a+ bi, the modulus |z| of z coincides with the modulus in R2 of the vector (a, b).
Therefore, |z| represents the distance from z (as a point in the plane) to the origin. And, since
i2 = −1, we have zz = (a+ ib)(a− ib) = a2 + b2 = |z|2. That is,

|z| =
√
zz, |z|2 = zz, z−1 =

1

z
=

z

|z|2
, (the last one for z ̸= 0). (1.2.2)

We now collect some elementary properties of the conjugate and the modulus. The compatibility
of these operations with the product is particularly useful.

Proposition 1.7. Let z, w ∈ C. The following properties are satisfied.

(i) If Im(z) = 0, then |z| coincides with the absolute value of Re(z) = z.

(ii) |z| = 0 if and only if z = 0.

(iii) z = z and |z| = |z|.

(iv) z + w = z + w.

(v) z · w = z · w and |z · w| = |z||w|.

(vi) If w ̸= 0, then ( z
w

)
=
z

w
and

∣∣∣ z
w

∣∣∣ = |z|
|w|

.
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(vii) max{|Re(z)|, | Im(z)|} ≤ |z|.

(viii) (The Triangle Inequality) |z + w| ≤ |z|+ |w|.

Proof. Properties (i)–(iv) are immediate from the definition of the modulus and conjugates. Writ-
ing z = a+ bi, w = c+ di, the first equality in (v) follows from

z · w = (ac− bd) + i(ad+ bc) = (ac− bd)− i(ad+ bc) = (a− ib)(c− id) = z · w.

For the second indentity, we use the definition of modulus, (1.2.2), and that z · w = z · w :

|z · w|2 = (zw)(zw) = zwz w = (zz)(ww) = |z|2|w|2.

To verify (vi), denote ξ = z/w, so that ξw = z. By (v) this implies ξ w = z and |ξ||w| = |z|, and
dividing (resp.) by w and |w|, we deduce the identities.

Property (vii) is an immediate consequence of the definition of modulus given in Definition 1.6.
As concerns (viii), observe that, thanks to (1.2.2),

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + ww + zw + zw = |z|2 + |w|2 + 2Re(zw).

The last equality follows from zw = zw (thanks to property (v)). Using properties (vii), (v), and
(iii) (in that order):

|Re(zw)| ≤ |zw| = |z||w|.

Combining the previous chain of equalities and this inequality, we conclude

|z + w|2 = |z|2 + |w|2 + 2Re(zw) ≤ |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2.

1.3 Lines and Circles in the Complex Plane

As we observed in Section 1.1, lines L of C (1-dimensional affine subspaces of C, as a vector space
over R) have the following general description:

L = {x+ iy ∈ C : Ax+By = D}, with A,B,D ∈ R, (A,B) ̸= (0, 0). (1.3.1)

There is an alternate way to represent the equation of a line using complex conjugates. Indeed, if
z = x+ iy ∈ L, with L as in (1.3.1), then (1.2.1) gives

Ax+By = ARe(z) +B Im(z) = A

(
z + z

2

)
+B

(
z − z

2i

)
=
A−Bi

2
z +

A+Bi

2
z = ξz + ξz,

taking ξ = A−Bi
2 . This shows that any line L in the complex plane can be described as:

L = {z ∈ C : ξz + ξ z = D}, with ξ ∈ C \ {0}, D ∈ R. (1.3.2)

Observing that ξz + ξz = 2Re(ξz), we can also express this as

L = {z ∈ C : Re(ξz) = D}, with ξ ∈ C \ {0}, D ∈ R. (1.3.3)

On the other hand, we can use the modulus to describe circles in the plane: the circle centered
at z0 = x0 + iy0 and with radius r > 0 is the set of all z = x+ iy ∈ C determined by the equation

|z − z0| = r, or, equivalently, (x− x0)
2 + (y − y0)

2 = r2. (1.3.4)

But also note that (1.2.2) yields

|z − z0|2 = (z − z0)(z − z0) = (z − z0)(z − z0) = |z|2 + |z0|2 − z0z − z0z = |z|2 + |ξ|2 + ξz + ξ z,
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after the substitution ξ = −z0. This shows that

|z − z0|2 ⇐⇒ |z|2 + ξz + ξz = r2 − |ξ|2.

Therefore, an alternate description of circles S of C is given by

S = {z ∈ C : |z|2 + ξz + ξz = D}, with ξ ∈ C, K ∈ R, K > −|ξ|2. (1.3.5)

Then S is the circle with center −ξ and radius
√
K + |ξ|2. Note that also ξz+ ξz = 2Re(ξz), from

which we can give another formulation using only real parts.

1.4 Polar Coordinates representation. The Argument

Given a complex number z ∈ C\{0}, the number z
|z| has modulus equal to 1, and so it is contained

the unit circle of R2. Identifying z
|z| with a vector (x, y), we thus have x2 + y2 = 1, and so

(x, y) = (cos θ, sin θ) for some angle θ ∈ R. Let us formalize this.

Theorem 1.8. For any z ∈ C \ {0}, there exists a unique α ∈ (−π, π] so that

z = |z| (cosα+ i sinα) . (1.4.1)

Proof. Assuming we have proven the existence, let us verify the uniqueness of α. If α, β ∈ (−π, π]
satisfy (1.4.1), then

z = |z| (cosα+ i sinα) = |z| (cosβ + i sinβ) ;

whereby cosα = cosβ and sinα = sinβ. Because |α− β| < 2π, this yields α = β.

To prove the existence of α ∈ (−π, π] such that (1.4.1) holds, we write z/|z| = x + iy, where
x2 + y2 = 1 due to the fact that |z/|z|| = 1. Also recall that the arctan : R → (−π/2, π/2) is
defined to be a continuous bijection between R and (−π/2, π/2). We distinguish some cases.

Case 1: x > 0. Then it suffices to define α := arctan
( y
x

)
∈ (−π/2, π/2), where clearly x = cosα,

y = sinα.

Case 2: x < 0, y ≥ 0. In this case β := arctan
( y
x

)
∈ (−π/2, 0] is not the desired angle, as cosβ = −x

and sinβ = −y. But instead we can take α := β+π ∈ (π/2, π], from which cosα = x and sinα = y.

Case 3: x < 0, y < 0. Here again β := arctan
( y
x

)
∈ (0, π/2) gives cosβ = −x and sinβ = −y. So,

we take α := β − π ∈ (−π,−π/2) and cosα = x, sinα = y.

Case 4: x = 0 and y > 0. We define α = π/2, and obviously cosα = x, sinα = y.

Case 5: x = 0 and y < 0. We define α = −π/2, and we get cosα = x, sinα = y.

Observe that if z ∈ C \ {0} and α is as in (1.4.1), then also

z = |z| (cos(α+ 2kπ) + i sin(α+ 2kπ)) ,

for all k ∈ Z. This is due to the 2π-periodicity of the functions R ∋ θ 7→ cos(θ), R ∋ θ 7→ sin(θ).
Theorem 1.8 and this small observation lead us to the following fundamental definition.

Definition 1.9. Given z ∈ C \ {0}, the argument of z is the set of real numbers

arg(z) := {α ∈ R : z = |z| (cosα+ i sinα)}.

And the principal argument of z is the unique real number Arg(z) ∈ (−π, π] ∩ arg(z).
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By virtue of Theorem 1.8, Arg(z) is well-defined, and, rephrasing the previous definition, Arg(z)
is the element of arg(z) contained in the interval (−π, π]. Moreover, from the proof of Theorem
1.8 we learnt how to explicitly define Arg(z), for z ̸= 0, in terms of Re(z) and Im(z) :

Arg(z) = Arg(x+ iy) =



arctan
( y
x

)
if x > 0,

arctan
( y
x

)
+ π if x < 0, y ≥ 0,

arctan
( y
x

)
− π if x > 0, y < 0,

π
2 if x = 0, y > 0,

−π
2 if x = 0, y < 0.

(1.4.2)

Here arctan : R → (−π/2, π/2) is the usual tan−1 bijection. In particular,{
Arg(z) ∈ [0, π] if Im(z) ≥ 0,

Arg(z) ∈ (−π, 0) if Im(z) < 0.
(1.4.3)

For example,

Arg(1 + i) =
π

4
, Arg(−1 + i) =

3π

4
, Arg(−1− i) =

−3π

4
, Arg(1− i) =

−π
4
.

In the following lemma we show that it is enough to find one value of the argument of z to
obtain all of arg(z).

Lemma 1.10. If z ∈ C \ {0}, and α ∈ arg(z), then

arg(z) = {α+ 2πk : k ∈ Z}.

In particular, arg(z) = {Arg(z) + 2πk : k ∈ Z}.

Proof. If θ ∈ arg(z), then

|z| (cos θ + i sin θ) = z = |z| (cosα+ i sinα) ,

and so cos θ = cosα and sin θ = sinα, implying θ = α + 2πk for some k ∈ Z. Conversely, any
number of the form α+ 2πk, k ∈ Z, belongs to arg(z) by the observation subsequent to Theorem
1.8.

Slightly abusing of terminology, Lemma 1.10 can be rewritten as arg(z) = Arg(z) + 2πZ.

1.5 De Moivre’s Formula and the Exponential Form

In the previous section, we saw how to express the (non-zero) complex numbers through the
bijection

(0,∞)× (−π, π] ∋ (r, θ) 7→ r (cosα+ i sinα) ∈ C \ {0},

whose inverse is the map C \ {0} ∋ z 7→ (|z|,Arg(z)) ∈ (0,∞) × (−π, π]. This polar coordinate
representation turns out to be instrumental in computing products, powers, and roots of any
complex number. One of the key ingredients is the following theorem due to De Moivre.

Theorem 1.11 (De Moivre). The following statements hold.

(i) Let α, β ∈ R. Then

(cosα+ i sinα) (cosβ + i sinβ) = cos(α+ β) + i sin(α+ β).
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(ii) Let n ∈ Z and θ ∈ R. Then

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

(iii) Let z ∈ C \ {0}, and n ∈ Z, with z = |z|(cosα+ i sinα), for α ∈ R, then

zn = |z|n (cos(nθ) + i sin(nθ)) .

Proof. To prove part (i) we note that the product equals

(cosα cosβ − sinα sinβ) + i (cosα sinβ + sinα cosβ) = cos(α+ β) + i sin(α+ β),

after employing the well-known trigonometric formulae for the sum of two angles:

cos(α+ β) = cosα cosβ − sinα sinβ, sin(α+ β) = cosα sinβ + sinα cosβ.

Let us now prove part (ii), so fix θ ∈ R. The identity is true in the case n = 0, since cos(nθ) = 1
and sin(nθ) = 0. Let us verify the assertion for all n ∈ N by induction on n. The case n = 1 is
trivial. Assume now that (cos θ + i sin θ)n = cos(nθ) + i sin(nθ), and for the n+ 1 power we write

(cos θ + i sin θ)n+1 = (cos θ + i sin θ) (cos θ + i sin θ)n = (cos θ + i sin θ) (cos(nθ) + i sin(nθ))

= cos(θ + nθ) + i sin(θ + nθ) = cos((n+ 1)θ) + i sin((n+ 1)θ),

where we used statement (i) in the second last equality. So, (ii) holds for all n ∈ N∪{0}. Now, for
n < 0, we use the result for the positive power −n to get

(cos θ + i sin θ)n =
1

(cos θ + i sin θ)−n =
1

cos(−nθ)− i sin(−nθ)

=
cos(−nθ)− i sin(−nθ)
cos2(−nθ) + sin2(−nθ)

= cos(nθ) + i sin(nθ).

Finally, part (iii) is immediate from (ii).

Among other applications, Theorem 1.11 permits to describe the argument of the product of
complex numbers.

Corollary 1.12. Let z, w ∈ C \ {0}. Then

arg(zw) = arg(z) + arg(w) := {α+ β : α ∈ arg(z), β ∈ arg(w)}.

Proof. For any two angles α ∈ arg(z) and β ∈ arg(w), we have z = |z|(cosα + i sinα) and
w = |w|(cosβ + i sinβ). The product zw is then

zw = |z|(cosα+ i sinα)|w|(cosβ + i sinβ) = |zw| (cos(α+ β) + i sin(α+ β)) ;

where we have invoked Theorem 1.11(i). According to Definition 1.9, this shows α+ β ∈ arg(zw).
Therefore, by Lemma 1.10,

arg(zw) = {(α+ β) + 2kπ : k ∈ Z} = {α+ 2kπ : k ∈ Z}+ {β + 2kπ : k ∈ Z} = arg(z) + arg(w).

In the proof of Corollary 1.12 we saw the ideology behind the multiplication of complex numbers
z, w ∈ C \ {0} : if α ∈ arg(z), β ∈ arg(z), then

zw = |z||w| (cos(α+ β) + i sin(α+ β)) .

Roughly speaking: to multiply complex numbers, we multiply the moduli and sum the arguments.
Corollary 1.12 does not hold if we replace the argument arg with the principal argument Arg .

For instance, if z = w = −i, then Arg(z) = Arg(w) = −π
2 but Arg(zw) = Arg(−1) = π, so

Arg(zw) ̸= Arg(z) + Arg(w).
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Notation 1.13 (Exponential form of complex numbers). For every θ ∈ R, we define

eiθ := cos θ + i sin θ. (1.5.1)

At the moment, this notation is simply a shorthand for the complex trigonometric formula, and,
a priori, not related to the Euler number e. However, in Section 2.4, we will define the complex
exponential function C ∋ z 7→ ez, which agrees with the previous formula in the pure imaginary
numbers and with the real exponential R ∋ x 7→ ex in the real numbers.

De Moivre’s Theorem 1.11 in this exponential form reads as

eiαeiβ = ei(α+β), (eiθ)n = einθ, α, β, θ ∈ R, n ∈ Z. (1.5.2)

Moreover, it is immediate that

Re(eiθ) = cos θ, Im(eiθ) = sin θ, |eiθ| = 1, eiθ = e−iθ,
1

eiθ
= e−iθ. (1.5.3)

Now, for any z ∈ C\{0}, we learnt from Theorem 1.8 and Definition 1.9 that z = |z|(cosα+i sinα),
for any α ∈ arg(z). Thus z can be written as follows, called the exponential form of z,

z = |z|eiα.

1.6 Roots of Complex Numbers

Definition 1.14 (nth root). Let w ∈ C and n ∈ N. The nth root of w is the set consisting of all
solutions of the equation zn = w, that is,〈

n
√
w
〉
:= {z ∈ C : zn = w}.

In the case n = 2, we typically use the simpler notation ⟨
√
w ⟩ instead of ⟨ 2

√
w ⟩ .

Let us give a precise description of these nth roots.

Theorem 1.15 (nth roots of complex numbers). Let w ∈ C \ {0}, and n ∈ N. Then ⟨ n
√
w ⟩ contains

precisely n (distinct) elements. Moreover, for any α ∈ arg(w), we have〈
n
√
w
〉
=

{
n
√
|w|
(
cos

(
α+ 2πj

n

)
+ i sin

(
α+ 2πj

n

))
: j = 0, 1, . . . , n− 1

}
.

Proof. Fix some α ∈ arg(w). A complex number z ∈ C \ {0} satisfies the equation zn = w (i.e.
belongs to ⟨ n

√
w ⟩) if and only if

|z|n (cos(Arg(z)) + i sin(Arg(z)))n = |w| (cosα+ i sinα) .

By Theorem 1.11, this is equivalent to

|z|n (cos(nArg(z)) + i sin(nArg(z))) = |w| (cosα+ i sinα) .

But this is in turn equivalent to the three equations

|z|n = |w|, cos(nArg(z)) = cosα, sin(nArg(z)) = sinα,

that is,
|z| = n

√
|w|, nArg(z)− α ∈ 2πZ.

Therefore z ∈ ⟨ n
√
w ⟩ if and only if z = zj := n

√
|w|
(
cos
(
α+2πj

n

)
+ i sin

(
α+2πj

n

))
, with j ∈ Z.

But the Euclidean division says that j = nmj + rj , for mj , rj ∈ Z with 0 < rj ≤ n− 1, and the 2π-
periodicity then implies zj = zrj , from which ⟨ n

√
w ⟩ = {z0, z1, . . . , zn−1}. And if k, j ∈ {0, . . . , n−1}

are distinct, then |(α+ 2kπ)/n− (α+ 2jπ)/n| < 2π, leading to zk ̸= zj .
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In exponential form, Theorem 1.15 can be summarized as〈
n
√
reiθ

〉
= {r1/nei

θ+2πj
n : j = 0, 1, . . . , n− 1}, for all r > 0, θ ∈ R.

Definition 1.16 (Principal nth root). Let w ∈ C \ {0} and n ∈ N. The principal nth root of w is
defined by

n
√
w := n

√
|w| e

Arg(w)
n

i = n
√
|w|
(
cos

(
Arg(w)

n

)
+ i sin

(
Arg(w)

n

))
.

And when w = 0 and n ∈ N, we simply define n
√
0 := 0. As in Definition 1.14, in the case n = 2

we may denote 2
√
w by

√
w.

Observe that n
√
w is a (complex) number, but the nth root ⟨ n

√
w ⟩ of w in Definition 1.14 is a

set. For nonnegative real numbers this principal nth root coincides with the usual nth root real
function: [0,+∞) ∋ x 7→ x1/n. However, unlike for real numbers, the principal root of a product
is not necessarily the product of the principal roots, as shown by the example z = w = −1, n = 2:

1 =
√
(−1) · (−1) ̸=

√
−1 ·

√
−1 = i · i = −1.

Nonetheless, still certain product formula holds if we consider the sets nth roots.

Proposition 1.17. Let n ∈ N, w, z ∈ C. Then〈
n
√
zw
〉
= {uv : u ∈

〈
n
√
z
〉
, v ∈

〈
n
√
w
〉
} =:

〈
n
√
z
〉
·
〈

n
√
w
〉
.

Proof. If ξ ∈ ⟨ n
√
z ⟩ · ⟨ n

√
w ⟩ , then ξ = ξ1 · ξ2, with ξ1 ∈ ⟨ n

√
z ⟩ and ξ2 ∈ ⟨ n

√
w ⟩ . By definition of the

set nth root, we have ξn1 = z and ξn2 = w, implying that ξn = zw, and so ξ ∈ ⟨ n
√
zw ⟩ .

Conversely, let ξ ∈ ⟨ n
√
zw ⟩ . By Theorem 1.15, we can write

ξ = n
√
|zw|ei(

θ+2πj
n ), for some θ ∈ arg(zw), j ∈ {0, . . . , n− 1}.

But Corollary 1.12 tells us that θ = θ1 + θ2 with θ1 ∈ arg(z) and θ2 ∈ arg(w). Hence,

ξ = n
√
|zw|ei

(
θ1+θ2+2πj

n

)
= n
√
|z|ei

θ1
n

n
√

|w|ei
(
θ2+2πj

n

)
;

where clearly n
√

|z|ei
θ1
n ∈ ⟨ n

√
z ⟩ and n

√
|w|ei

(
θ2+2πj

n

)
∈ ⟨ n

√
w ⟩ by virtue of Theorem 1.15.

Theorem 1.15 gave all the solutions z ∈ C to equations of the form zn = w, or equivalently all
the zeros of the polynomial function C ∋ z 7→ zn − w. A polynomial in C is a function P : C → C
of the form

P (z) = a0 + a1z + · · ·+ anz
n, a0, . . . , an ∈ C, n ∈ N,

and the zeros or roots of P is the set P−1(0) := {z ∈ C : P (z) = 0}. This is a problem we will
take up later in Section 4.4.4, where we will show that C is algebraically closed, meaning that every
nonconstant polynomial has at least one root in C. We will actually show that a polynomial of
degree n hast exactly n roots in C, counted with multiplicity.

1.7 The Extended Complex Plane

It is sometimes useful to add to C an external point or point at infinity (for C), denoted by ∞.

Definition 1.18 (Extended Complex Plane). If ∞ denotes a point at infinity for C, we define the
extended complex plane by C∞ := C ∪ {∞}.
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So far C∞ is nothing but C along with an element (denoted by ∞) such that ∞ /∈ C. However,
it turns out that when C∞ is equipped with an appropriate distance, we get a topological metric
space that is homeomorphic (a bijection whose inverse and itself are continuous) to the unit sphere
of R3 :

S2 := {(X,Y,X) ∈ R3 : X2 + Y 2 + Z2 = 1}.

The way to establish this relation between C∞ and S2 is via the stereographic projection.

Definition 1.19 (The Stereographic Projection). Denote by N = (0, 0, 1) ∈ R3, the north pole. The
Stereographic Projection onto C is the mapping Π : S2 → C∞ given by

Π(P ) =

{
the unique point z ∈ LN,P ∩ C if P ∈ S2 \ {N}
∞ if P = N.

(1.7.1)

Here LN,P denotes the affine line in R3 passing through N and P.

The mapping Π : S2 → C∞ in (1.7.1) is obviously well-defined, and we next determine the
explicit formula for those points z ∈ LN,P ∩ C in terms of P.

Proposition 1.20. The mapping Π : S2 → C∞ defined in (1.7.1) satisfies

Π(X,Y, Z) =
X + iY

1− Z
≡
(

X

1− Z
,

Y

1− Z

)
for all (X,Y, Z) ∈ S2 \ {N}. (1.7.2)

Moreover, Π : S2 → C∞ is a bijection whose inverse Π−1 : C∞ → S2 is given by

Π−1(z) =


1

|z|2 + 1

(
2Re(z), 2 Im(z), |z|2 − 1

)
if z ∈ C

N = (0, 0, 1) if z = ∞.

(1.7.3)

Proof. If P := (X,Y, Z) ∈ S2 \ {N}, the line in R2 generated by P and N is the set

LN,P = {(0, 0, 1) + λ(X,Y, Z − 1) : λ ∈ R}.

Identifying C ≃ R2, this line intersects C if and only if λ(Z − 1) = 1, from which we must have
λ = 1

1−Z . The corresponding point in LN,P ∩ R2 is therefore ( X
1−Z ,

Y
1−Z ). This proves (1.7.2).

To prove that Π : S2 → C∞ is a bijection whose inverse satisfies (1.7.3), given z ∈ C we find
a unique P ∈ S2 \ {(0, 0, 1)} such that Π(P ) = z. Regarding z ≡ (Re(z), Im(z), 0) as point of R3,
the point P = (X,Y, Z) must belong to the intersection of S2 \ {(0, 0, 1)} with the line that passes
through N and z :

{(0, 0, 1) + λ(Re(z), Im(z),−1) : λ ∈ R};

The desired λ ∈ R must satisfy

λ2Re(z)2 + λ2 Im(z)2 + (1− λ)2 = 1,

or equivalently λ2
(
|z|2 + 1

)
= 2λ. The value λ = 0 corresponds to the point (0, 0, 1) of the line,

which we are not interested in. So the unique admissible solution to the equation is λ = 2
|z|2+1

,

and the point P satisfies

P =
1

|z|2 + 1

(
2Re(z), 2 Im(z), |z|2 − 1

)
.

Thus we get a bijection Π : S2 \ {N} → C, which obviously extends to S2 → C∞ since Π(N) = ∞.
Moreover (1.7.3) holds for all z ∈ C∞.

By Proposition 1.20, the stereographic projection Π defines a bijection between S2 and C∞. In
fact, we can use Π to define a distance function in C∞, and so a topology in C∞.
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Definition 1.21 (Spherical Metric). The spherical or chordal metric in C∞ is the function
ρ : C∞ × C∞ → [0,+∞) given by

ρ(z, w) := ∥Π−1(z)−Π−1(w)∥ =
√

(X −X ′)2 + (Y − Y ′)2 + (Z − Z ′)2, (1.7.4)

whenever z, w ∈ C∞, Π
−1(z) = (X,Y, Z) ∈ S2, Π−1(w) = (X ′, Y ′, Z ′) ∈ S2.

Note that ρ(z, w) ≤ diam(S2) = 2 for all z, w ∈ C∞. Let us express ρ(z, w) solely in terms of
z, w ∈ C∞.

Proposition 1.22. The sperical metric ρ : C∞ × C∞ → [0,+∞) is a distance function and

ρ(z, w) =



2|z − w|√
|z|2 + 1

√
|w|2 + 1

if z, w ∈ C

2√
|z|2 + 1

if z ∈ C, w = ∞

0 if z = w = ∞.

(1.7.5)

Proof. The fact that ρ is a distance is a consequence of (1.7.4) and the fact that ∥ · ∥ is a norm
in R3; and the only (perhaps) non-trivial property to verify is that ρ(z, w) = 0 =⇒ z = w. But
this is also very easy because ρ(z, w) = 0 implies that Π−1(z) = Π−1(w), where Π−1 is injective
by Proposition 1.20, and hence z = w.

To check formula (1.7.5), we start with points z, w ∈ C, for which Π−1(z) = (X,Y, Z) and
Π−1(w) = (X ′, Y ′, Z ′), with X2+Y 2+Z2 = (X ′)2+(Y ′)2+(Z ′)2 = 1. Using first these identities,
then formula (1.7.3), and making some computations (recall (1.2.1)) we get:

ρ(z, w)2 = 2− 2
(
XX ′ + Y Y ′ + ZZ ′)

= 2− 2

(|z|2 + 1)(|w|2 + 1)

[
4Re(z)Re(w) + 4 Im(z) Im(w) + (|z|2 − 1)(|w|2 − 1)

]
= 2− 2

(|z|2 + 1)(|w|2 + 1)

[
(z + z)(w + w)− (z − z)(w − w) + (|z|2 − 1)(|w|2 − 1)

]
= 2− 2

(|z|2 + 1)(|w|2 + 1)

[
2(zw + zw) + (|z|2 − 1)(|w|2 − 1)

]
=

2

(|z|2 + 1)(|w|2 + 1)

[
(|z|2 + 1)(|w|2 + 1)− (|z|2 − 1)(|w|2 − 1)− 2 (zw + zw)

]
=

2

(|z|2 + 1)(|w|2 + 1)

[
2(|z|2 + |w|2)− 2 (zw + zw)

]
=

4|z − w|2

(|z|2 + 1)(|w|2 + 1)
.

Thus we have (1.7.5) in the case z, w ∈ C. Now, if z ∈ C and w = ∞, then Π−1(w) = N = (0, 0, 1),
and π−1(z) = (X,Y, Z) with X2 + Y 2 + Z2 = 1 and Z = (|z|2 − 1)/(|z|2 + 1) by (1.7.3). So by
definition of ρ(z, w) :

ρ(z, w)2 = X2 + Y 2 + (Z − 1)2 = 2− 2Z = 2− 2(|z|2 − 1)

|z|2 + 1
=

4

|z|2 + 1
,

and get conclude (1.7.5) also in this case.

Definition 1.23 (Riemann Sphere). We define the Riemann sphere as the set C∞ equipped with
the spherical metric ρ : C∞ → R in (1.7.4).

The sterographic projection defined an homeomorphism between (C∞, ρ) and (S2, ∥ · ∥); where
ρ is the spherical metric (Definition 1.21) and ∥ · ∥ is the Euclidean norm. This is the reason why
C∞ is called (the Riemann) sphere. In particular (C∞, ρ) is a compact space.
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1.8 Exercises

Exercise 1.1. Find the modulus, the arguments, the principal arguments, and the exponential forms
of the following numbers.

(a) z =
√
3 + i.

(b) z = 1√
3+i

.

(c) z = (−
√
3 + i)5

(d) The 7th roots of z = −
√
3− i.

Exercise 1.2. Express the following numbers in the form a+ ib, with a, b ∈ R.

(a) z = 1+i
3−2i

(b) z = (1+2i)2

(1−i)3
.

(c) All the 3rd roots of z = 1 + i.

(d) All the 2nd roots of z = 1
1−i .

Exercise 1.3. Describe all the elements of the following sets.

(a) A = {z ∈ C : |z|2 = z2}.

(b) B = {z ∈ C : z2 = z}.

(c) C = {z ∈ C : z = (z)2}.

(d) D = {z ∈ C : z2 = (z)2}.

(e) E = {z ∈ C : z = 1
z}.

(f) F = {z ∈ C : 1
z = −z}.

Exercise 1.4. Find all the solutions z ∈ C of the following equations.

(a) z2 + iz + 1 = 0.

(b) z2 + 2iz − 1 = 0.

(c) z3 −
∑100

k=0 i
k = 0.

(d) z4 + z2 + 1 = 0.

(e) z4 + 81 = 0.

(f) (1 + z)5 = (1− z)5.

(g) z6 + 1 = i
√
3.

Exercise 1.5. Show that C does not admit a total order relation2 ≻ satisfying the following rules
(for all z1, z2, z3 ∈ C):

• z1 ≻ z2 =⇒ z1 + z3 ≻ z2 + z3.

• z3 ≻ 0, z1 ≻ z2 =⇒ z1z3 ≻ z2z3.

2This means that for all z, w, ξ ∈ C we have (i) z ≻ z; (ii) z ≻ w and w ≻ z implies w = z; (iii) z ≻ w and w ≻ ξ
implies z ≻ ξ; (iv) either z ≻ w or w ≻ z.
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Hint: Assume that such an order relation exists. Then either 0 ≻ i or i ≻ 0. Arrive at a
contradiction in both cases.

Exercise 1.6. Prove the following statements, for z, w ∈ C :

(a) |z + w| = |z|+ |w| if and only if either w = 0 or z/w ∈ R with z/w ≥ 0.

(b) |z − w| ≥
∣∣|z| − |w|

∣∣, with equality if and only if either w = 0 or z/w ∈ R with z/w ≥ 0.

(c) |z + w| = |z − w| if and only if either w = 0 or z/w is pure imaginary.

(e) The Parallelogram Law: |z + w|2 + |z − w|2 = 2
(
|z|2 + |w|2

)
.

(f)
∣∣Re(z)∣∣+ ∣∣Im(z)

∣∣ ≤ √
2 |z|.

Exercise 1.7. For each w ∈ C, n ∈ N, find M(w) := max{|zn + w| : z ∈ C, |z| ≤ 1} and a
corresponding maximizer.

Hint: Find a trivial upper bound for M(w) with the triangle inequality, and then consider when
this triangle inequality becomes equality; Exercise 1.6.

Exercise 1.8. Find sup{Re(iz3) : z ∈ C, |z| < 2}.

Exercise 1.9. Prove Lagrange’s Identity: for complex numbers z1, . . . , zn, w1, . . . , wn :∣∣∣∣∣
n∑

k=1

zkwk

∣∣∣∣∣
2

=

(
n∑

k=1

|zk|2
)(

n∑
k=1

|wk|2
)

−
∑

1≤k<j≤n

|zkwj − zjwk|2.

Deduce the Cauchy-Schwarz inequality:∣∣∣∣∣
n∑

k=1

zkwk

∣∣∣∣∣
2

≤

(
n∑

k=1

|zk|2
)(

n∑
k=1

|wk|2
)
.

Hint: Argue by induction on n.

Exercise 1.10. Show that if z ∈ C \ {1}, then

1 + z + z2 + · · ·+ zn−1 =
1− zn

1− z
.

Deduce that if z ∈ C \ {1} is an n-root of 1, then 1 + z + z2 + · · ·+ zn−1 = 0.

Exercise 1.11. Denote by w0, . . . , wn−1 all the nth roots of 1, for n ≥ 2. Show that

(a)
∏n−1

k=0(z − wk) = zn − 1 for all z ∈ C.

(b)
∑n−1

k=0 wk = 0.

(c)
∏n−1

k=0 wk = (−1)n−1.

(d)
∑n−1

k=0 w
j
k =

{
0, if 1 ≤ j ≤ n− 1

n, if j = n.

Hint: In (a), you can first prove that if z0 is a root of a polynomial P with deg(P ) = n, then
P (z) = (z − z0)Q(z), z ∈ C, for some polynomial Q with deg(Q) ≤ n − 1. By induction, you can
decompose the polynomial zn − 1. But, please do not use the Fundamental Theorem of Algebra.

Exercise 1.12. Use De Moivre’s formula in combination with Newton’s binomial formula to express
sin(5θ) and cos(5θ) as a polynomial expression of sin(θ) and cos(θ), for θ ∈ R.
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Exercise 1.13. Prove that for n ≥ 2,

n−1∑
k=1

cos

(
2kπ

n

)
= −1 and

n−1∑
k=1

sin

(
2kπ

n

)
= 0.

Exercise 1.14. Prove that
n∑

k=1

eikθ =
sin(nθ2 )

sin( θ2)
ei

(n+1)θ
2 .

Use this formula to deduce

(a)
∑n

k=1 cos(kθ) =
sin(nθ

2
) cos( (n+1)θ

2
)

sin( θ
2
)

.

(b)
∑n

k=1 sin(kθ) =
sin(nθ

2
) sin( (n+1)θ

2
)

sin( θ
2
)

.

Hint: Use Exercise 1.10 to find a formula for the sum in terms of exponentials.

Exercise 1.15. Show that, for n > 2,

n−1∏
k=1

sin

(
πk

n

)
=

n

2n−1
.

Hint: Describe the nonzero roots {zk}k of the polynomial (1− z)n − 1 in terms of the nth roots
of unity, and find the modulus of zk. Then, Exercise 1.11(a) can be helpful.

Exercise 1.16. Prove that if z ∈ C \ {0}, then the points 0, z, and 1/z are align in the plane.

Exercise 1.17. Prove that if z ∈ C \ {1} with |z| = 1, then z + 1
z is a real number (meaning that

Im(z + 1
z ) = 0), and that 1+z

1−z is pure imaginary (meaning that Re
(
1+z
1−z

)
= 0).

Exercise 1.18. Let z1, z2, z3 ∈ C be three distinct points. Show that the following statements are
equivalent.

(a)
z2 − z1
z3 − z1

=
z1 − z3
z2 − z3

.

(b) z21 + z22 + z23 = z1z2 + z1z3 + z2z3.

(c) {z1, z2, z3} are the vertices of an equilateral triangle.

Hint: The equivalence (a) ⇐⇒ (b) is a computation. To prove that (c) is equivalent to the
others ((a) or (b), choose your favorite), prove it first in the case z3 = 0.

Exercise 1.19. Let w ∈ C with |w| < 1 and z ∈ C so that wz ̸= 1. Show that∣∣∣∣ z − w

1− wz

∣∣∣∣ ≤ 1 ⇐⇒ |z| ≤ 1.

Exercise 1.20. Let z, w ∈ C so that wz ̸= 1. Show that

(a) If |z| < 1 and |w| < 1, then ∣∣∣∣ z − w

1− wz

∣∣∣∣ < 1.

(b) If |z| = 1 or |w| = 1, then ∣∣∣∣ z − w

1− wz

∣∣∣∣ = 1.
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Exercise 1.21. Consider the function f : C \ {0} → C given by f(z) = 1/z. Prove that:

(a) If L line of C so that 0 ∈ L, then f(L \ {0}) = L′ \ {0} for a line L′ ⊂ C.

(b) If L is line of C so that 0 /∈ L, then f(L) = S \ {0} for a circle S of C with 0 ∈ S.

Suggestion: In (b), the formulas for circles and lines from Section 1.3 can help you.

Exercise 1.22. Let Π : S2 → C∞ be the stereographic projection, N = (0, 0, 1) the north pole, and
∞ the point at infinity for C. Prove that:

(a) If S ⊂ S2 is a circle with N ∈ S, then Π(S) = L ∪ {∞}; where L is a line of C.

(b) If S ⊂ S2 is a circle with N /∈ S, then Π(S) is a circle of C.

Clarification: By a circle S ⊂ S2 we mean the intersection of S2 with a plane of R3 that is not
tangent to S2 (if that plane is tangent, S is merely a singleton, and Π(S) is a singleton too, which
is a trivial circle of C.)

Hint: In (b), first explain why we can write S = {(X,Y, Z) ∈ S2 : A0X +B0Y + C0Z = D0},
for (A0, B0, C0) ∈ S2, D0 ∈ (−1, 1), and D0 ̸= C0. Write the equation of a general circle S′ of C as
in (1.3.5), and determine the parameters ξ and K (in terms of A0, B0, C0, D0) so that Π−1(S′) ⊂ S.
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Chapter 2

Complex Functions

2.1 Topology, convergence, and continuity in C.

There is a natural way to define a distance between two points z, w ∈ C, using the modulus function
| · | : C → [0,+∞). That is,

d(z, w) := |z − w|.

In particular, the function d : C× C → [0,+∞) satisfies the axioms of a metric:

• d(z, w) = 0 if and only if z = w.

• d(z, w) = d(w, z) for all z, w ∈ C.

• d(z, w) ≤ d(z, ξ) + d(ξ, w), for all z, w, ξ ∈ C. This is a consequence of Proposition 1.7(viii).

Thus (C, | · |) is a metric space, whose distance coincides with the Euclidean distance in the
plane R2.

2.1.1 Open and Closed disks and sets

We next define the corresponding metric balls, which we call disks in the complex setting.

Definition 2.1 (Open and closed disks). Given z ∈ C and r > 0, the open disk centered at z
with radius r is

D(z, r) := {w ∈ C : |w − z| < r}.

The corresponding closed disk centered at z with radius r is

D(z, r) := {w ∈ C : |w − z| ≤ r}

Then the circle centered at z with radius r is the set

S(z, r) := D(z, r) \D(z, r) = {w ∈ C : |w − z| = r}.

We use the disks to define the fundamental class of sets.

Definition 2.2 (Open and closed sets). A subset U of C is open if for every z ∈ U there exists
r > 0 so that D(z, r) ⊂ U. Also, we say that a set F ⊂ C is closed if C \ F is open.

Trivial examples of open sets are U = ∅ and U = C. These two sets are also closed according
to Definition 2.2. But the main non-trivial examples of open and closed are precisely the open and
closed disks.

Proposition 2.3. For every z ∈ C and r > 0, the set D(z, r) is open and the set D(z, r) is closed.
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Proof. To check that D(z, r) is open, take w ∈ D(z, r) and let us prove that D(w, ε) ⊂ D(z, r), if
0 < ε < r − |w − z| (notice that |w − z| < r, as w ∈ D(z, r)). Indeed, if ξ ∈ D(w, ε), the triangle
inequality gives

|ξ − z| ≤ |ξ − w|+ |w − z| < ε+ |w − z| < r − |w − z|+ |w − z| = r,

showing that ξ ∈ D(z, r).
Now, to verify that D(z, r) is closed, we need to check that U := C \D(z, r) is open. Thus, let

w ∈ U, and 0 < ε < |w − z| − r. The open disk D(w, ε) is contained in U, because if ξ ∈ D(w, ε),
then

|ξ − z| ≥ |w − z| − |ξ − w| > |w − z| − ε > |w − z| − (|w − z| − r) = r,

implying ξ ∈ C \D(z, r) = U.

Arbitrary unions of open sets are open, and finite intersection of open sets are open as well.
The same holds for closed sets swapping union and intersection.

Proposition 2.4. Let {Ui}i∈I be a family of open subsets of C, and let {Fj}j∈J be a family of closed
subsets of C. The following holds.

(i)
⋃

i∈I Ui is an open set.

(ii) If I is finite, then also
⋂

i∈I Ui is open.

(iii)
⋂

j∈J Fj is a closed set.

(iv) If J is finite, then also
⋃

j∈J Fj is closed.

Proof.

(i) This is immediate from the definition of open sets.

(ii) If I = {i1, . . . , in} and z ∈
⋂

i∈I Ui, then there are radii r1, . . . , rn that make each disk D(z, ri)
be contained in Ui. If r = min{r1, . . . , rn}, the diskD(z, r) is contained in all the Ui simultaneously.

(iii) Write

C \
⋂
j∈J

Fj =
⋃
j∈J

C \ Fj ;

where each C \ Fj is open, since Fj is closed. By (i), we derive that C \
⋂

j∈J Fj is open, ergo⋂
j∈J Fj is closed.

(iv) Using (ii), the proof follows from taking the pertinent complements on C, as we did in (iii).

Proposition 2.4 shows that, for example, singletons {z}, z ∈ C, are closed sets, as they can be
written as {z} =

⋂
ε>0D(z, ε). Consequenly, aslo by Proposition 2.4, D(z, ε) \ {w} is an open set

for any z, w ∈ C, ε > 0, as it is the intersection of the two open sets D(z, ε) and C \ {w}. Also,
we can use Proposition 2.4 to deduce that each circle ∂D(z, r) is closed, as the intersection of the
closed sets D(z, r) and C \D(z, r).

2.1.2 The interior, the closure, and the boundary

We continue defining more key topological concepts.

Definition 2.5 (Interior, Accumulation, Closure, Boundary). Let A ⊂ C be a subset, and z ∈ C.

• We say that z is an interior point of A if there exists r > 0 so that D(z, r) ⊂ A. We define
the interior of A, denoted by int(A), and the set consisiting of all interior points of A.

• We say that z is an accumulation point of A if, for every ε > 0, we have A∩(D(z, ε) \ {z}) ̸=
∅. The set of all accumulation points of A will be denoted by A′.
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• We define the closure of A as the set

A :=
⋂

{F ⊂ C : A ⊂ F and F is closed }.

We can also refer to A as the smallest closed set containing A.

• The boundary of A is the set
∂A := A \ int(A).

To get acquainted with some of these concepts, we propose showing that:

• The closure D(z, r) of an open disk D(z, r) is precisely the corresponding closed disk D(z, r).

• The interior int(D(z, r)) of a closed disk D(z, r) is precisely the corresponding open disk
D(z, r).

• The boundaries ∂D(z, r) and ∂D(z, r) are both equal to the corresponding circle S(z, r).

Let us collect some basic remarks and properties concerning the elements from Definition 2.5.
Some of them will offer alternate definitions for the concepts of interior, closure, and boundary.

Proposition 2.6. Let A,B,C ⊂ C be arbitrary subsets. The following statements are true.

(i) A is open if and only if int(A) = A. Also, if B ⊂ C, then int(B) ⊂ int(C).

(ii) The interior int(A) of A is an open set contained in A satisfying

int(A) =
⋃

{U ⊂ C : U ⊂ A and U is open } =
⋃

{D(z, r) : D(z, r) ⊂ A, z ∈ C, r > 0}.

In particular, if U is an open set containing A, then U ⊂ int(A).

(iii) If B ⊂ C, then B′ ⊂ C ′ and B ⊂ C.

(iv) A′ is always a closed set.

(v) The closure A of A is a closed superset of A satisfying A = A∪A′. Consequently, the closure
admits the following description:

A = {z ∈ C : D(z, ε) ∩A ̸= ∅ for every ε > 0}. (2.1.1)

Also, we have the following characterizations of “closedness”:

A is closed ⇐⇒ A = A ⇐⇒ A′ ⊂ A.

(vi) C \A = C \ int(A) and int(C \A) = C \A.

(vii) The boundary ∂A of A is a closed subset of A, and ∂A = A ∩ C \A.

Proof.

(i) If A is open, for every z ∈ A there is r > 0 so that D(z, r) ⊂ A, which means that z ∈ int(A),
according to Definition 2.5. The implication “A = int(A) =⇒ A is open” is obvious. It is also
immediate that B ⊂ C =⇒ int(B) ⊂ int(C).

(ii) If D(z, r) is an open disk contained in A, then, by (i) and Proposition 2.3, we have

D(z, r) = int(D(z, r)) ⊂ int(A).

Thus the union of the disks is contained in int(A). And if z ∈ int(A), then D(z, r) ⊂ A for some
r > 0, and thus we deduce int(A) =

⋃
{D(z, r) : D(z, r) ⊂ A, z ∈ C, r > 0}. In particular, this

shows that int(A) is open, e.g. by Proposition 2.4. Using again that the open disks are open and
that int(A) is open, we deduce the middle identity of (ii).
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(iii) This is immediate from Definition 2.5.

(iv) Let z ∈ C \ A′. There exists ε > 0 so that (D(z, ε) \ {z}) ∩ A = ∅. Let us show that D(z, ε) ⊂
C \ A′, which will imply that C \ A′ is open. Indeed, since we already know that z ∈ C \ A′, it
suffices to show D(z, ε)\{z} ⊂ C\A′. But D(z, ε)\{z} is an open set (see the comment subsequent
to Proposition 2.4), so for any w ∈ D(z, ε) \ {z} we can find δ > 0 with D(w, δ) ⊂ D(z, ε) \ {z}.
Because (D(z, ε) \ {z}) ∩A = ∅, we have D(w, δ) ∩A = ∅ as well, showing that w ∈ C \A′.

(v) A is closed as intersection of closed sets; see Proposition 2.4. Let us verify the identityA = A∪A′.
Let z /∈ A∪A′. Then there exists, by definition of A′, a radius ε > 0 so that (D(z, ε)\{z})∩A = ∅.
But also z /∈ A, so we actually have D(z, ε) ∩ A = ∅, implying A ⊂ C \D(z, ε), where C \D(z, ε)
is closed and does not contain z. Hence z /∈ A, and this shows that A ⊂ A ∪ A′. For the reverse
inclusion, assume z /∈ A, which implies the existence of F ⊂ C closed with A ⊂ F and z /∈ F. The
complement of F is open, so there exists ε > 0 with D(z, ε) ∩ F = ∅. Since A ⊂ F, this clearly
shows that z /∈ A′.

The expression for A is immediate from the identity A = A ∪A′.

We now prove the equivalences. If A is closed, then A = A, by the definition of closure.
Now, if A = A, and we use the already proven identity A = A ∪A′, we get A′ ⊂ A.
Finally, if A′ ⊂ A and z ∈ C \ A, then z also do not belong to A′, and there is ε > 0 with

(D(z, ε) \ {z}) ∩ A = ∅. But since z /∈ A, this yields D(z, ε) ∩ A = ∅, and so D(z, ε) ⊂ C \ A. We
have shown that C \A is open, ergo, A is closed.

(vi) It suffices to apply the formula from (ii) for interiors and that U is open iff C \ U is closed.

(vii) This follows from the definition of boundary (Definition 2.5) and (vi).

2.1.3 Convergence of Sequences. The Bolzano-Weierstrass Theorem

Definition 2.7 (Convergence of sequences). Let {zn}n∈N ⊂ C be a sequence, and z0 ∈ C. We say
that {zn}n∈N converges to z0, and denote it by z0 = limn→∞ zn, if for every ε > 0 there exists
n0 ∈ N such that zn ∈ D(z0, ε) for all n ≥ n0. We will often denote the property z0 = limn→∞ zn
simply by zn → z0.

The limits of sequences satisfy the following basic properties.

Proposition 2.8. Let {zn}n∈N, {wn}n∈N be sequences in C, and z0, w0 ∈ C. The following holds.

(i) limn→∞ zn = z0 if and only if Re(z0) = limn→∞Re(zn) and Im(z0) = limn→∞ Im(zn);
understanding these limits as convergence of real numbers.

Consequently, limn→∞ zn = z0 if and only if limn→∞ zn = z0.

Also, if limn→∞ zn = z0, then limn→∞ |zn| = |z0|.

Assume from now on that limn→∞ zn = z0 and limn→∞wn = w0. Then:

(ii) limn→∞(zn + wn) = z0 + w0.

(iii) limn→∞ znwn = z0w0.

(iv) If w0 ̸= 0, then limn→∞ zn/wn = z0/w0.

Proof.

(i) For the first equivalence, use Proposition 1.7 and the definition of modulus to deduce:

|zn − z0| < ε =⇒ max{|Re(zn)− Re(z0)|, | Im(zn)− Im(z0)|} < ε =⇒ |zn − z0| <
√
2 ε.

By Definition 2.7, the above shows that zn → z0 if and only if both Re(zn) → Re(z0) and Im(zn) →
Im(z0).

The rest of (i) follows from what we have already proven for the real and imaginary parts.
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(ii) This is very easy.

(iii) Using that Re(uv) = Re(u)Re(v)− Im(u) Im(v), Im(uv) = Re(u) Im(v) + Im(u)Re(v), for all
u, v ∈ C, together with (i), the proof of (iii) is straightforward.

(iv) Thanks to (iii), it is enough to show that 1/wn → 1/w0, or equivalently, wn/|wn|2 → w0/|w0|2.
But this is easily seen, because, by virtue of (i), wn → wn implies both |wn|2 → |w0|2 and wn → w0.

We can use sequences to give useful criteria for closures and accumulation points of sets.

Proposition 2.9. Let A ⊂ C be a set, and z0 ∈ C a point. The following properties are true.

(i) z0 ∈ A′ if and only if there is a sequence {zn}n∈N ⊂ A \ {z0} so that limn zn = z0.

(ii) z0 ∈ A if and only if there is a sequence {zn}n∈N ⊂ A so that limn zn = z0.

Consequently, A is closed if and only if for every {zn}n∈N ⊂ A convergent to z0 ∈ C, one has
z0 ∈ A.

Proof.

(i) If z0 ∈ A′, then (D(z0, 1/n) \ {z0}) ∩ A ̸= ∅ for each n ∈ N. Taking zn as any point zn ∈
D(z0, 1/n) \ {z0} ∩A, one has limn→∞ zn = z0 (as 0 < |zn − z0| < 1/n), and {zn}n∈N ⊂ A.

For the reverse implication, let {zn}n∈N ⊂ A \ {z0} with limn zn = z0, and let ε > 0. Since
zn → z0, we have zn ∈ D(z0, ε) for some n (actually for all n from certain n0 on). Thus, the
intersection D(z0, ε) \ {z0} ∩A is nonempty.

(ii) Using the description (2.1.1) for closure points, the proof is almost identical to that of (i).

Definition 2.10. Given two sets A,B ⊂ C we say that B is dense in A if A ⊂ B.

In particular, B is dense in C if B = C.

According to Proposition 2.9, if B is dense in A, then for every z ∈ A we can find a sequence
{zn}n ⊂ B so that zn → z.

Definition 2.11. We say that a sequence {zn}n∈N ⊂ C is bounded if sup{|zn| : n ∈ N} <∞, that
is, there exists M > 0 so that |zn| ≤M for all n ∈ N.

More generally, we say that a set A ⊂ C is bounded if sup{|z| : z ∈ A} <∞.

As in the real line R, bounded sequences in C admit convergent subsequences.

Theorem 2.12 (Bolzano-Weierstrass in C). If {zn}n∈N ⊂ C is a bounded sequence, then there exists
a subsequence {znk

}k∈N of {zn}n∈N convergent to some z0 ∈ C.

Proof. Recall that max{|Re(zn)|, | Im(zn)|} ≤ |zn|, e.g., by Proposition 1.7. Thus, both {Re(zn)}n∈N
and {Im(zn)}n∈N are bounded sequences of real numbers. By Bolzano-Weierstrass theorem in R,
there is a subsequence {Re(znk

)}k∈N of {Re(zn)}n∈N convergent to some x0 ∈ R. Now, the sub-
sequence {Im(znk

)}k∈N of {Im(zn)}n∈N is also bounded, and thus, again by Bolzano-Weierstras,
there is a subsequence {Im(znkj

)}j∈N of {Im(znk
)}k∈N convergent to some y0 ∈ R. The subse-

quence {Re(znkj
)}j∈N converges to x0 (because it is a subsequence of {Re(znk

)}k∈N). Defining

z0 := x0 + iy0 and applying Proposition 2.8(i), the sequence {znkj
= Re(znkj

) + i Im(znkj
)}j∈N

converges to z0.
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2.1.4 Compactness. The Heine-Borel Theorem

We now turn out attention to a special (and crucial) class of sets: the compact sets. Althought
the formal definition seems a bit abstract, in metric spaces (and specially in C) there are several
alternate characterizations that are easier to use in practice.

Definition 2.13. Let K ⊂ C. We say that K is a compact set if given any collection {Ui}i∈I of
open subsets of C so that K ⊂

⋃
i∈I Ui, there exists a finite family of indices F ⊂ I so that

K ⊂
⋃

i∈F Ui.

Compactness can be rephrased in the following manner: a set K is compact if from any open
covering of K one can find a finite sub-covering of K.

Definition 2.13 is the formal definition of compactness that is given in the setting of topological
spaces, a class of spaces that is much more general (and leading to beautiful and more abstract
phenomena) than the class of metric spaces.

In metric spaces, compactness is equivalent to sequential compactness. Moreover, in (C, | · |),
compact sets are simply the bounded and closed sets.

Theorem 2.14 (Heine-Borel theorem in C). Let K ⊂ C be a subset. The following statements are
equivalent.

(i) K is compact.

(ii) K is closed and bounded.

(iii) Every sequence {zk}k∈N ⊂ K has a subsequence {znk
}k∈N convergent to some z0 ∈ K.

Proof. We will assume throughout the proof that K ̸= ∅.
(i) =⇒ (ii) : Assume that K is compact. To check that K is bounded, take a point z ∈ K and

consider the trivial covering of K given by the collection {D(z, j)}j∈N. By the compactness of K,

there exists a finite collection of those disks, say D(z, j1), . . . , D(z, jN ) so that K ⊂
⋃N

i=1D(z, ji).
Then obviously, K is contained inD(z,R), with R := max{j1, . . . , jN}, showing thatK is bounded.

To verify that K is closed, let z ∈ C \ K, and notice, for every w ∈ K, one has D(z, rw) ∩
D(w, rw) = ∅ for rw := |z − w|/2 (by virtue of the triangle inequality for the modulus). Ob-
viously, K ⊂

⋃
w∈K D(w, zw) and so the compactness of K gives a finite set F of K so that

K ⊂
⋃

w∈F D(w, zw). Now, define the set

U :=
⋃
w∈F

D(z, rw).

By Proposition 2.4, U is open (as a finite intersection of open sets). And it is clear that z ∈ U and
U ∩

(⋃
w∈F D(w, zw)

)
= ∅. So, also U ∩K = ∅, and therefore z ∈ U ⊂ C \K; which shows that

C \K is open.

(ii) =⇒ (iii) : This follows by combining Theorem 2.12 and Proposition 2.9.

(iii) =⇒ (i) : Let {Ui}i∈I a collection open sets whose union contains K.
We claim that there exists ε > 0 so that, for every z ∈ K, the diskD(z, ε) is entirely contained in

one Uiz , iz ∈ I. Indeed, otherwise we can find, for each n ∈ N, a point zn ∈ K with D(zn, 1/n) ̸⊂ Ui

for all i ∈ I. By the assumption, {zn}n has a subsequent {znk
}k convergent to some z0 ∈ K. Note

that z0 must be contained in some Ui0 , (because the union of the Ui’s cover K) and in fact
D(z0, δ) ⊂ Ui0 for some δ > 0, as Ui0 is open. But it is clear that, for k large enough, the disk
D(znk

, 1/nk) is contained in ⊂ D(z0, δ), and so is contained in Ui0 , a contradiction. So, our claim
is proven.

Next, we can find a finite set F ⊂ I such that K ⊂
⋃

z∈F D(z, ε). Indeed, suppose, for the
sake of contradiction, that such a finite set does not exist. Then we can find points z1 ∈ K, z2 ∈
K\D(z1, ε), . . . , zn ∈ K\

⋃n−1
j=1 D(zj , ε), thus forming a sequence {zn}n∈N so that d(zn, zm) ≥ ε for
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all n,m with n ̸= m. This is a contradiction because {zn}n∈N must have a convergent subsequence.
So, there exists the desired finite set.

Using the previous claims, we have that K ⊂
⋃

z∈F D(z, ε) ⊂
⋃

z∈F Uiz , showing that K is
contained in the union of finitely many Ui’s.

Alternatively, compact sets in metric spaces can also be characterized as complete and totally
bounded sets, but we will not cover that criteria in these notes.

We also include the following intersection property for nested compact subsets.

Lemma 2.15. Let {Kn}n≥1 be a sequence of nonempty compact subsets of C such that Kn+1 ⊂ Kn

for all n ∈ N, and so that lim
n→∞

diam(Kn) = 0. Then there exists a unique point z0 ∈ C with

z0 ∈
∞⋂
n=0

Kn.

Proof. Let zn ∈ Kn for every n ∈ N. Given ε > 0 there is n0 ∈ N so that diam(Kn) ≤ ε for all
n ≥ n0. Thus, if m ≥ n ≥ n0, then Km ⊂ Kn, and so

|zn − zm| ≤ diam(Kn) ≤ ε.

This shows that {zn}n is a Cauchy sequence, and so it converges to a point w0 ∈ C, by Exercise
2.2. Also note that for every n ∈ N, we have that {zm}m≥n ⊂ Kn, and since Kn is closed (by
Theorem 2.14, we get that z0 ∈ Kn as well. Thus z0 ∈

⋂∞
n=0Kn. To show that z0 is the unique

such point, suppose that w0 ∈
⋂∞

n=0Kn as well. Then

|w0 − z0| ≤ diam(Kn), for all n ∈ N.

Because lim
n→∞

diam(Kn) = 0, we deduce that w0 = z0.

2.1.5 Limits and Continuity of functions

Our next objective is studying the continuity of functions with complex source and range. We first
define the limits of functions.

Definition 2.16 (Limits of functions). Let A ⊂ C, f : A → C a function, and z0 ∈ A. We say that
w ∈ C is the limit of f as z converges to z0, denoted by lim

z→z0
f(z) = w, if for every ε > 0 there

exists δ > 0 so that

z ∈ A \ {z0}, |z − z0| < δ =⇒ |f(z)− w| < ε.

This is equivalent to saying that f ((D(z0, δ) \ {z0}) ∩A) ⊂ D(w, ε).

Also, we will say that lim
z→z0

f(z) = +∞ if for every M > 0 there exists δ > 0 so that

z ∈ A \ {z0}, |z − z0| < δ =⇒ |f(z)| > M.

In practice, it is often easier to use the following sequential characterization of limits.

Proposition 2.17. Let A ⊂ C, f : A→ C a function, z0 ∈ A, and w ∈ C. The following holds.

(i) lim
z→z0

f(z) = w if and only if for every sequence {zn}n ⊂ A \ {z0} with limn→∞ zn = z0, one

has limn→∞ f(zn) = w.

(ii) lim
z→z0

f(z) = +∞ if and only if for every sequence {zn}n ⊂ A \ {z0} with limn→∞ zn = z0, one

has limn→∞ |f(zn)| = +∞
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(iii) The limit lim
z→z0

f(z) exists if and only if the two limits lim
z→z0

Re(f)(z) and lim
z→z0

Im(f)(z) exist.

Moreover, in such case,

lim
z→z0

f(z) = lim
z→z0

Re(f)(z) + i lim
z→z0

Im(f)(z).

Here we are denoting the real-valued functions Re(f) : A → R, Re(f)(z) = Re(f(z)) and
Im(f) : A→ R, Im(f)(z) = Im(f(z)), for all z ∈ A.

Proof.

(i) Assume lim
z→z0

f(z) = w, and let {zn}n ⊂ A \ {z0} with zn → z0. For every ε > 0, let δ > 0 be so

that 0 < |z − z0| < δ, z ∈ A implies |f(z)−w| < ε. Since zn → z0, we can find n0 ∈ N (depending
on δ) so that 0 < |zn − z0| < δ, whenever n ≥ n0. Therefore, |f(zn)− w| < ε for all n ≥ n0.

Conversely, assume the statement for sequences holds, and suppose, for the sake of contradiction
that lim

z→z0
f(z) ̸= w. This means that there is ε > 0 so that for no choice of δ one has f((D(z0, δ) \

{z0}) ∩ A) ⊂ D(w, ε). Thus, for each n, we can find some zn ∈ (D(z0, 1/n) \ {z0}) ∩ A and
|f(zn) − w| ≥ ε. Clearly limn→∞ zn = z0 and, by the assumption, we have limn→∞ f(zn) = w, a
contradiction.

(ii) The proof is very similar to that of (i).

(iii) This is immediate from statement (i) and Proposition 2.8.

Definition 2.18 (Continuous functions). Let A ⊂ C, f : A → C and z0 ∈ A. We say that f is
continuous at z0 if for every ε > 0 there exists δ > 0 so that

z ∈ A, |z − z0| < δ =⇒ |f(z)− f(z0)| < ε.

This is equivalent to f((D(z0, δ) ∩ A) ⊂ D(f(z0), ε). In other words, f is continuous as z0 if
lim

z→z0, z∈A
f(z) = f(z0).

And if f : A→ C is continuous at every z ∈ A, we say that f is continuous in A.

Remark 2.19. A function f : A → C, with A ⊂ C, is continuous at z0 ∈ A if and only if the
functions Re(f) : A→ R and Im(f) : A→ R are continuous at z0. This is a simple consequence of
Proposition 2.17(iii).

We have several ways to characterize continuity of functions.

Proposition 2.20. Let A ⊂ C, f : A→ C and z0 ∈ A. The following statements are equivalent.

(i) limn→∞ f(zn) = f(z0) for each sequence {zn}n∈N ⊂ A with limn→∞ zn = z0.

(ii) f is continuous at z0.

Concerning continuity of f in all of A, the following statements are equivalent:

(i)’ f is continuous in A.

(ii)’ For every open U ⊂ C, we have f−1(U) = V ∩A for some V ⊂ C open.

(iii)’ For every closed F ⊂ C, we have f−1(F ) = E ∩A for some E ⊂ C closed.

Proof. The first equivalences (i) ⇐⇒ (ii) are immediate from from Proposition 2.17. Let us
verify the equivalences between (i)’, (ii)’ and (iii)’.
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(i)′ =⇒ (ii)′: If z ∈ f−1(U), then f(z) ∈ U and since U is open, we can find εz > 0 so that
D(f(z), εz) ⊂ U. Due to the continuity of f on z, there exists δz > 0 so that f(A ∩ D(z, δz)) ⊂
D(f(z), εz). Therefore A ∩D(z, δz) ⊂ f−1(U), which shows that

f−1(U) =
⋃

z∈f−1(U)

(A ∩D(z, δz)) = A ∩

 ⋃
z∈f−1(U)

D(z, δz)

 .

Defining V :=
⋃

z∈f−1(U)D(z, δz), we prove the assertion.

(ii)′ =⇒ (iii)′: Because C \ F is open, we can write A \ f−1(F ) = f−1(C \ F ) = A ∩ V for
some open set V ⊂ C. Thus

f−1(F ) = A \ (A ∩ V ) = A ∩ (C \ V ),

where C \ V is closed.

(iii)′ =⇒ (i)′: Suppose, for the sake of contradiction, that there is z0 ∈ A so that f is not
continuous at z0. Then, by the (already prove) equivalence (i) =⇒ (ii), we can find a sequence
{zn}n ⊂ A converging to z0 and so that f(zn) ̸→ f(z0). After possibly passing to a subsequence,
this means that there is ε > 0 so that |f(zn) − f(z0)| ≥ ε for each n ∈ N. Now, by (iii)’, we have
that f−1(C \D(f(z0), ε)) = E ∩ A for some closed set E ⊂ C. Clearly f(zn) ∈ C \D(f(z0), ε), so
{zn}n ⊂ f−1(C \D(f(z0), ε)), implying that {zn}n ⊂ E. But E is closed and zn → z0, so z0 ∈ E,
according to Proposition 2.9. Therefore, z0 ∈ E ∩A and hence z0 ∈ f−1(C \D(f(z0), ε)), which is
of course a contradiction.

Proposition 2.20 for A ⊂ C an open set implies that f is continuous on A iff f−1(V ) is an
open subset of A. For A arbitrary, the sets of the form A ∩ V with V ⊂ C open (resp. A ∩ E
with E ⊂ C closed) are called open relative to A (resp. closed relative to A). One has to be very
carefully when studying the continuity of a function over a set, as it strongly depends on the set of
definiton of the function. For instance, the function f : C → C given by f(z) = 1 when Re(z) ̸= 0
and f(z) = 0 when Re(z) = 0 is continuous on the open set C \ {Re(z) = 0}, but is not continuous
at any point of the set A = {z ∈ C : Re(z) = 0}. However, the restriction of f to A, gives a new
function f|A : A→ C that is identically 0 on A, and thus continuous on all of A.

Let us now see expected properties concerning operations with limits and continuity.

Proposition 2.21. Let A ⊂ C, z0 ∈ A, f : A → C, g : C → C so that the limits lim
z→z0

f(z) and

lim
z→z0

g(z) exist. Then

(i) There exists lim
z→z0

(f(z) + g(z)) = lim
z→z0

f(z) + lim
z→z0

g(z).

(ii) There exists lim
z→z0

(f(z) · g(z)) = lim
z→z0

f(z) · lim
z→z0

g(z)

(iii) If lim
z→z0

g(z) ̸= 0 and there exists r > 0 so that g(z) ̸= 0 for every z ∈ D(z0, r)∩A, then there

exists

lim
z→z0

f(z)

g(z)
=

lim
z→z0

f(z)

lim
z→z0

g(z)
.

If we further have z0 ∈ A, and f, g continuous at z0, and another function h : g(A) → C continuous
at g(z0), then

(i)’ f + g is continuous at z0.

(ii)’ f · g is continuous at z0.
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(iii)’ h ◦ g is continuous at z0.

(iv)’ If g(z0) ̸= 0, then f/g is continuous at z0.

Proof. The part concerning the limits is immediate from Propositions 2.8 and 2.17.
For the second part, (i)’ and (ii)’ follow from statements (i) and (ii). Statement (iv)’ also is

a consequence of (iii), because g(z0) actually implies that g(z) ̸= 0 for all z ∈ D(z0, r) ∩ A and
some r > 0, due to the continuity of g at z0. Finally, to prove (iii)’ we can imitate the proof of the
corresponding result for functions R → R.

Example 2.22. Using Remark 2.19 and 2.21, one can easily verify that the following functions are
continuous in the indicated sets:

• The function f : C → C given by f(z) = z is continuous in C.

• The functions f, g : C → C given by f(z) = |z| and g(z) = |z|2 are continuous in C.

• Any polynomial P : C → C, P (z) = a0 + a1z + · · ·+ anz
n is continuous in C.

• The principal argument Arg : C \ {0} → C is continuous in C \ (−∞, 0]; see Definition 1.9.
However, it is not continuous at any point z ∈ (−∞, 0].

• For n ≥ 2, the principal nth root n
√
· : C\{0} → C is continuous in C\(−∞, 0); see Definition

1.16. However, it is not continuous at any point z ∈ (−∞, 0).

Only the principal argument and the nth root cases are non-trivial, but bearing in mind the explicit
formula (1.4.2) and the continuity of arctan : R → (−π/2, π/2), we easily get the continuity of
Arg in C \ (−∞, 0]. To see that Arg is discontinuous at every a ∈ (−∞, 0], consider sequences
zn = a + i

n and wn = a + i
n , for all n ∈ N. Of course zn, wn → a, but formula (1.4.2) says that

lim
n→∞

Arg(zn) = π and lim
n→∞

Arg(wn) = −π, showing that lim
z→a

Arg(z) does not even exist.

Now, recall that n
√
z := n

√
|z|ei

Arg(z)
n for all z ∈ C \ {0} and n

√
0 := 0, according to Definition

1.16. The continuity of Arg in C\{0} gives the continuity of z 7→ n
√
z in C\ (−∞, 0]. Also, because

| n
√
z| = n

√
|z|, clearly lim

z→0
| n
√
z| = 0, showing that also z 7→ n

√
z is continuous at z0 = 0. Now, for

every a ∈ (−∞, 0), consider the sequence

zk := −ae(−π+ 1
k
)i, k ∈ N.

We have that lim
k→∞

zk = −ae−πi = a. However, Arg(a) = −π and Arg(zk) = −π+ 1
k , which implies

n
√
a = n

√
|a|ei

π
n , n

√
zk = n

√
|zk|ei

−π+ 1
k

n −→ n
√
|a|e−iπ

n ̸= n
√
|a|ei

π
n .

This shows that z 7→ n
√
z is discontinuous at a.

Definition 2.23 (Uniform continuity). Let A ⊂ C, and f : A → C. We say that f is uniformly
continuous on A if for every ε > 0 there exists δ > 0 so that

z, w ∈ A, |z − w| < δ =⇒ |f(z)− f(w)| < ε.

Equivalently, f(D(z, δ) ∩A) ⊂ D(f(z), ε) for every z ∈ A.

Note the crucial difference with the mere continuity (Definition 2.18), where the number δ > 0
depends on the point z ∈ A. We can characterize uniform continuity via sequences.

Proposition 2.24. Let A ⊂ C, and f : A→ C. The following statements are equivalent.

(i) f is uniformly continuous on A.



31

(ii) For every couple of sequences {zn}n, {wn}n ⊂ A one has

lim
n

|zn − wn| = 0 =⇒ lim
n

|f(zn)− f(wn)| = 0.

Proof.

(i) =⇒ (ii): Assume that limn |zn − wn| = 0 and let ε > 0, and let δ > 0 the number associated
with ε as in Definition 2.23. If n0 ∈ N is such that |zn − wn| < δ whenever n ≥ n0, then
|f(zn)− f(wn)| < ε for n ≥ n0 as well.

(ii) =⇒ (i): If f is not uniformly continuous on A, then there exists ε > 0 and points zn, wn ∈ A
with |zn − wn| < 1/n and yet |f(zn)− f(wn)| ≥ ε for all n ∈ N. This contradicts (i).

Proposition 2.25. Let K ⊂ C be a compact set, and f : K → C a continuous function. Then,

(i) f(K) is compact.

(ii) There exist sup{|f(z)| : z ∈ K} and inf{|f(z)| : z ∈ K} and are attained in K.

(iii) f is uniformly continuous on K.

Proof. To prove (i), we can use the original Definition 2.13 of compactness. Let {Ui}i∈I a collection
of open subsets of C so that f(K) ⊂

⋃
i∈I Ui. Then K ⊂

⋃
i∈I f

−1(Ui), and, since f is continuous
in K, we can use Proposition 2.20 to obtain open sets Vi ⊂ C so that f−1(Ui) = Vi ∩ K, for all
i ∈ I, and hence

K ⊂
⋃
i∈I

f−1(Ui) ⊂
⋃
i∈I

(K ∩ Vi) ⊂
⋃
i∈I

Vi.

Because K is compact, there exists F ⊂ I finite for which K ⊂
⋃

i∈F Vi. This implies

K ⊂
⋃
i∈F

(K ∩ Vi) =
⋃
i∈F

f−1(Ui).

We conclude that f(K) ⊂
⋃

i∈F Ui.
Onto property (ii), we have that f(K) is bounded, and so the supremum exists. The infimum

exists in any case due to the bound |f(z)| ≥ 0. Denote by S and I the supremum and infimum
respectively. Then S is attained onK because for any sequence (zk)k ⊂ K with limk |f(zk)| = S one
can find a subsequent {znk

}k convergent to z0 ∈ K; thanks to Theorem 2.14. By the continuity of
|f | : C → R (given by z 7→ |f(z)|) one has that S = limk |f(znk

)| = |f(z0)|. An identical argument
shows that I is attained in K.

Let us now prove (iii). Suppose, seeking a contradiction, that f is not uniformly continuous. By
Proposition 2.24, there exists ε > 0 and sequences {zn}n, {wn}n ⊂ K such that |zn−wn| → 0, and
|f(zn)−f(wn)| ≥ ε for all n ∈ N. BecauseK is compact, by Theorem 2.14 we can find subsequences
{znk

}k, {wnk
}k convergent to z ∈ K and w ∈ K respectively. But the fact that |znk

− wnk
| → 0

implies that z = w. By the continuity of f in K and Proposition 2.20, we have that f(znk
) → f(z)

and f(wnk
) → f(z). Therefore |f(znk

)− f(wnk
)| → 0, contradicting that |f(znk

)− f(wnk
)| ≥ ε for

all k.

2.1.6 Connected Sets and Domains

Definition 2.26 (Connected sets, Domains, and Path Connected sets). Let A ⊂ C be a subset.

• We say that a couple of open sets U, V ⊂ C is a separation of A if

1. U ∩ V ∩A = ∅.
2. A ∩ U ̸= ∅ ≠ A ∩ V.
3. A ⊂ U ∪ V.
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• We say that A is connected if there exists no separation of A.

• We say that A is a domain if A is open and connected.

• We say that A is path-connected if for any two points z, w ∈ w there exists a continuous
mapping γ : [a, b] → A, with a < b, a, b ∈ R, so that γ(a) = z and γ(b) = w.

The definition of connectedness for a set A looks a bit technical but it essentially says that A
cannot be decomposed as a non-trivial and disjoint union of two opens relative to A. Conditions
U ∩ V = ∅, A ∩ U ̸= ∅ ̸= A ∩ V merely express the non-triviality of the separations. Path-
connectedness is a bit more intuitive: roughly speaking it says that any two points in A can be
joined by a continuous path within the set A. Here is another perspective to connectedness.

Proposition 2.27. If A ⊂ C, the following statements are equivalent.

(i) A is connected.

(ii) Every set E with ∅ ≠ E ⊂ A that can be written as E = U ∩ A = F ∩ A, for some U ⊂ C
open and F ⊂ C closed, must satisfy E = A.

Proof. Let us begin with (i) =⇒ (ii). Assume that A is connected, and for the sake of contradic-
tion, that E is a set as in (ii) and still E ⊊ A. Putting V := C \ F, we have

∅ ≠ A \ E = (C \ F ) ∩A = V ∩A.

The set V , being the complement of a closed set, is open. It is immediately checked that {U, V }
form a separation of A, a contradiction.

To show (ii) =⇒ (i), assume (ii) and suppose, seeking a contradiction, that A has a separation
{U, V }. If we define E := U ∩ A and F = C \ V, the properties of the separation U ∩ V ∩ A = ∅
and A ⊂ U ∪ V show that E = F ∩ A as well. Because U ∩ A ̸= ∅ ≠ V ∩ A, we have that E ̸= ∅
and A \ E ̸= ∅, contradiction (ii).

Proposition 2.27 is often through which we show that a function f on a domain Ω satisfies
certain pointwise property, say P, at all points of Ω. If f satisfies P at some z0 ∈ Ω, we define

E := {z ∈ Ω : f satisfies property P at the point z}.

Since z0 ∈ E, and Ω ⊂ C is already open (and connected), if we manage to prove that E is open,
and that E = F ∩Ω for some closed set F ⊂ C, Proposition 2.27 tells us that then E = Ω, implying
that f satisfies property P at all z ∈ Ω.

Let us implement this idea to obtain a useful property involving locally constant functions.

Proposition 2.28. Let Ω ⊂ C be a domain, and f : Ω → C continuous such that f is locally constant,
meaning that for every z ∈ Ω there exists ε > 0 with D(z, ε) ⊂ Ω and f constant on D(z, ε). Then
f is constant in Ω.

In particular, if Ω ⊂ C is a domain, f : Ω → C is continuous, and f(Ω)′ = ∅, then f is
constant.

Proof. Fix a point z0 ∈ Ω, and define the set

E = {z ∈ Ω : f(z) = f(z0)}.

Obviously z0 ∈ E ⊂ Ω. Given z ∈ E, there is ε > 0 with D(z, ε) ⊂ Ω and f(w) = f(z) = f(z0)
for all w ∈ D(z, ε). This shows that D(z, ε) ⊂ E, and so E is open. Also, since f is continuous,
f−1({f(z0)}) can be written as f−1({f(z0)}) = F ∩ Ω for a closed subset F ⊂ C, by virtue of
Proposition 2.20. And then clearly E = f−1({f(z0)}) = F ∩ Ω. By Proposition 2.27 and the
connectedness of Ω, we get that E = Ω, showing that f is constant in Ω.
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For the second part, if f(Ω)′ = ∅, then for every z ∈ Ω we can find ε > 0 so that f(Ω) ∩
(D(f(z), ε) \ {f(z)}) = ∅; see the Definition 2.5 of accumulation point. By the continuity of f,
there exists δ > 0 so that

f(D(z, δ)) ⊂ D(f(z), ε);

which, by the previous observation, leads us to f(D(z, δ)) \ {f(z)} = ∅. Thus f is constant on
D(z, δ). By the first part of the present proposition, we conclude that f is constant in Ω.

All path-connected sets are connected. However, there of connected sets in C that are not path-
connected. A prototypical example is the graph of the function (0, 1] ∋ x 7→ sin(1/x) together with
the origin, that is,

A = {(x, sin(1/x)) : x ∈ (0, 1]} ∪ {(0, 0)}.

However, for open sets, the notions of connectedness and path-connectedness are identical.

Proposition 2.29. Let A ⊂ C and f : A→ C be continuous. The following hold.

(i) If A is connected (resp. path-connected), then f(A) is connected (resp. path-connected).

(ii) If A is path-connected, then A is connected.

(iii) If A is a domain, that is, open and connected, then A is path-connected.

Proof.

(i) We begin with the statement concerning connectedness. Suppose that f(A) is not connected.
Then f(A) admits a separation into open sets U, V ⊂ C as in Definition 2.26. By Proposition 2.20,
f−1(U) =W1 ∩A and f−1(V ) =W2 ∩A for open sets W1,W2 ⊂ C. It is straightforward to check
that W1, W2 provide a separation of A, implying that A is not connected.

Now, if A is path-connected, and u, v ∈ f(A) are two points, let z, w ∈ A with f(z) = u and
f(w) = v. Let γ : [a, b] → A a continuous function with γ(a) = z and γ(b) = w. The mapping
g := f ◦ γ : [a, b] → f(A) defines a continuous function with g(a) = u, g(b) = v.

(ii) Assume that A has a separation U, V. In particular we can find points z ∈ U ∩A and w ∈ U ∩V.
By the path-connectedness of A, there is γ : [a, b] → A continuous with γ(a) = z and γ(b) = w.
From Proposition 2.20, γ−1(U) = I ∩ [a, b] and γ−1(V ) = J ∩ [a, b] for open sets I, J ⊂ R. This
contradicts that [a, b] is a connected set of R.

(iii) Fix a point z0 ∈ A, and define

Az0 := {z ∈ A : there exists γ : [a, b] → A continuous with γ(a) = z0, γ(b) = z}.

Clearly, z0 ∈ Az0 because we can take γ as the path constantly equal to z0. We now show that Az0

is open. Indeed, given z ∈ Az0 , let γ1 be joining z0 and z as in the definition of Az0 . Because A
is open, D(z, ε) ⊂ A for some ε > 0. Now, let w ∈ D(z, ε), and let γ2 : [b, b+ 1] → D(z, ε) be the
path defined by γ2(t) = (1 + b− t)z + (t− b)w, for t ∈ [b, b+ 1]. Note that γ2 is just the segment
line that joins z and w, and clearly γ2(t) ∈ D(z, ε) for all t ∈ [b, b + 1]. Concatenating γ1 and γ2,
we obtain a new path γ : [a, b + 1] → A that is continuous and joins z0 and w. This shows that
D(z, ε) ⊂ Az0 , and hence Az0 is open.

Now we show that A \Az0 is open too. Indeed, if z ∈ A \Az0 then D(z, ε) ⊂ A for some ε > 0
because A is open. If there exists w ∈ D(z, ε)∩Az0 , then there is a continuous path γ in A joining
w to z0. But again the concatenation of γ with the segment that joins w to z (this segment is
contained in D(z, ε) and so in A), we obtain a continuous path in A joining z to z0, a contradiction
because z /∈ Az0 . We have shown that D(z, ε) ⊂ A \Az0 , whence A \Az0 is open.

Defining F = A \ Az0 , we have that F ⊂ C is closed and Az0 = F ∩ A. Since A is connected,
Proposition 2.27, we obtain Az0 = A, which shows that any z ∈ A can be joined to z0 by a
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continuous path in A. Now, if z, w ∈ A, let γ1, γ2 : [c, d] → A continuous with γ1(a) = z0,
γ1(b) = z, γ2(a) = z0 and γ2(b) = w. The path γ̃1 : [a, b] → A defined by γ̃1(t) = γ1(b + a − t)
is continuous and satisfies γ̃1(a) = z, γ̃1(b) = z0. We thus concatenate γ̃1 and γ2 to obtain a new
continuous path γ on A joining z and w.

Example 2.30. A very special case of path-connected sets are the convex sets. We say that A ⊂ C
is convex if for any two points z, w ∈ A, the segment joining z, w, i.e., {(1− t)z + tw : t ∈ [0, 1]},
is entirely contained in A.

2.2 Complex differentiability

In Section 2.1.5, we learnt that continuity of functions in C is essentially the same as continuity of
functions in R2 → R2. For instance, we showed in Proposition 2.20, that f : C → C is continuous
at a point z0 ∈ C iff Re(f) : C → R and Im(f) : C → R are continuous at z0. In coordinates, it is
the same as saying that f = (f1, f2) : R2 → R2 is continuous at (x0, y0) ∈ R2 iff f1 : R2 → R and
f2 : R2 → R are continuous at (x0, y0).

This section is devoted to the complex version of differentiability. We remind that a function
g : Ω → Rm defined on an open set Ω ⊂ Rn is said to be differentiable at (x0, y0) ∈ Ω provided
there exists a linear map Dg(x0, y0) : Rn → Rm, called the differential of g at (x0, y0), such that

lim
(x,y)→(x0,y0)

∥g(x, y)− g(x0, y0)−Dg(x0, y0)(x− x0, y − y0)∥
∥(x− x0, y − y0)∥

= 0, (2.2.1)

where we denote by ∥·∥ the Euclidean norm both in Rn and Rm. In the case m = 1, the differential
Dg(x0, y0) is identified with a vector ∇g(x0, y0), called the gradient of g at (x0, y0).

So, if f : Ω ⊂ R2 → R2 is differentiable at (x0, y0), and we write f in components f(x, y) =
(f1(x, y), f2(x, y)), the differential has associated matrix

∂f1
∂x

(x0, y0)
∂f1
∂y

(x0, y0)

∂f2
∂x

(x0, y0)
∂f2
∂y

(x0, y0)

 ;

where ∂f1
∂x ,

∂f1
∂y ,

∂f2
∂x ,

∂f2
∂y are the partial derivatives of f at (x0, y0), namely,

∂f1
∂x

(x0, y0) := lim
t→0

f1(x0 + t, y0)− f1(x0, y0)

t
,

∂f1
∂y

(x0, y0) := lim
t→0

f1(x0, y0 + t)− f1(x0, y0)

t
(2.2.2)

∂f2
∂x

(x0, y0) := lim
t→0

f2(x0 + t, y0)− f2(x0, y0)

t
,

∂f2
∂y

(x0, y0) := lim
t→0

f2(x0, y0 + t)− f2(x0, y0)

t
.

(2.2.3)

We remind that the existence of these partial derivatives does not guarantee the differentiability
(and not even the continuity) of f at (x0, y0).

It is easy to see that the differentiability of f at (x0, y0) is equivalent to both f1, f2 : Ω → R
being differentiable (in the sense of (2.2.1)) at the same point. However, unlike for continuity, the
complex differentiability of f : Ω ⊂ C → C at z0 = x0+iy0 is strictly stronger than saying that both
Re(f) : Ω → C, Im(f) : Ω → R should be real-differentiable at (x0, y0). Complex differentiability
additionally implies that the differential Df(x0, y0) must have associated matrix of the form(

a −b
b a

)
.

We will take care of this in the forthcoming subsection.
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2.2.1 Differentiable and Holomorphic functions

The definition of derivative for a complex function is the natural complex version of real functions.

Definition 2.31 (Complex differentiability). Let Ω ⊂ C an open set, f : Ω → C a function, and
z0 ∈ Ω. We say that f is (complex) differentiable at z0 if the following limit exists (meaning
belonging to C):

lim
z→z0

f(z)− f(z0)

z − z0
.

In such case, we denote this limit by f ′(z0), and call it the derivative of f at z0.

And if f is differentiable at every point of Ω, we then say that f is holomorphic in Ω.

We denote by H(Ω) the collection of all holomorphic functions in Ω.

For functions f : Ω → C, by differentiability we will always understand complex differentiability
in the sense of Definition 2.31.

Example 2.32. Naturally, the function f : C → C given f(z) = z is holomorphic in C, and f ′(z) = 1
for all z ∈ C. A constant function f(z) = w, for all z ∈ C, is also holomorphic with f ′(z) = 0 for
each z ∈ C.

The function f : C\{0} → C given by f(z) = 1/z is holomorphic in C\{0}, with f ′(z) = −1/z2

for all z ̸= 0. Indeed, if z ̸= 0,

f ′(z) = lim
w→z

f(w)− f(z)

w − z
= lim

w→z

1/w − 1/z

w − z
= lim

w→z

−1

wz
=

−1

z2
.

Functions that are not differentiable at any point of C are for example z 7→ z, z 7→ Re(z),
z 7→ Im(z). The reason is that for any z ∈ C, for any w ∈ C \ {0}, one has

w − z

w − z
=
w − z

w − z
,

whose limit as w → z does not exist, because for w = z + t with t ∈ R, the above fraction is
identically 1, while for w = z + it, with t ∈ R, the fraction equals −1. For the same reason,
z 7→ Re(z), z 7→ Im(z) are nowhere differentiable C. Notice that these three functions are of class
C∞(R2,R2) and even R-linear.

Remark 2.33. If f : Ω → C is differentiable at z0 ∈ Ω, then f is continuous at z0. In fact, f is
Lipschitz at z0, meaning that there exist M > 0 and r > 0 so that |f(z)− f(z0)| ≤ M |z − z0| for
all z ∈ D(z0, r).

Proof. Indeed, taking ε = 1 in Definition 2.31, we find some r > 0 so that D(z0, r) ⊂ Ω, and, if
z ∈ D(z0, r) \ {z0}, then ∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ ≤ 1.

The triangle inequality gives, for all z ∈ D(z0, r) :

|f(z)− f(z0)| ≤
(
1 + |f ′(z0)|

)
|z − z0| =M |z − z0|;

where M = 1 + |f ′(z0)|. In particular, this implies that f is continuous at z0.

Proposition 2.34. If Ω ⊂ C is open and f, g : Ω → C are differentiable at z0 ∈ Ω, then:

(i) f + g is differentiable at z0, and (f + g)′(z0) = f ′(z0) + g′(z0).

(ii) fg is differentiable at z0, and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0).
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(iii) If g(z0) ̸= 0, then f/g (defined on a disk D(z0, r) ⊂ Ω) is differentiable at z0, with(
f

g

)′
(z0) =

f ′(z0)g(z0)− g′(z0)f
′(z0)

g(z0)2
.

(iv) (The Chain Rule). If U ⊂ C is open with g(z0) ∈ U, g : Ω → U, and h : U → C is
differentiable at z0, then h ◦ g : Ω → C is differentiable at z0 and

(h ◦ g)′(z0) = h′(g(z0))g
′(z0).

Proof. We can reproduce the arguments of the proofs of the corresponding results for real functions
of one variable.

(i) This is very easy, using simply the definition of complex differentiability.

(ii) It suffices to write

f(z)g(z)− f(z0)g(z0)

z − z0
= g(z)

(
f(z)− f(z0)

z − z0

)
+ f(z0)

(
g(z)− g(z0)

z − z0

)
,

and bearing in mind that lim
z→z0

g(z) = g(z0) (Remark 2.33), the previous expression converges to

f ′(z0)g(z0) + g′(z0)f
′(z0) as z → z0.

(iii) By (ii), it is enough to prove it for f(z) = 1 for all z ∈ Ω. Now, denote h = 1/g, which is well
defined on a disk D(z0, r) because g(z0) ̸= 0 and g is continuous at z0. Then 1 = hg on D(z0, r),
and differentiating at z0 using (ii), we get 0 = h′(z0)g(z0) + h(z0)g

′(z0). Therefore(
1

g

)′
(z0) = h′(z0) =

−h(z0)g′(z0)
g(z0)

=
−g′(z0)
g(z0)2

.

(iv) Given ε > 0, the differentiability of g at z0 gives δ > 0 so that D(z0, δ) ⊂ Ω and

|g(z)− g(z0)− g′(z0)(z − z0)|
|z − z0|

≤ ε

2(1 + |h′(g(z0))|)
, for all z ∈ D(z0, δ) \ {z0}. (2.2.4)

Also, by Remark 2.33, we can find M > 0 and r > 0 (depending only on g and z0) for which

|g(z)− g(z0)| ≤M |z − z0| for all z ∈ D(z0, r) ⊂ Ω. (2.2.5)

And the differentiability of h at g(z0) gives some η > 0 such that

|h(w)−h(g(z0))−h′(g(z0))(w−g(z0))| ≤
ε

2M
|w−g(z0)| for all w ∈ D(g(z0), η)\{g(z0)}. (2.2.6)

So, define δ∗ := min{δ, r, η
M } and let z ∈ D(z0, δ

∗). We simultaneously have (2.2.4), (2.2.5) and
(2.2.6) with w = g(z) (as, by (2.2.6), |g(z) − g(z0)| ≤ M |z − z0| < η). Therefore, we can use all
these estimates to conclude

|h(g(z))− g(h(z0))− h′(g(z0))g
′(z0)(z − z0)|

|z − z0|

≤ |h(g(z))− g(h(z0))− h′(g(z0))(g(z)− g(z0))|
|z − z0|

+
|h′(g(z0)) (g(z)− g(z0)− g′(z0)(z − z0)) |

|z − z0|

≤ ε

2M

|g(z)− g(z0)|
|z − z0|

+ |h′(g(z0))|
ε

2(1 + |h′(g(z0))|)
≤ ε

2
+
ε

2
= ε.

For example, a consequence of Proposition 2.34 is that every function of the form f(z) = zn,
with n ∈ N, is holomorphic in C, with f ′(z) = nzn−1. This, in combination with the Chain Rule,
shows that for n ∈ Z, n < 0, the function f(z) = zn is holomorphic in C \ {0} with derivative
f ′(z) = nzn−1.

Also, every polynomial P : C → C, P (z) = a0 + · · · + anz
n, n ∈ N, is holomorphic in C.

Moreoer, all rational functions f = P/Q with P,Q polynomials, are holomorphic in the open set
{z ∈ C : Q(z) ̸= 0}.
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2.2.2 The Cauchy-Riemann Equations and some consequences

The following theorem characterizes complex differentiability of a function and is a key component
in complex analysis.

Theorem 2.35 (The Cauchy-Riemann Equations). Let Ω ⊂ C an open set, f : Ω → C a function,
and z0 = x0 + iy0 ∈ Ω. Denote u = Re(f) : Ω → R and v = Im(f) : Ω → R. Then, f is
differentiable at z0 if and only if

(a) both u and v are differentiable at (x0, y0) and

(b) the partial derivatives of u, v satisfy the Cauchy–Riemann equations:

(CR) ≡


∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0)

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

(2.2.7)

Moreover, in such case we have

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0). (2.2.8)

Proof. We will prove it by following a chain of equivalences. Looking at Definition 2.31, f being
differentiable at z0 is equivalent to the existence of L ∈ C (which will be f ′(z0)) so that

lim
z→z0

f(z)− f(z0)− L(z − z0)

z − z0
= 0, or, equivalently, lim

z→z0

f(z)− f(z0)− L(z − z0)

|z − z0|
= 0.

(2.2.9)
By Proposition 2.17, that the limit in (2.2.9) equals 0 is equivalent to saying that the limit of
the real and imaginary parts exist and equal 0 as well. Let us find the real and imaginary parts.
Writing z = x+ iy, and using that f = u+ iv, the numerator is

u(x, y) + iv(x, y)− u(x0, y0)− iv(x0, y0)− (Re(L) + i Im(L)) ((x− x0) + i(y − y0)),

whose real and imaginary parts are respectively

u(x, y)− u(x0, y0)− (Re(L)(x− x0)− Im(L)(y − y0)) ,

v(x, y)− v(x0, y0)− (Im(L)(x− x0) + Re(L)(y − y0)) .

Hence, after writing |z− z0| = ∥(x, y)− (x0, y0)∥, (2.2.9) is equivalent to the existence of L ∈ C so
that

lim
(x,y)→(x0,y0)

u(x, y)− u(x0, y0)− (Re(L)(x− x0)− Im(L)(y − y0))

∥(x, y)− (x0, y0)∥
= 0, and

lim
(x,y)→(x0,y0)

v(x, y)− v(x0, y0)− (Im(L)(x− x0) + Re(L)(y − y0))

∥(x, y)− (x0, y0)∥
= 0, for some L ∈ C.

The vectors (Re(L),− Im(L)) and (Im(L),Re(L)) define linear mappings from R2 to R2. So, the
two last equations are equivalent to saying that “there exists some L ∈ C for which

1. u : Ω → R is differentiable at (x0, y0) and

∇u(x0, y0) :=
(
∂u

∂x
(x0, y0),

∂u

∂y
(x0, y0)

)
= (Re(L),− Im(L)). (2.2.10)

2. v : Ω → R is differentiable at (x0, y0) and

∇v(x0, y0) :=
(
∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

)
= (Im(L),Re(L)).” (2.2.11)
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But this is obviously the same as saying that u, v : Ω → R are differentiable at (x0, y0) and

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

We have shown the equivalence of the assertion. Now, observe that if any of the previous equiv-
alent conditions are satisfied, then L = f ′(z0) in our notation, and from (2.2.10)-(2.2.11), we get
Re(f ′(z0)) =

∂u
∂x(x0, y0) =

∂v
∂y (x0, y0) and Im(f ′(z0)) =

∂v
∂y (x0, y0) = −∂u

∂y (x0, y0). We derive

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0).

For instance, the Cauchy-Riemann equations (2.2.7) offer another argument to justify why
f(z) = z is not differentiable at any z ∈ C. Indeed, writing f(x + iy) = x − iy, we have that
u(x, y) := Re(f)(x, y) = x and v(x, y) := Im(f)(x, y) = −y. So u, v : R2 → R are real-differentiable.
However,

∂u

∂x
(x, y) = 1,

∂u

∂y
(x, y) = 0,

∂v

∂x
(x, y) = 0,

∂v

∂y
(x, y) = −1.

So clearly ∂u
∂x(x, y) ̸= ∂v

∂y (x, y), and Theorem 2.35 says that f is not differentiable at any z =
x+ iy ∈ C.

It is important to notice that the real and imaginary parts Re(f) and Im(f) of a function
f : Ω → C may have partial derivatives that satisfy the Cauchy–Riemann equations at a point z0,
and yet f is not even continuous at z0. It is therefore really necessary the hypothesis in Theorem
2.35 that the functions Re(f) : Ω → R, Im(f) : Ω → R are real differentiable at z0. We will
illustrate this by means of Exercise 2.24, using the complex exponential function.

Corollary 2.36. Let Ω ⊂ C be open, and f : Ω → C a function so that the partial derivatives
∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂x exist at every point of Ω, where u = Re(f) and v = Im(f). If ∂u

∂x ,
∂u
∂y ,

∂v
∂x ,

∂v
∂x : Ω → R

are continuous at some z0 ∈ Ω, and satisfy the Cauchy-Riemann equations (2.2.7) at z0, then f is
differentiable at z0.

Proof. Since the partial derivatives of u and v exist in all of Ω and are continuous at z0 = x0+ iy0,
then u, v : Ω → R are differentiable at (x0, y0). Together with the assumption that the partial
derivatives of u and v satisfy the Cauchy-Riemann equations (2.2.7), Theorem 2.35 says that f is
differentiable at z0.

Corollary 2.37. Let Ω ⊂ C be open and connected, and f ∈ H(Ω) with f ′(z) = 0 for all z ∈ Ω.
Then f is constant.

Proof. For each z = x+ iy ∈ U, formulas (2.2.8) and (2.2.7) imply

∂ Re(f)

∂x
(x, y) =

∂ Re(f)

∂y
(x, y) =

∂ Im(f)

∂x
(x, y) =

∂ Im(f)

∂y
(x, y) = 0.

Thus ∇Re(f) and ∇ Im(f) are null on Ω. From differential calculus in R2, the connectedness of Ω
leads to Re(f), Im(f) being constant in Ω, and thus f is constant in Ω as well.

Remark 2.38. Let Ω ⊂ C an open set, f : Ω → C a function (complex) differentiable at z0 =
x0 + iy0 ∈ Ω. As as R2-mapping f : Ω → R2, by Theorem 2.35, is (real) differentiable at (x0, y0)
with differential map Df(x0, y0) : R2 → R2 determined by the matrix

∂ Re(f)

∂x
(x0, y0)

∂ Re(f)

∂y
(x0, y0)

∂ Im(f)

∂x
(x0, y0)

∂ Im(f)

∂y
(x0, y0)

 =


∂ Re(f)

∂x
(x0, y0) −∂ Im(f)

∂x
(x0, y0)

∂ Im(f)

∂x
(x0, y0)

∂ Re(f)

∂x
(x0, y0)

 . (2.2.12)
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In particular, Df(x0, y0) is given by an antisymmetric matrix. Moreover, computing the determi-
nant and looking at formula (2.2.8) we conclude

|f ′(z0)|2 =
(
∂ Re(f)

∂x
(x0, y0)

)2

+

(
∂ Im(f)

∂x
(x0, y0)

)2

= det(Df(x0, y0)). (2.2.13)

2.2.3 The Inverse Function Theorem for Holomorphic maps

The identity (2.2.8) will help us to prove an inverse function theorem for holomorphic functions.

Theorem 2.39 (Inverse Function Theorem). Let Ω ⊂ C an open set, f : Ω → C holomorphic in Ω
with f ′ : Ω → C continuous 1, and z0 ∈ Ω so that f ′(z0) ̸= 0. Then there exists an open set U ⊂ Ω
with z0 ∈ U such that V := f(U) is open, the restriction of f|U : U → f(U) is a bijection, and its
inverse f−1 : V → U is holomorphic in V, with

(f−1)′(w) =
1

f ′(f−1(w))
for all w ∈ V. (2.2.14)

Proof. Since f : Ω → C is holomorphic and f ′ is continuous, by Theorem 2.35 and (2.2.8) we have
that f : Ω ⊂ R2 → R2 (regarded as a function R2 → R2) is real differentiable, with its partial
derivatives continuous in Ω. Thus, f is of class C1(Ω,R2). Write z0 = x0+ iy0. By (2.2.13) and the
assumption f ′(z0) ̸= 0, we have that det(Df(x0, y0)) ̸= 0, meaning that Df(x0, y0) is invertible.
By the Inverse Function Theorem in Rn, there exists an open subset U of Ω containing z0, with
f(U) open and f|U : U → f(U) is a bijection whose inverse f−1 : f(U) → U is also of class
C1(f(U),R2). Moreover, Df(x, y) is invertible for every (x, y) ∈ U and the differential of f−1 at
w ∈ f(U) satisfies

D(f−1)(w) =
(
Df(f−1(w))

)−1
. (2.2.15)

Let us check that f−1 : f(U) → C is holomorphic in f(U) and prove (2.2.14). Let w ∈ f(U) and
z ∈ U with f(z) = w. By (2.2.15), Df(z) is invertible, and by (2.2.13) we get f ′(z) ̸= 0. Thus,
considering the limit of the inverse, given ε > 0 there exists δ > so that 0 < |u − z| < δ, u ∈ U,
implies ∣∣∣∣ u− z

f(u)− f(z)
− 1

f ′(z)

∣∣∣∣ < ε. (2.2.16)

Now, by the continuity of f−1 on f(U), there exists η > 0 so that |ξ−w| < η, ξ ∈ f(U), implies
|f−1(ξ)− f−1(w)| < δ. We can thus apply (2.2.16) with f−1(ξ) in place of u to obtain∣∣∣∣f−1(ξ)− f−1(w)

ξ − w
− 1

f ′(z)

∣∣∣∣ < ε.

The argument we used in the proof of Theorem 2.39 to calculate the derivative of an inverse
function will be reproduced when establishing the definition of holomorphic roots, logarithmic and
power functions; see Subsection 2.4.3.

2.3 Conformal and Harmonic maps

There are two fundamental classes of real mappings that are closely related to holomorphic func-
tions: the conformal mappings, and the harmonic functions.

We begin by study the conformal maps, for which we first need to understand the differentiation
of curves in the complex plane.

1We will see later that holomorphic functions are of class C∞, and so the assumption that f ′ is continuous can
be done away with.
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Definition 2.40. If a, b ∈ R with a < b, we say that a curve γ : (a, b) → C is differentiable at
t0 ∈ (a, b) if its real and imaginary parts Re(γ), Im(γ) : (a, b) → R are differentiable at t0. And in
this case, we define

γ′(t0) = Re(γ)′(t0) + i Im(γ)′(t0) ≡
(
Re(γ)′(t0), Im(γ)′(t0)

)
.

Similarly, we say that γ is of class C1 ((a, b)) , provided Re(γ), Im(γ) : (a, b) → R are of class
C1 ((a, b)) .

We remind that if Ω ⊂ Rn is open, a function h : Ω → Rm is of class Ck(Ω) if h has partial
derivatives up to order k at every point of Ω, and those partial derivatives are continuous in Ω.

Lemma 2.41. Let Ω ⊂ C be open, f : Ω → C differentiable at z0 ∈ Ω and γ : (−ε, ε) → Ω is
differentiable at 0 with γ(0) = z0. Then f ◦ γ : (−ε, ε) → C is differentiable at z0 = x0 + iy0, with

(f ◦ γ)′(0) = f ′(z0) · γ′(0) = Df(x0, y0)γ
′(0);

where the first product is between complex numbers, and the second as a matrix and a vector.

Proof. If z0 = x0 + iy0, by Theorem 2.35, f : Ω ⊂ R2 → R2 is real differentiable at (x0, y0).
Regarding γ : (−ε, ε) → Ω as a real-valued curve, we can apply the Chain Rule for differentiable
real-valued maps to deduce that f ◦ γ is differentiable at 0 with

(f ◦ γ)′(0) = Df(γ(0))γ′(0) = Df(x0, y0)γ
′(0).

But the Cauchy-Riemann equations (2.2.7) for f at z0 imply that

Df(z0)γ
′(0) =

∂ Re(f)
∂x (x0, y0) −∂ Im(f)

∂x (x0, y0)

∂ Im(f)
∂x (x0, y0)

∂ Re(f)
∂x (x0, y0)

 ·

Re(γ)′(0)

Im(γ)′(0)



=

Re(γ)′(0)∂ Re(f)
∂x (x0, y0)− Im(γ)′(0)∂ Im(f)

∂x (x0, y0)

Re(γ)′(0)∂ Im(f)
∂x (x0, y0) + Im(γ)′(0)∂ Re(f)

∂x (x0, y0).


Recall that f ′(z0) =

∂ Re(f)
∂x (x0, y0) + i∂ Im(f)

∂x (x0, y0) by (2.2.8), and so the components of the last
vector are respectively the real and imaginary part of the complex product f ′(z0) · γ′(0).

We define conformal maps as those real differentiable maps that preserves angles and orienti-
ation.

Definition 2.42 (Conformal Map). Let Ω ⊂ R2 be open, z0 ∈ Ω, and f : Ω → R2 real-differentiable
at z0. We say that f is orientation-preserving at z0 if det(Df(z0)) > 0.

Also, we say that f is angle-preserving at z0 if for any two C1 curves γ1, γ2 : (−ε, ε) → Ω
with γ1(0) = γ2(0) = z0 and γ′1(0) ̸= 0 ̸= γ′2(0), one has that (f ◦ γ1)′(0) ̸= 0 ̸= (f ◦ γ2)′(0) and

⟨(f ◦ γ1)′(0), (f ◦ γ2)′(0)⟩
|(f ◦ γ1)′(0)||(f ◦ γ2)′(0)|

=
⟨γ′1(0), γ′2(0)⟩
|γ′1(0)||γ′2(0)|

.

Here ⟨u, v⟩ denotes the dot product between u, v ∈ R2, namely, if u = (u1, u2) and v = (v1, v2),
then ⟨u, v⟩ = u1v1 + u2v2.

Finally, we say that f is conformal at z0 if f is both angle-preserving and orientation-
preserving. And if f is conformal at each z0 ∈ Ω, we then say that f is conformal in Ω.
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Note that if u, v ∈ R2 are non-zero vectors, we can write

cos θ =
⟨u, v⟩
∥u∥∥v∥

;

where θ ∈ [0, π] is the angle between u and v, and ∥u∥, ∥v∥ are the Euclidean norms of u and
v. The angle-preserving along with orientation-preserving can alternatively be described using
the argument Arg : C \ {0} → (−π, π]. Namely, if f,Ω, z0 are as in Definition 2.42, then f is
both angle and orientation-preserving if for any two curves γ1, γ2 as in Definition 2.42, one has
(f ◦ γ1)′(0) ̸= 0 ̸= (f ◦ γ2)′(0) and

Arg
(
(f ◦ γ1)′(0) · (f ◦ γ2)′(0)

)
= Arg

(
γ′1(0) · γ′2(0)

)
.

We next show that conformal mappings are precisely the holomorphic functions with non-zero
derivatives.

Theorem 2.43. Let Ω ⊂ C be open, z0 ∈ Ω, and f : Ω → R2 a function. Then, the following are
equivalent.

(i) f is (complex) differentiable at z0 with f ′(z0) ̸= 0.

(ii) f is conformal at z0.

Proof.

(i) =⇒ (ii). Then f is real-differentiable withDf(z0) having associated matrix of the form

(
a −b
b a

)
,

for a, b ∈ R, and f ′(z0) = a + bi. Since f ′(z0) ̸= 0, we have that a or b are non-zero, and so
det(Df(z0)) = a2 + b2 > 0. Thus f is orientation-preserving at z0. To check that f is angle-
preserving, let γ1 and γ2 be as in Definition 2.42. Since f ′(z0) ̸= 0, Lemma 2.41 implies that
also

(f ◦ γj)′(0) = f ′(z0)γ
′
j(0) ̸= 0,

for j = 1, 2. Now, if A :=

(
a −b
b a

)
is the matrix above, then clearly AtA = (a2 + b2)I, where I

denotes the identity map. Thus, using Lemma 2.41, we get

⟨(f ◦ γ1)′(0), (f ◦ γ2)′(0)⟩ = ⟨A · γ′1(0), A · γ′2(0)⟩ = (A · γ′1(0))t(A · γ′2(0))

=
(
γ′1(0)

)t
AtAγ′2(0) = (a2 + b2)⟨γ′1(0), γ′2(0)⟩ = |f ′(z0)|2⟨γ′1(0), γ′2(0)⟩;

where we used formula (2.2.8) in the last identity. And again using Lemma 2.41, we have that
(f ◦ γj)′(0) = f ′(z0)γ

′
j(0), from which we deduce

⟨(f ◦ γ1)′(0), (f ◦ γ2)′(0)⟩
|(f ◦ γ1)′(0)||(f ◦ γ2)′(0)|

=
|f ′(z0)|2⟨γ′1(0), γ′2(0)⟩
|f ′(z0)|2|γ′1(0)||γ′2(0)|

=
⟨γ′1(0), γ′2(0)⟩
|γ′1(0)||γ′2(0)|

.

(ii) =⇒ (i). Assume, without loss of generality, that z0 = 0. Let

(
a c
b d

)
be the matrix associated

with Df(0), which has positive determinant, as f is orientation-preserving. Define, for each θ ∈ R,
the curve γθ(t) = t(cos θ, sin θ) = teiθ, for all t ∈ R. Clearly γ′θ(0) ̸= 0, and, employing the Chain
Rule for real-differentiable functions, we get

(f ◦ γθ)′(0) = Df(0)γ′θ(0) ̸= 0,

for all θ ∈ R. Now, since f is angle-preserving, we have

⟨Df(0)γ′0(0), Df(0)γ′θ(0)⟩
|Df(0)γ′0(0)||Df(0)γ′θ(0)|

=
⟨γ′0(0), γ′θ(0)⟩
|γ′0(0)||γ′θ(0)|

,
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which means that

⟨(a, b), (a cos θ + c sin θ, b cos θ + d sin θ)⟩√
a2 + b2

√
(a cos θ + c sin θ)2 + (b cos θ + d sin θ)2

= cos θ.

Computing the terms above, we get that

(a2 + b2) cos θ + (ac+ bd) sin θ =

= cos θ
√
a2 + b2

√
(a2 + b2) cos2 θ + (c2 + d2) sin2 θ + 2 sin θ cos θ(ac+ bd), (2.3.1)

for all θ ∈ R. Letting θ = π/2 in (2.3.1) implies ac+ bd = 0. So, for all θ ∈ R, (2.3.1) becomes

(a2 + b2) cos θ = cos θ
√
a2 + b2

√
(a2 + b2) cos2 θ + (c2 + d2) sin2 θ. (2.3.2)

Now we take θ = π/4 in (2.3.2) and use that cos2 θ = sin2 θ = 1
2 to derive:

a2 + b2 =
1

2
(a2 + b2) +

1

2
(c2 + d2), and so a2 + b2 = c2 + d2.

We have deduced the relations a2 + b2 = c2 + d2 and ac + bd = 0. But note that this implies
a2 + 2aci− c2 = d2 − 2bdi− b2, which in turn yields

(a+ ci)2 = (d− bi)2.

Thus (a + ci + d − ib)(a + ci − d + ib) = 0, so we get that either a = d and c = −b, or a = −d

and b = c. But the latter gives the matrix

(
a b
b −a

)
, whose determinant is −a2 − b2 > 0, a

contradiction. Therefore, we must have a = d and c = −b, and so the partial derivatives of f at z0
satisfy the Cauchy-Riemann equations; see (2.2.7). By Theorem 2.35, f is complex differentiable
at z0. Moreover, in our notation, and by virtue of (2.2.8), we deduce

f ′(z0) = a+ ib ̸= 0,

as a2 + b2 = det(Df(z0)) > 0.

Now we consider the class of harmonic functions. We begin by defining those that are real-
valued, essentially as those functions that satisfy the Laplace Equation.

Definition 2.44 (Real Harmonic Function). Let Ω ⊂ R2 be open and u : Ω → R a function of class
C2(Ω). We say that u is harmonic if u satisfies the Laplace Equation:

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0 on Ω. (2.3.3)

By saying that u ∈ C2(Ω) we of course mean that u has partial derivatives up to order two,
and are continuous in Ω.

For example, the function f : R2 → R2 defined by f(x, y) = x2 − y2 is harmonic, but g : R2 →
R2, g(x, y) = x2 + y2 is not.

It turns out that the Cauchy Riemann-Equations imply that the real and imaginary parts of
holomorphic functions are harmonic.

Proposition 2.45. Let Ω ⊂ C be open and f : Ω → C holomorphic such that Re(f), Im(f) : Ω → R2

are of class C2(Ω) 2. Then Re(f) and Im(f) are harmonic in Ω.

2We will see in Chapter 4 that this assumption is redundant, as holomorphic maps are of class C∞.
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Proof. By the Schwarz’s theorem on the mixed partial derivatives, one has, at every (x, y) ∈ Ω,

∂

∂x

(
∂ Im(f)

∂y

)
(x, y) =

∂

∂y

(
∂ Im(f)

∂x

)
(x, y).

But applying the Cauchy-Riemman equations (2.2.7) to the partial derivatives between brackets,
we get

∂2Re(f)

∂x2
(x, y) =

∂

∂x

(
∂ Re(f)

∂x

)
(x, y) = − ∂

∂y

(
∂ Re(f)

∂y

)
(x, y) = −∂

2Re(f)

∂y2
(x, y).

Thus Re(f) satisfies (2.3.3). Similarly, we get that Im(f) is harmonic.

Proposition 2.45 motives the following definition.

Definition 2.46. Let Ω ⊂ C be open and let u : Ω → R be a harmonic function. We say that
v : Ω → R2 is a harmonic conjugate of u if the function u+ iv is holomorphic in Ω.

If Ω is open and connected, the harmonic conjugates are unique up to an additive constant; see
Exercise 2.20. It is possible to show that on domains Ω that are simply connected, every harmonic
function has a harmonic conjugate.

One can also define harmonicity for complex-valued functions, as those functions whose real
and imaginary parts are (real) harmonic.

Definition 2.47 (Complex Harmonic Function). Let Ω ⊂ C be open and f : Ω → C a function of
class C2(Ω). We say that f is harmonic if both Re(f), Im(f) : Ω → R are harmonic in Ω; in the
sense of Definition 2.44.

Looking at Proposition 2.45 and Definition 2.47, we deduce that, for f : Ω → C with Ω ⊂ C
open and f ∈ C2(Ω), then

f is holomorphic =⇒ f is harmonic.

The converse is clearly not true, for instance, the function f(z) = Re(z), z ∈ C, defines a harmonic
function that is not (complex) differentiable at any point.

2.4 Elementary functions

This section is devoted to defining the complex analogous of elementary real functions such as
exponentials, trigonometric functions, logarithms and power functions, and examine some of their
properties. In particular, we see how these functions are holomorphic in appropriate domains,
using either the Cauchy-Riemann equations (2.2.7), or some of the ideas from the Inverse Function
Theorem 2.39.

2.4.1 The Complex Exponential Function

Let us now get back to formula (1.5.1) in Section 1.1, where we defined an exponential function in
the axis iR by setting eiθ = cos θ + i sin θ for all θ ∈ R, and examined some of its properties; see
(1.5.2) and (1.5.3). We extend this function to the whole complex plane, in a very natural way.

Definition 2.48 (Complex exponential function). We define the complex exponential function
C ∋ z 7→ ez by the formula

C ∋ z = x+ iy 7→ ez := ex · eiy = ex (cos y + i sin y) .

In other words, ez := eRe(z)ei Im(z).
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This function coincides with the real exponential x 7→ ex when z ∈ R. Also, note that

|ez| = eRe(z), z ∈ C. (2.4.1)

More fundamental properties are collected in the following theorem.

Theorem 2.49. The complex exponential function has the following properties.

(i) z 7→ ez is holomorphic in C with derivative equal to ez for all z ∈ C.

(ii) ez+w = ezew for all z, w ∈ C.

(iii) ez ̸= 0 and (ez)−1 = e−z for all z ∈ C.

(iv) For each n ∈ Z and z ∈ C, we have (ez)n = enz.

(v) The mapping z 7→ ez, C → C\{0} is surjective. Moreover, for each w ∈ C\{0}, the solutions
z ∈ C of the equation ez = w are

log |w|+ i arg(w) := {log |w|+ iθ : θ ∈ arg(w)} = {log |w|+ i (Arg(w) + 2kπ) : k ∈ Z}

(vi) ez = ew if and only if z − w = 2kπi for some k ∈ Z. In particular, ez = 1 if and only if
z = 2kπi for some k ∈ Z.

(vii) For each a ∈ R, define Sa := {z ∈ C : Im(z) ∈ (a − π, a + π]}. The mapping z 7→ ez is a
bijection Sa → C \ {0}.

Proof.

(i) The real and imaginary parts of the exponential function are respectively R2 ∋ (x, y) 7→ u(x, y) =
ex cos y and R2 ∋ (x, y) 7→ v(x, y) = ex sin y. These functions are differentiable in R2, and their
partial derivatives are

∂u

∂x
(x, y) = ex cos y,

∂u

∂y
(x, y) = −ex sin y, ∂v

∂x
(x, y) = ex sin y,

∂v

∂y
(x, y) = ex cos y.

The Cauchy Riemann equations (2.2.7) are satisfied for u, v, and hence z 7→ ez ∈ H(C).
(ii) Write z = a+ ib and w = c+ id, for a, b, c, d ∈ R. We use Definition 2.48 and formula (1.5.2):

ez+w = e(a+c)+i(b+d) = ea+cei(b+d) = ea+ceibeid = eaeceibeid = (eaeib)(eceid) = ezew.

(iii) Since either cos y ̸= 0 or sin y ̸= 0 for all y ∈ R, it is clear that ez ̸= 0 for all z ∈ C. About the
inverse, we use (ii) to write

eze−z = e0 = 1 =⇒ (ez)−1 = e−z.

(iv) It is a consequence of (ii) and (iii).

(v) If w ∈ C \ {0}, by Theorem 1.8, we can write w = |w|eiθ = elog |w|eiθ for all θ ∈ arg(w). Writing
z = x+ iy we have that ez = w if and only if

ex cos y = elog |w| cos θ, ex sin y = elog |w| sin θ.

Thus ez = w if and only if z = log |w|+ iθ for θ ∈ arg(w). The last identity is just Lemma 1.10.

(vi) ez = 1 if and only if ex(cos y + i sin y) = 1. This is equivalent to sin y = 0 and ex cos y = 1, in
turn equivalent to x = 0, y ∈ 2πZ. This shows that ez = 1 if and only if z ∈ 2πiZ.

Now, ez = ew if and only if ez−w = 1 (by (ii) and (iii)). By what we have just proved
z − w ∈ 2πiZ.

(vii) The injectivity follows from (vi), because z, w ∈ Sa and z − w ∈ 2πiZ imply z = w. And
for the surjectivity, given w ∈ C \ {0}, we saw in (v) that ez = w if z = log |w| + iα for every
α ∈ arg(w). Choosing α ∈ arg(w) so that α ∈ (a − π, a + π), we get that z∗ := log |w| + iα ∈ Sa
and ez

∗
= w.
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2.4.2 Complex Trigonometric and Hyperbolic Functions

We continue defining extensions of the trigonometric and hyperbolic real functions based on the
complex exponential.

Definition 2.50 (Trigonometric complex functions). The complex cosine and sine are the func-
tions C ∋ z 7→ cos z, sin z defined by

cos z :=
eiz + e−iz

2
, sin z :=

eiz − e−iz

2i
. (2.4.2)

We also define the tangent z 7→ tan z, the cosecant z 7→ csc z, the secant z 7→ sec z, and the
cotangent z 7→ cot z by

tan z :=
sin z

cos z
, csc z :=

1

sin z
, sec z :=

1

cos z
, cot z :=

cos z

sin z
.

These functions are of course defined at those points where the denominators are nonzero.

For real numbers θ ∈ R, the functions cos z and sin z agree with their real analogous, since by
expression (1.2.1) and property (1.5.3), we have

eiθ + e−iθ

2
= Re(eiθ) = cos θ and

eiθ − e−iθ

2i
= Im(eiθ) = sin θ.

Proposition 2.51. The functions z 7→ cos z, sin z satisfy the following properties.

(i) z 7→ cos z, sin z are holomorphic in C with (cos z)′ = − sin z and (sin z)′ = cos z for all z ∈ C.

(ii) z 7→ cos z, sin z, C 7→ C are surjective.

(iii) cos(z) = cos(−z), sin(−z) = − sin z, and cos z = sin(z + π
2 ) for all z ∈ C.

(iv) cos2 z + sin2 z = 1 for all z ∈ C.

(v) For all z, w ∈ C, we have

sin(z + w) = sin z cosw + cos z sinw, cos(z + w) = cos z cosw − sin z sinw.

Proof.

(i) By the definition (2.4.2), this follows from the fact that z 7→ ez is holomorphic in C.

(ii) Let w ∈ C \ {0}. The equality cos z = w is equivalent to ξ+ ξ−1 = 2w, for ξ = eiz. By Theorem
2.49, the exponential is surjective onto C \ {0}, so proving the existence of z so that cos z = w is
equivalent to proving the existence of ξ ∈ C \ {0} such that ξ+ ξ−1 = 2w. But this equation is the
same as ξ2 − 2wξ+1 = 0, which naturally has solutions on ξ ∈ C \ {0}. And when w = 0, we have
cos(π/2) = w.

The proof of the surjectivity of sin z is almost identical.

(iii) The first two identities are immediate from (2.4.2). For the third one, use that ei
π
2 = i,

e−iπ
2 = −i.

(iv) and (v) They are easily verified, using the properties of the exponential; see Theorem 2.49.

An obvious warning is that, unlike for real numbers, the estimates | cos z|, | sin z| ≤ 1 are not
true in general.
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Definition 2.52 (Hyperbolic functions). The hyperbolic cosine and sine are the functions C ∋
z 7→ cosh z, sinh z defined by

cosh z :=
ez + e−z

2
, sinh z :=

ez − e−z

2
. (2.4.3)

We can also define the hyperbolic tangent z 7→ tanh z as

tanh z :=
sinh z

cosh z
, z ∈ {w ∈ C : cosw ̸= 0}.

Clearly cosh(iz) = cos z and sinh(iz) = i sin z. The functions z 7→ cosh z, sinh z are holomorphic
in C, with (cosh z)′ = sinh z and (sinh z)′ = cosh z. We will derive further relationships in the
exercises; Section 2.5.

2.4.3 Holomorphic Roots, Logarithms, and Power Functions

Defining the complex versions of the nth roots, the logarithmic and the power functions is more
delicate than a simple formula, especially if we want those functions to be holomorphic. In order to
get these functions defined with holomorphicity in as many points as possible, instead of considering
a single function, we need to consider branches of these functions. The key step is to understand
the structure of the branches of the argument.

Definition 2.53. A branch of the argument in a set E ⊂ C \ {0} is any continuous function
α : E → R with α(z) ∈ arg(z) for all z ∈ E.

According to Example 2.22, the principal argument Arg : C \ (−∞, 0] → R is a branch of the
argument in E = C \ (−∞, 0].

It turns out that two branches of the argument in the same domain differ by an integer multiple
of 2π. Also, for every half-line from the origin, we can find a branch of the argument which is
continuous on the complement of that half-line. This is shown in the following proposition.

Proposition 2.54. Let Ω ⊂ C \ {0} be a domain, and α1, α2 : Ω → R be two branches of the
argument. Then there exists k ∈ Z so that α1(z) = α2(z) + 2kπ for all z ∈ Ω.

Besides, for every v ∈ R2 \ {(0, 0)}, for the half-line ℓv = {λv : λ ≥ 0}, there is a branch
αv : C \ ℓv → R of the argument in the domain C \ ℓv.

Proof. For each w ∈ Ω, we can apply Lemma 1.10 to obtain α1(w) − α2(w) = 2πn(w), for some
n(w) ∈ Z. The continuity of α1 − α2 in Ω implies that for every w ∈ Ω there is ε > 0 such that
D(w, ε) ⊂ Ω and

α1(z)− α2(z) = 2πn(w), for all z ∈ D(w, ε).

Therefore, α1 − α2 is continuous and locally constant in the domain Ω. By Proposition 2.28, we
get that α1 − α2 is equal to a constant of the form 2πn, with n ∈ Z. This proves the first part.

And if v ∈ R2, ∥v∥ = 1, we write that v = eiθ for θ = Arg(v) ∈ (−π, π]. If θ = π, then
ℓv = (−∞, 0] and we simply set αv := Arg . And if θ ∈ (−π, π), we define αv : C \ ℓv → R by

αv(z) =

{
Arg(z) if Arg(z) ∈ (−π, θ]
Arg(z)− 2π if Arg(z) ∈ (θ, π].

Since Arg is continuous in C \
(
Arg−1({π}) ∪ {0}

)
, it is clear that αv is continuous in C \(

Arg−1({θ}) ∪ {0}
)
, and naturally ℓv = {0} ∪Arg−1({θ}).

We next define the branches of nth roots as continuous right-inverses of the function z 7→ zn.

Definition 2.55. If n ∈ N, with n ≥ 2, and E ⊂ C is a set, a branch of the nth root in E is a
continuous function h : E → C so that (h(w))n = w for all w ∈ E. That is, h(w) ∈ ⟨ n

√
w ⟩ for all

w ∈ E; see Definition 1.14.
According to Example 2.22, the Principal nth root n

√
· : C \ (−∞, 0) → C is a branch of the nth

root in the set C \ (−∞, 0).
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Some observations on the branches of nth roots are in order.

Remark 2.56. If Ω ⊂ C is a domain so that there is a branch α : Ω → R of the argument, n ≥ 2,
and h1, h2 : Ω → C are two branches of the nth rooth in Ω, then there exists an nth rooth of unity
ξ ∈ ⟨ n

√
1 ⟩ so that h1(w) = ξ · h2(w) for all w ∈ Ω.

Indeed, by Theorem 1.15 and because α(z) ∈ arg(z) for all z ∈ Ω, we can write

h1(w) =
n
√
|w|e

iα(w)
n e

2πk1(w)
n

i, h2(w) =
n
√

|w|e
iα(w)

n e
2πk2(w)

n
i

for all w ∈ Ω \ {0} and for functions k1, k2 : Ω → Z. Because the functions Ω ∋ w 7→
h1(w), h2(w),

n
√

|w|, e
iα(w)

n are continuous, so are the functions

Ω ∋ z 7→ φ1(w) := e
2πk1(w)

n
i, φ2(w) := e

2πk2(w)
n

i.

But note that φ1, φ1 : Ω → ⟨ n
√
1 ⟩ take values on the finite set ⟨ n

√
1 ⟩. By Proposition 2.28, we get

that φ1 and φ2 are constantly equal to roots of unity ξ1, ξ2 ∈ ⟨ n
√
1 ⟩. Letting ξ = ξ2/ξ1, we conclude

that ξ ∈ ⟨ n
√
1 ⟩ and

h1(w) = ξ · h2(w), w ∈ Ω.

Proposition 2.54 also says that there is a branch hv : C \ ℓv → R of the nth root in the half-line
ℓv, for all v ∈ R2.

Using some arguments from the proof of the Inverse Function Theorem 2.39, we can prove a
general lemma about holomorphicity of branches of the inverse of a given function f.

Lemma 2.57. Let U, V ⊂ C be open sets, f : U → C a function, and h : V → C be a continuous
function with h(V ) ⊂ U and f(h(w)) = w for all w ∈ V. Then, if w0 ∈ V is so that f is
differentiable at h(w0) with f

′(h(w0)) ̸= 0, then h is differentiable at w0, and

h′(w0) =
1

f ′(h(w0))
.

Proof. Define z0 := h(w0) ∈ h(V ) ⊂ U . By assumption f ′(z0) ̸= 0, and so, employing Exercise 2.9
and the Definition 2.31 of complex derivative, we find δ > 0 so that D(z0, δ) ⊂ U , f(z) ̸= f(z0) for
all z ∈ D(z0, δ), and ∣∣∣∣ z − z0

f(z)− f(z0)
− 1

f ′(z0)

∣∣∣∣ ≤ ε, whenever z ∈ D(z0, δ). (2.4.4)

Now, by the continuity of h, there exists η > 0 such that D(w0, η) ⊂ V and w ∈ D(z0, η)
implies |h(w) − h(w0)| < δ. For those w ∈ D(w0, η), we have that h(w) ∈ U , f(h(w)) = w, and
|h(w)− z0| < δ. Hence, (2.4.4) yields∣∣∣∣h(w)− h(w0)

w − w0
− 1

f ′(h(w0))

∣∣∣∣ = ∣∣∣∣ h(w)− z0
f(h(w))− f(z0)

− 1

f ′(h(w0))

∣∣∣∣ ≤ ε.

As a corollary, every branch of the nth root in a domain is holomorphic.

Theorem 2.58. Let Ω be a domain with 0 /∈ Ω, let n ∈ N with n ≥ 2, and h : Ω → R a branch of
the nth root in Ω. Then h ∈ H(Ω) and

h′(w) =
1

n(h(w))n−1
, w ∈ Ω. (2.4.5)

In particular, the Principal nth Root n
√
· : C \ (−∞, 0] → C is holomorphic in C \ (−∞, 0] and its

derivative is given by

( n
√
·)′(w) = 1

n( n
√
w)n−1

, w ∈ C \ (−∞, 0]. (2.4.6)
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Proof. It suffices to apply Lemma 2.57 with U = C, V = Ω and f : U → C the function f(z) = zn.
Since h is a branch of the nth root in Ω, one has f(h(w)) = (h(w))n = w and f ′(h(w)) =
n (h(w))n−1 ̸= 0 for all w ∈ Ω.

Let us examine a couple of branches of holomorphic square roots.

Example 2.59. By Theorem 2.58, the principal branch of the square root
√
· : C \ (−∞, 0] → C is

holomorphic in the domain C \ (−∞, 0] with

(
√
·)′(z) = 1

2
√
z
, z ∈ C \ (−∞, 0].

However, we may be interested in defining a square root function that is differentiable at some
points of the half line (−∞, 0]. Then we can for example consider v = (1, 0) ∈ R2, which gives ℓv =
[0,+∞) and the branch hv : C\ [0,+∞) → C of the square root; see Remark 2.56 for the existence
of such branch. By Theorem 2.58, hv is holomorphic in C \ [0,+∞) and h′v(w) = (2hv(w))

−1 for
all w ∈ C \ [0,+∞). In particular, we have defined a holomorphic square root that is holomorphic
at all w with Re(w) < 0.

No branch of the square root is differentiable at 0, but we can define a branch that is differen-
tiable at all points of {z ∈ C \ {0} : Re(z) · Im(z) = 0}. For example, taking v = (1, 1), combining
Remark 2.56 and Theorem 2.58, we get a holomorphic branch of the square root in C \ ℓv; where
ℓv = {z ∈ C : Re(z) = Im(z) ≥ 0}.

In the same spirit as in the definition of holomorphic nth roots, we define the complex logarithms
based on branches. We want the logarithm to behave as an inverse of the exponential z 7→ ez.

Definition 2.60 (Logarithms). Let z ∈ C \ {0}. A logarithm of z is any w ∈ C with ew = z. The
logarithm of z, denoted by ⟨log z⟩, is the set of all logarithms of z. By Theorem 2.49(v),

⟨log z⟩ = {log |z|+ iθ : θ ∈ arg(z)} = {log |z|+ i (Arg(z) + 2kπ) : k ∈ Z}. (2.4.7)

The principal logarithm is the function C \ {0} ∋ z 7→ Log z given by

Log z := log |z|+ iArg(z), z ∈ C \ {0}. (2.4.8)

Clearly, ⟨log z⟩ = {Log z + 2πik : k ∈ Z} and Log x = log |x| for all x ∈ R \ {0}.
Finally, if E ⊂ C\{0}, a branch of the logarithm in E is any continuous function h : E → C

with eh(w) = w for all w ∈ E. In other words, h(w) ∈ ⟨logw⟩ for all w ∈ E.

For example, for z = i, the logarithm of z is the set

⟨log(i)⟩ = {log |i|+ i (Arg(i) + 2kπ) : k ∈ Z} = {i
(π
2
+ 2kπ

)
: k ∈ Z}.

The principal logarithm of i is the complex number Log(i) = iπ2 .

Unlike for real numbers, in general it is not true that Log(z1z2) = Log(z1) + Log(z2). This can
be seen, as in the comment subsequent to Corollary 1.12, with z1 = z2 = −i, where Log(z1z2) =
Log(−1) = iArg(−1) = πi and Log(z1) = Log(z2) = iArg(−i) = −π

2 i. This example also shows
that, sometimes, Log(z2) ̸= 2Log z.

Nonetheless, this type of property holds to some extent for the set of all logarithms.

Proposition 2.61. Let z1, z2 ∈ C \ {0}. Then

⟨log(z1z2)⟩ = ⟨log z1⟩+ ⟨log z2⟩ := {w1 + w2 : w1 ∈ ⟨log z1⟩, w2 ∈ ⟨log z2⟩}.

Proof. Bearing in mind that log(|z1z2|) = log |z1| + log |z2|, the assertion follows easily from the
first identity in (2.4.7) and Corollary 1.12.
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Concerning the branches of a logarithm, we observe the following.

Remark 2.62. Obviously, the principal logarithm Log : C \ {0} → C is a branch of the logarithm
in the set C \ {0}. Also, if E ⊂ C \ {0} is a set, and h : E → C is a branch of the logarithm in E,
then, by the expression (2.4.7), there exists a function α : E → R so that

α(w) ∈ arg(w) and h(w) = |w|+ iα(w), for all w ∈ E. (2.4.9)

By the continuity of w 7→ h(w), |w|, the function α : E → R is continuous in E too. Thus,
α : E → R is a branch of the argument in E; see Definition 2.53. Consequenly, in the notation of
Proposition 2.54, for each v ∈ R2 \ {(0, 0)}, there is a branch of the logarithm h : C \ ℓv → C.

Moreover, if Ω ⊂ C \ {0} is a domain and h1, h2 : Ω → C are two branches of the logarithm in
Ω, there exists n ∈ Z such that

h1(w) = h2(w) + 2πki, for all w ∈ Ω. (2.4.10)

Indeed, by (2.4.9), h1−h2 = α1−α2, for branches α1, α2 : Ω → R of the argument. By Proposition
2.54, there exists k ∈ Z with α1(w)− α1(w) = 2kπ for all w ∈ Ω, and so we get (2.4.10).

We next show that all branches of the logarithm are holomorphic as a corollary of Lemma 2.57
applied to the exponential function.

Theorem 2.63 (Holomorphic Logarithm). Let Ω ⊂ C \ {0} be open, and h : Ω → C a branch of the
logarithm in Ω. Then h ∈ H(Ω) and

h′(w) =
1

w
, w ∈ Ω.

In particular, for Ω := C \ (−∞, 0], and U := {z ∈ C : Im(z) ∈ (−π, π)}, the Principal Logarithm
function w 7→ Logw is a holomorphic bijection from Ω to U , with

(Logw)′ =
1

w
for all w ∈ Ω. (2.4.11)

Proof. We apply Lemma 2.57 with U = C, V = Ω and f : C → C \ {0} given by f(z) = ez. Since
h is a branch of the logarithm in Ω, we have f(h(w)) = eh(w) = w and f ′(h(w)) = eh(w) ̸= 0 for all
w ∈ Ω.

Theorem 2.63 does not apply to (−∞, 0], since the function w 7→ Logw is not even continuous
there. To see this, note that for each a < 0, the sequences zn = a + i

n and wn = a − i
n converge

both to a. However, Log zn and Logwn have different limits, as

Log zn = log |a|+ iArg(a+ i
n) → log |a|+ iπ,

Logwn = log |a|+ iArg(a− i
n) → log |a| − iπ.

The definition of complex powers with arbitrary exponents are based on logarithmic functions.

Definition 2.64 (Complex powers). Let z ∈ C \ {0} and w ∈ C. We define the set w-power of z,
and denote it by zw, as the set

⟨zw⟩ := ew⟨log z⟩ := {ewξ : ξ ∈ ⟨log z⟩}. (2.4.12)

The elements of the set ⟨zw⟩ are called w-powers of z. And the principal w-power of z is
the number

zw := ew Log z. (2.4.13)
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For example, in the case z = w = i we have, using the computations in the comments right
after Definition 2.60,

⟨ii⟩ = {eiξ : ξ ∈ ⟨log i⟩} = {ei·i(
π
2
+2kπ) : k ∈ Z} = {e−

π
2
+2kπ : k ∈ Z}, and

ii = eiLog i = ei·i
π
2 = e−

π
2 .

A this point, it is worth mentioning the falsity of the equality (ez)w = ezw; see Exercise 2.27.
In the next proposition, we show that the principal power is a holomorphic function. But we

also need to verify that this definition of powers is consistent with previous definitions we gave in
the case of integer exponents (Definition 1.5) or rational exponents (Definition 1.14).

Proposition 2.65 (Properties of complex powers). The power set and function satisfy the following
properties.

(i) If w = n ∈ Z, z ∈ C, then ⟨zw⟩ = {zn} and zw (defined in (2.4.13)) coincides with zn (as in
Definition 1.5).

(ii) If n ∈ N, w = 1/n, and z ∈ C, then ⟨zw⟩ = ⟨ n
√
z ⟩, and the principal 1/n-power z1/n coincides

with the principal nth-root n
√
z of z.

(iii) If x, y ∈ (0,+∞) then the principal y-power of x equals xy. Here, xy represents the usual
power of real numbers.

(iv) If w1, w2 ∈ C, z ∈ C \ {0}, then zw1zw2 = zw1+w2 .

(v) If z1, z2 ∈ C \ {0}, w ∈ C, then ⟨zw1 ⟩ · ⟨zw2 ⟩ = ⟨(z1 · z2)w⟩.

(vi) If w ∈ C, the principal w-power function fw : C \ {0} → C, given by fw(z) = zw, is
holomorphic in C \ (−∞, 0] and

(fw)
′(z) = wzw−1, z ∈ C \ (−∞, 0]. (2.4.14)

Proof.

(i) By (2.4.13), ⟨zw⟩ = {enξ : ξ ∈ ⟨log z⟩}. Using Theorem 2.49(iv), enξ = (eξ)n, where this nth-
power is in the sense of Definition 1.5. If ξ ∈ ⟨log z⟩, then eξ = z. Therefore, ⟨zw⟩ = {zn}. It is
then obvious that zn is the principal w-power of z.

(ii) If w = 1/n, n ∈ N, for every k ∈ Z, we have the equalities

e
1
n
(log |z|+i(Arg(z)+2kπ)) = elog

n
√

|z|+iArg(z)+2kπ
n = elog

n
√

|z|ei
Arg(z)+2kπ

n = n
√

|z|ei
Arg(z)+2kπ

n .

According to (2.4.7) and Theorem 1.15, this shows ⟨zw⟩ = ⟨ n
√
z ⟩. And for k = 0, the previous

chain of equalities gives zw = n
√
z.

(iii) The principal y-power of x is

ey Log x = ey(log |x|+iArg(x)) = ey log x = xy.

(iv) Use Theorem 2.49(ii) to write

zw1zw2 = ew1 Log zew2 Log z = e(w1+w2) Log z = zw1+w2 .

(v) By (2.4.12) and Theorem 2.49(ii),

⟨zw1 ⟩⟨zw2 ⟩ = {ew(ξ1+ξ2) : ξ1 ∈ ⟨log z1⟩, ξ2 ∈ ⟨log z2⟩}.

And ⟨(z1z2)w⟩ = {ewξ : ξ ∈ ⟨log(z1z2)⟩}. But then Proposition 2.61 says that ⟨log(z1z2)⟩ =
⟨log z1⟩+ ⟨log z2⟩, and our claim ⟨zw1 ⟩⟨zw2 ⟩ = ⟨(z1z2)w⟩ then follows.
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(vi) We combine Theorem 2.49(i) with Theorem 2.63 (and formula (2.4.11)) and the Chain Rule
(Proposition 2.34) to obtain that

(fw)
′(z) = ew Log z w

z
= zw

w

z
= wzw−1;

where we also used (iv) of the current proposition in the last equality.

Property (v) of Proposition 2.65 is false replacing the sets power with the principal powers,
that is, zw1 · zw2 ̸= (z1 · z2)w in general. For instance, if w = 1/2 and z1 = z2 = −1, then, zw1 and
zw2 are both respectively the principal 2-roots of −1, and so zw1 = zw2 = i. However (z1 · z2)w = 1,
and therefore (z1 · z2)w ̸= zw1 · zw2 .

2.5 Exercises

Exercise 2.1. Using either the definitions or any of the corresponding characterizations, justify the
following topological claims.

(a) The set A = {z ∈ C : |Re(z2)− 1| > 2} is open.

(b) If f : C → C is continuous in C, then B = {z ∈ C : f(z) = 1} is closed.

(c) The set C = {0} ∪
⋃∞

n=1 S(0, 1/n) is compact.

(d) The set D = {z ∈ C : Re(z) · Im(z) ≥ 0} is path-connected, but its interior int(D) is not
even connected.

(e) If a set E ⊂ C is convex, then its closure E is convex as well.

Exercise 2.2. We say that a sequence {zn}n ⊂ C has the Cauchy property if for every ε > 0 there
exists n0 ∈ N so that |zn − zm| < ε for all n,m ≥ n0. Prove that every sequence with the Cauchy
property C is convergent and viceversa.

Hint: Use that R is complete.

Exercise 2.3. Find a countable set S that is dense in C.

Exercise 2.4. Let A ⊂ C be a convex set. Prove the following statements.

(a) For every z ∈ int(A) and w ∈ A, the half-open segment [z, w) := {tw + (1− t)z : t ∈ [0, 1)}
is contained in int(A). Deduce that int(A) is convex.

Assume, additionally, that int(A) ̸= ∅. Then

(b) int(A) = A and int(A) = int(A).

(c) ∂A = ∂(A) = ∂(int(A)).

Exercise 2.5. Define f : C → C by f = g + ih; where

g(z) =

{
xy

x2+y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)
, h(z) = x2y3 for all z = x+ iy ∈ C.

Determine at which points f is continuous.

Exercise 2.6. Let A ⊂ C be a subset, let z ∈ A, w ∈ C\A, and φ : [0, 1] → C a continuous function
with φ(0) = z and φ(1) = w. Show that there exists t ∈ [0, 1] with φ(t) ∈ ∂A.

Exercise 2.7. Let Ω ⊂ C be open and connected, and f : Ω → C continuous so that |f(z)2 − 1| < 1
for all z ∈ Ω. Show that either Re(f(z)) > 0 for all z ∈ Ω or Re(f(z)) < 0 for all z ∈ Ω.
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Hint: Observe the behavior of Re(f), and argue by contradiction. Also, take into account that
Re(f)(Ω) is a connected set.

Exercise 2.8. Show that:

(a) The function f(z) = |z|2 is differentiable only at z = 0, with f ′(0) = 0.

(b) The function g(z) = |z| is not differentiable at any z ∈ C.

Hint: Use Theorem 2.35.

Exercise 2.9. Let Ω ⊂ C open and f : Ω → C differentiable at z0 ∈ Ω with f ′(z0) ̸= 0. Prove that
there exists r > 0 so that f(z) ̸= f(z0) for all z ∈ D(z0, r).

Exercise 2.10. Let f : C → C the function defined by

f(x+ iy) = x2 + 2y + i(x2 + y2), for all x+ iy ∈ C.

Determine at which z ∈ C the function f is differentiable.

Exercise 2.11. Let f : C → C be holomorphic so that f(0) = i and the real part u = Re(f) is

u(x+ iy) = 2x3y − 2xy3 + x2 − y2 for all x+ iy ∈ C.

Find v = Im(f).

Hint: The Cauchy-Riemann Equations determine the partial derivatives of v. Then somehow
integrate those partial derivatives.

Exercise 2.12. Let f : C → C differentiable at z0 with f ′(z0) ̸= 0. Prove that f := Re(f)− i Im(f)
is not differentiable at z0.

Suggestion: Suppose that f is differentiable at z0. Arrive at a contradiction.

Exercise 2.13. Let Ω ⊂ C be open and connected, and f : Ω → C holomorphic. Show that f is
constant in Ω in each of the following situations:

(a) f(Ω) ⊂ R (f takes only real values) or f(Ω) ⊂ iR (f takes only pure imaginary values).

(b) Re(f) : Ω → R or Im(f) : Ω → R is constant in Ω.

(c) f := Re(f)− i Im(f) is holomorphic in Ω.

(d) The modulus of |f | is constant in Ω.

(e) The principal argument of f, Ω ∋ z 7→ Arg(f)(z) := Arg(f(z)) is constant in Ω. Here, we
additionally assume that f(z) ̸= 0 for all z ∈ Ω.

Suggestion: Look at Corollary 2.37. For part (d) use part (c). In part (e), write f(z) in
exponential form and look at (a).

Exercise 2.14. Show that if f : Ω → R is differentiable at z0 = x0 + iy0 ∈ Ω, then

|f ′(z0)| = ∥∇Re(f)(x0, y0)∥ = ∥∇ Im(f)(x0, y0)∥;

where ∥ · ∥ is the Euclidean norm in R2; that is, ∥(a, b)∥ =
√
a2 + b2.

Exercise 2.15. Let f : R2 \ {(0, 0) → R2 be real-differentiable with f = (u, v), and define ũ(r, θ) =
u(r cos θ, r sin θ) and ṽ(r, θ) = v(r cos θ, r sin θ) for r > 0, θ ∈ R. Show that the Cauchy-Riemann
equations for u and v are equivalent to

∂ũ

∂r
=

1

r

∂ṽ

∂θ
,

∂ũ

∂θ
= −r∂ṽ

∂r
.
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Exercise 2.16. For every complex function f = u+ iv, we define the differential operators

∂f

∂z
:=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
f,

∂f

∂z
:=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
f.

Verify that the Cauchy-Riemann equations for u, v are equivalent to

∂f

∂z
= 0.

Use this to deduce that if Ω ⊂ C is open and f : Ω → C, then f is holomorphic if and only if f is
real-differentiable and ∂f

∂z = 0 in Ω. Moreover, in such case, we have f ′(z) = ∂f
∂z (z) for all z ∈ Ω.

Exercise 2.17. Let f : D(0, 2) → C be holomorphic with f ′ continuous in D(0, 2). Suppose that f
is injective in D(0, 1) and that f ′(z) ̸= 0 for all z ∈ D(0, 1). Prove that there exists ε > 0 so that
f is injective in D(0, 1 + ε).

Suggestion: Suppose that f is not injective in any disk D(0, 1 + 1
n) with n ∈ N, and use the

Bolzano-Weierstrass Theorem 2.12 to derive a contradiction. The Inverse Function Theorem 2.39
plays a role here too.

Exercise 2.18. For each a > 0, denote Ω = {z ∈ C : −a < Im(z) < a} and Ω′ = {w ∈ C :
Re(w) > 0}. Find a conformal map f : C → C in C such that f(Ω) = Ω′.

Suggestion: Start with the case a = π/2, and look at Theorem 2.43 to see how f ′ should be.

Exercise 2.19. Let u : R2 → R be the function u(x, y) = xy. Prove that u is harmonic in R2 and
find a harmonic conjugate v of u with v(0, 0) = 0.

Exercise 2.20. Let Ω ⊂ C be open and connected and u : Ω → R be harmonic. Show that if v and
ṽ are two harmonic conjugates of u in Ω, then v − ṽ is a constant function.

Exercise 2.21. Let u : R2 → R be a harmonic function. Show that the function f := ∂u
∂y + i∂u∂x is

holomorphic in C.

Exercise 2.22. Define u : C\{0} → R by u(z) = log |z|. Prove that u is (real) harmonic in C\{0},
and that u has no harmonic conjugate in C \ {0}.

Suggestion: Write u(x, y) in a simple form. Suppose that v : C \ {0} → R is a harmonic
conjugate of u. The Cauchy-Riemann equations for u+ iv will lead you to a contradiction.

Exercise 2.23. Give an example of f : C → C holomorphic, and points z, w ∈ C with

f(z)− f(w) ̸= f ′(ξ)(z − w) for all ξ ∈ [z, w].

Here [z, w] denotes the segment line joining z and w. This shows that the real mean value theorem
does not extend to complex differentiable functions.

Exercise 2.24. Let f : C → C be defined by

f(z) =

{
e−1/z4 if z ∈ C \ {0}
0 if z = 0.

Prove that f ∈ H(C\{0}), that the partial derivatives ∂ Re(f)
∂x , ∂ Re(f)

∂y , ∂ Im(f)
∂x , ∂ Im(f)

∂y exist and sat-
isfy the Cauchy-Riemann equations at z0 = 0, and that lim

z→0
f(z) does not even exist. In particular,

f is not continuous at z0 = 0.

Suggestion: It is not necessary to compute the partial derivatives of Re(f), Im(f) at all points.
Just remember the definition of partial derivatives (2.2.2)–(2.2.3) (at the point (0, 0)).
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Exercise 2.25. Verify that ez = ez for all z ∈ C.

Exercise 2.26. Find max{|ez2 | : |z| ≤ 1}.

Exercise 2.27. Give an example of two numbers z, w ∈ C \ {0} such that (ez)w ̸= ezw. By (ez)w we
understand the Principal w-power of ez.

Exercise 2.28. Construct the following branches associated with the square root.

(a) f : C \ (−∞,−1] → C holomorphic with (f(z))2 = z + 1 for all z ∈ C \ (−∞,−1]. We can
refer to f as a holomorphic square root of

√
z + 1 in C \ (−∞,−1].

(b) g : C \ [1,+∞) → C holomorphic with (g(z))2 = z − 1 for all z ∈ C \ [1,+∞). We can refer
to g as a holomorphic square root of

√
z − 1 in C \ [1,+∞).

(c) For Ω := C \ {z ∈ C : |Re(z)| ≥ 1}, h : Ω → C holomorphic with (h(z))2 = z2 − 1 for all
z ∈ Ω. We can refer to h as a holomorphic square root of

√
z2 − 1 in Ω.

Exercise 2.29. Let z, w ∈ C with z ̸= 0. Prove the following.

(a) If ⟨zw⟩ has exactly one element if and only if w ∈ Z.

(b) If w ∈ Q and w = p/q with p, q ∈ Z, q > 0, and gcd(p, q) = 1, then ⟨zw⟩ has exactly q
elements.3

(c) If w ∈ R \Q, then ⟨zw⟩ contains infinitely many different numbers.

Exercise 2.30. Show that Log(1 + i)2 = 2Log(1 + i) and Log(−1 + i)2 ̸= 2Log(−1 + i).

Exercise 2.31. Given w ∈ C, show that the set of all the solutions z ∈ C of the equation sin z = w
is {−iξ : ξ ∈ ⟨log(iw + φ)⟩, φ ∈ ⟨

√
1− w2⟩}. In particular, write down all the solutions z ∈ C of

the equation sin z = 2.

Exercise 2.32. Prove the following trigonometric-hyperbolic identities, for z = x+ iy ∈ C :

(a) (cosh z)2 − (sinh z)2 = 1.

(b) cos z = cosx cosh y − i sinx sinh y.

(c) sin z = sinx cosh y + i cosx sinh y.

(d) | cos z|2 = (cosx)2 + (sinh y)2.

(e) | sin z|2 = (sinx)2 + (sinh y)2.

Exercise 2.33. Compute the following sets and/or numbers.

(a) The real and imaginary parts of e3−i.

(b) The real and imaginary parts of cos(2 + 3i).

(c) ⟨log(−1 +
√
3 i)⟩ and Log(−1 +

√
3 i).

(d) ⟨(−1)i⟩ and (−1)i.

(e) ⟨(1 + i)(1+i)⟩ and (1 + i)1+i.

3Here gcd(p, q) is the greatest common divisor of p and q, meaning the largest d ∈ N dividing both p and q.
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Chapter 3

Series of complex functions

3.1 Series of complex numbers

Naturally, a series of complex numbers (or a complex series) is an expression of the form

z1 + z2 + · · ·+ zn + · · · or

∞∑
n=1

zn.

The partial sums of
∑∞

n=1 zn is the sequence {Sn}∞n=1 given by Sn =
∑∞

n=1 zn, the sum of the first
n terms of the series.

3.1.1 Convergence and absolute convergence

The convergence of series in C is defined exactly as in the real line.

Definition 3.1. We say that a series
∑∞

n=1 zn of complex numbers converges to z0 ∈ C if the
sequence of partial sums {

∑n
k=1 zk}n∈N converges to z0, in which case we will denote

∑∞
n=1 zn = z0.

And if the limit of the partial sums does not exist, we say that the series
∑∞

n=1 zn diverges.

Moreover, we say that the series
∑∞

n=1 zn is absolutely convergent if the series of the modulus∑∞
n=1 |zn| is convergent.

If a series
∑∞

n=1 zn is absolutely convergent, then it is convergent as well. Indeed, the Cauchy
partial sums of

∑∞
n=1 zn satisfy∣∣∣∣∣
M∑
n=1

zn −
N∑

n=1

zn

∣∣∣∣∣ =
∣∣∣∣∣

M∑
n=N+1

zn

∣∣∣∣∣ ≤
M∑

n=N+1

|zn| =
M∑
n=1

|zn| −
N∑

n=1

|zn|,

for M > N ≥ 1, and the last term converges to 0 as M,N → ∞. This is due to the fact that the
sequence of partial sums of

∑∞
n=1 |zn| converges, and thus have the Cauchy property. We have

shown that the partial sums of
∑∞

n=1 zn have the Cauchy property, and since C is complete (see
Exercise 2.2), these partial sums converges in C.

Needless to say, there are convergent series that are not absolutely convergent. For example,∑∞
n=1

(−1)n−1

n = log 2, whereas
∑∞

n=1
1
n = ∞.

Proposition 3.2. Let {zn}n ⊂ C be a sequence with
∑∞

n=1 zn convergent. The following hold.

(i) lim
n→∞

zn = 0.

(ii) lim
N→∞

∑∞
n=N zn = 0.

Proof.
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(i) The series
∑∞

n=1 zn converges to some S ∈ C, and so the partial sums SN =
∑N

k=1 zk satisfy
lim

N→∞
SN = S. Therefore

|zn| =

∣∣∣∣∣
n∑

k=1

zk −
n−1∑
k=1

zk

∣∣∣∣∣ = |Sn − Sn−1| → |S − S| = 0 as n→ ∞.

(ii) Let S =
∑∞

n=1 zn, and denote Sm =
∑m

n=1 zn for every m. For each N ∈ N,
∑∞

n=N zn is (by

Definition 3.1) the limit of the sequence
∑M

n=N zn as M → ∞. Thus, for each fixed N, we have

∞∑
n=N

zn = lim
M→∞

M∑
n=N

zn = lim
M→∞

(SM − SN−1) = S − SN−1.

And now, we let N → ∞, obtaining

lim
N→∞

∞∑
n=N

zn = lim
N→∞

(S − SN−1) = S − S = 0.

An elementary example to study convergence or divergence is the geometric series.

Example 3.3 (Geometric Series). For every z ∈ D(0, 1), that is |z| < 1, using the formula from
Exercise 1.10, we see that the geometric series

∑∞
n=0 z

n is absolutely convergent and

∞∑
n=0

zn =
1

1− z
,

∞∑
n=0

|zn| = 1

1− |z|
. (3.1.1)

Note that (3.1.1) also implies

∞∑
n=0

(−1)nzn =
1

1 + z
, |z| < 1.

However, when |z| ≥ 1, the series
∑∞

n=0 z
n diverges by Proposition 3.2, as lim

n→∞
|zn| ≠ 0.

In the study of absolute convergence for complex series we can apply some of the convergence
criteria that we already know for real numbers. Some of them are recorded in the following
proposition, without proofs.

Proposition 3.4 (Convergence criteria). The following statements hold.

(i) [Cauchy’s Root Test] Let {an}n ⊂ R. Then

lim sup
n→∞

n
√
|an| < 1 =⇒

∞∑
n=1

|an| converges,

lim sup
n→∞

n
√
|an| > 1 =⇒

∞∑
n=1

an diverges.

(ii) [D’Alembert’s Ratio Test] Let {an}n ⊂ R \ {0}. Then

lim sup
n→∞

|an+1|
|an|

< 1 =⇒
∞∑
n=1

|an| converges,

lim inf
n→∞

|an+1|
|an|

> 1 =⇒
∞∑
n=1

an diverges.
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(iii) [Raabe’s Test] Let {an}n ⊂ R \ {0}. Then

lim inf
n→∞

n

(
1− |an+1|

|an|

)
> 1 =⇒

∞∑
n=1

|an| converges,

lim sup
n→∞

n

(
1− |an+1|

|an|

)
< 1 =⇒

∞∑
n=1

|an| diverges.

(iv) [Cauchy’s Condensation Test] Let {an}n ⊂ [0,+∞) be a non-increasing sequence. Then

∞∑
n=1

an converges ⇐⇒
∞∑
n=1

2na2n converges.

(v) [Integral Test] Let f : [0,∞) → [0,∞) be non-increasing. Then the series
∑∞

n=1 f(n) con-
verges if and only if

∫∞
1 f(x) dx <∞. Moreover, in such case, we have the bounds∫ ∞

1
f(x) dx ≤

∞∑
n=1

f(n) ≤ f(1) +

∫ ∞

1
f(x) dx.

3.1.2 Operations with series. The Cauchy Product

Clearly we can multiply the terms {an}n ⊂ C of a convergent series
∑∞

n=1 an by an scalar λ ∈ C,
and obtain a new convergent series

∑∞
n=1 λan. It is also easy to define the sum of two convergent

series
∑∞

n=1 an,
∑∞

n=1 bn as the series obtaining by summing termwise:
∑∞

n=1(an + bn), which is a
new convergent series so that

∑∞
n=1(an + bn) =

∑∞
n=1 an +

∑∞
n=1 bn. However, the product of two

series is a bit more complicated, and we define it through the Cauchy product.

We will use the notation N∗ := N ∪ {0} in the sequel.

Definition 3.5 (Cauchy Product). Let
∑∞

n=0 an and
∑∞

n=0 bn be two series of complex numbers.
Define the complex numbers

cn := a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =

n∑
k=0

akbn−k for all n ∈ N∗. (3.1.2)

The Cauchy Product of
∑∞

n=0 an and
∑∞

n=0 bn is the series
∑∞

n=0 cn.

The Cauchy product of two convergent series is not necessarily convergent, even if the two
series are the same; see Exercise 3.1. To guarantee the convergence of the Cauchy product, at least
one of the series should be absolutely convergent.

Proposition 3.6. Let
∑∞

n=0 an and
∑∞

n=0 bn be two convergent series with at least one of them
absolutely convergent. Then their Cauchy product

∑∞
n=0 cn is convergent and

∞∑
n=0

cn =

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
.

Moreover, if both
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergent, then
∑∞

n=0 cn is absolutely
convergent as well.

Proof. Assume for instance that
∑∞

n=0 an is absolutely convergent. Define s :=
∑∞

n=0 an ∈ C,
sN :=

∑N
n=0 an, r :=

∑∞
n=0 bn ∈ C, rN :=

∑N
n=0 bn, tN :=

∑∞
n=0 cn, for all n ∈ N∗. Observe that

we have, for all n ∈ N,

tN =
N∑

n=0

n∑
k=0

akbn−k =
N∑
k=0

ak

N∑
n=k

bn−k =
N∑
k=0

ak

N−k∑
n=0

bn =
N∑
k=0

ak rN−k = sNr +
N∑
k=0

ak(rN−k − r).
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Because s = lim
N→∞

sN , for the convergence of {tN}N (to s · r) it only remains to check that

lim
N→∞

∑N
k=0 ak(rN−k−r) = 0.Given ε > 0 there existsN0 ∈ N such that |rN−r| ≤ ε/(1+

∑∞
n=0 |an|)

for all N ≥ N0. So, for those N > N0, we can write

N∑
k=0

ak(rN−k−r) =
N∑

k=N−N0+1

ak(rN−k−r)+
N−N0∑
k=0

ak(rN−k−r) =
N0−1∑
j=0

aN−j(rj−r)+
N−N0∑
k=0

ak(rN−k−r).

The term
∑N0−1

j=0 aN−j(rj − r) is a sum of N0-many sequences converging to 0 as N → ∞, since
|aN | → 0. Hence, taking limit superior in the above gives

lim sup
N→∞

∣∣∣∣∣
N∑
k=0

ak(rN−k − r)

∣∣∣∣∣ ≤ lim sup
N→∞

∣∣∣∣∣
N−N0∑
k=0

ak(rN−k − r)

∣∣∣∣∣ ≤ lim sup
N→∞

N−N0∑
k=0

|ak| |rN−k − r|

≤ ε

1 +
∑∞

n=0 |an|
lim sup
N→∞

N−N0∑
k=0

|ak| =
ε

1 +
∑∞

n=0 |an|

∞∑
n=0

|an| ≤ ε.

Because ε > 0 is arbitrary, we get lim
N→∞

∑N
k=0 ak(rN−k − r) = 0, as desired.

Assume now that both
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergent. Then, for each N ∈ N
we have the bounds

N∑
n=0

|cn| =
N∑

n=0

∣∣∣∣∣
n∑

k=0

akbn−k

∣∣∣∣∣ ≤
N∑
k=0

|ak|
N∑

n=k

|bn−k| =
N∑
k=0

|ak|
N−k∑
n=0

|bn| ≤
∞∑
k=0

|ak|
∞∑
n=0

|bn|;

where the last term is finite and independent of N. This shows that
∑∞

n=0 |cn| <∞.

3.2 Sequences and series of functions

Definition 3.7 (Convergence of functions). Let A ⊂ C and {fn : A → C}n a sequence of functions
defined in A.

• We say that {fn}n converges pointwise on A if for every z ∈ A, the sequence of complex
numbers {fn(z)}n converges in C. This means that for every z ∈ A, there exists f(z) ∈ C
such that for all ε > 0 there exists n0 = n0(z, ε) ∈ N with |fn(z)− f(z)| < ε for all n ≥ n0.

• We say that {fn}n converges uniformly on A to f : A→ C if for every ε > 0 there exists
n0 = n0(ε) ∈ N so that

|fn(z)− f(z)| < ε for all n ≥ n0 and all z ∈ A.

• We say that {fn}n is Cauchy uniformly on A if for every ε > 0 there exists n0 = n0(ε) ∈ N
so that

|fm(z)− fn(z)| < ε for all n,m ≥ n0 and all z ∈ A.

Now we consider series of functions
∑∞

n=1 fn defined in A.

• We say that
∑∞

n=1 fn converges pointwise on A if for each z ∈ A, the numerical series∑∞
n=1 fn(z) converges.

• We say that
∑∞

n=1 fn converges uniformly on A if the sequence of functions given by the
partial sums {Sn(z) =

∑n
k=1 fk(z)}n∈N is uniformly convergent on A.

• We say that
∑∞

n=1 fn converges absolutely on A if the series of functions
∑∞

n=1 |fn| is
convergent.
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• We say that
∑∞

n=1 fn converges absolutely–uniformly on A if the series of functions∑∞
n=1 |fn| is uniformly convergent.

It is important to be able to distinguish between these various notions of convergence.

Remark 3.8. Concerning Definition 3.7, we observe the following.

(1) The difference between pointwise and uniform convergence is whether or not the index n0
depends on the points z ∈ A.

Notice that the uniform convergence {gn}n → g on A can be reformulated as

lim
n→∞

(
sup
z∈A

|gn(z)− g(z)|
)

= 0.

Uniform convergence is way stronger that pointwise convergence. For example, the uniform
limit of continuous functions is continuous, as shown below by Proposition 3.10. However,
this is not guaranteed with pointwise convergence, e.g., fn(x) = xn on x ∈ [0, 1].

(2) A sequence of functions {gn : A→ C}n is Cauchy uniformly on A if and only if it is uniformly
convergent on A.

Proof. If {gn}n is Cauchy uniformly on A, given ε > 0 we can find n0 ∈ N such that
|gn(z) − gm(z)| < ε/2 whenever n,m ≥ n0 and z ∈ A. In particular, for each z ∈ A, the
numerical sequence {gn(z)}n is Cauchy and so there exists g(z) ∈ C with gn(z) → g(z) as
n→ ∞. Thus, for every z ∈ A we can find mz ∈ N, mz ≥ n0 such that |gmz(z)− g(z)| ≤ ε/2.
This implies

|gn(z)− g(z)| ≤ |gn(z)− gmz(z)|+ |gmz(z)− g(z)| ≤ ε

2
+
ε

2
= ε,

and since n0 is the same for all z, we conclude that gn is uniformly convergent (to g) on A.

The converse is very easy to prove.

(3) For series of functions
∑∞

n=1 fn, the convergence absolutely–uniformly implies (simultane-
ously) uniform, absolute, and pointwise convergence.

To justify this, let
∑∞

n=1 fn be absolutely–uniformly convergent on A ⊂ C. Obviously this im-
plies absolute convergence (simply by Definition 3.7). Now,

∑∞
n=1 fn converging absolutely–

uniformly means that
∑∞

n=1 |fn| is uniformly convergent in A. Thanks to point (2) of the
present remark, we can argue as in the comment after Definition 3.1 to deduce that also∑∞

n=1 fn converges uniformly in A. Indeed, for each M,N ∈ N, M > N, one has

sup
z∈A

∣∣∣∣∣
M∑
n=1

fn(z)−
N∑

n=1

fn(z)

∣∣∣∣∣ ≤ sup
z∈A

m∑
n=N+1

|fn(z)| = sup
z∈A

∣∣∣∣∣
M∑
n=1

|fn(z)| −
N∑

n=1

|fn(z)|

∣∣∣∣∣ .
But the sequence of partial sums of the series of functions

∑∞
n=1 |fn| is Cauchy uniformly,

so the last term goes to 0 as M,N → ∞. This is then telling us that the sequence of partial
sums of the series

∑∞
n=1 fn is Cauchy uniformly on A, which, again by point (2), implies that∑∞

n=1 |fn| converges uniformly.

(4) A series can converge absolutely and uniformly on a set A, and yet not absolutely–uniformly
on A. See Exercise 3.9.
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3.2.1 The Weierstrass M-test. Continuity

One of the most useful results for convergence of functions is the Weierstrass M -test, which we
will use systematically in this chapter.

Theorem 3.9 (Weierstrass M-test). Let A ⊂ C, and a sequence of functions fn : A → C such that
for every n ∈ N there exists Mn > 0 with |fn(z)| ≤ Mn for all z ∈ A, and so that

∑∞
n=1Mn is

finite. Then the series
∑∞

n=1 fn converges absolutely–uniformly on A.

Proof. Let ε > 0. Because
∑∞

n=1Mn is convergent, by Proposition 3.2, there is n0 ∈ N so that∑∞
n=n0

Mn < ε. If M > N ≥ n0 we have

sup
z∈A

∣∣∣∣∣
M∑
n=1

|fn(z)| −
N∑

n=1

|fn(z)|

∣∣∣∣∣ = sup
z∈A

M∑
n=N+1

|fk(z)| ≤ sup
z∈A

∞∑
n=n0

|fn(z)| ≤ sup
z∈A

∞∑
n=n0

Mn < ε.

Thus
∑∞

n=1 |fn| is Cauchy uniformly on A, and thus Remark 3.8(2) says that
∑∞

n=1 fn converges
absolutely–uniformly on A.

We finish this section showing that the uniform limit of continuous functions is continuous.

Proposition 3.10. Let A ⊂ C and {fn : A → C}n a sequence of continuous functions in A that
converges uniformly on A to some f : A→ C. Then f is continuous in A as well.

Proof. Fix z0 ∈ A and let us check the continuity of f at z0. Given ε > 0, by the uniform
convergence of {fn}n on A, we can find N ∈ N so that

sup
z∈A

|fN (z)− f(z)| < ε

3
. (3.2.1)

This function fN is continuous at z0, so we can find δ > 0 for which

|fN (z)− fN (z0)| <
ε

3
for all z ∈ A ∩D(z0, δ). (3.2.2)

Using (3.2.1) and (3.2.2) and the triangle inequality we obtain, for z ∈ A ∩D(z0, δ),

|f(z)− f(z0)| ≤ |f(z)− fN (z)|+ |fN (z)− fN (z0)|+ |fN (z0)− f(z0)|

≤ 2 sup
w∈A

|fN (w)− f(w)|+ |fN (z)− fN (z0)| <
2ε

3
+
ε

3
= ε.

3.3 Power series

The main type of series of functions we will be studying is the power series. One of the main goals
of the course is to show that every holomorphic function can be written as one of these series.

Recall that we are using the notation N∗ := N ∪ {0}.

Definition 3.11 (Power series). A power series is a series of functions of the form
∑∞

n=0 an(z −
z0)

n, with z0, an ∈ C for all n ∈ N∗. We then say that z0 is the center of series.
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3.3.1 The Radius and Disk of Convergence. Abel’s Lemma

Definition 3.12 (Radius of Convergence). Given a power series
∑∞

n=0 an(z − z0)
n, we define its

radius of convergence R ∈ [0,∞] as

R := sup

{
r ≥ 0 :

∞∑
n=0

anr
n converges

}
. (3.3.1)

Then, the disk of convergence of the series is D(z0, R). In the case R = ∞, by D(z0, R) we
mean the whole complex plane C.

Remark 3.13. A couple of preliminary observations are in order.

(1) If the numerical series
∑∞

n=0 anr
n converges for some r > 0, then

∑∞
n=0 |an|sn converges for

every 0 < s < r.

Indeed, the convergence of the first series implies that lim
n→∞

anr
n = 0 by Proposition 3.2. In

particular, there exists C > 0 with |an|rn ≤ C for all n ∈ N∗. Thus

∞∑
n=0

|an|sn =

∞∑
n=0

|an|rn
(s
r

)n
≤ C

∞∑
n=0

(s
r

)n
= C

r

r − s
<∞.

(2) The radius of convergence R ∈ [0,∞] of a power series
∑∞

n=0 an(z − z0)
n is also

R = sup

{
r ≥ 0 :

∞∑
n=0

|an|rn converges

}
. (3.3.2)

To see this, denote by S the supremum in the right hand side of (3.3.2). Since absolute
convergence implies convergence, we clearly have S ≤ R. To show the reverse inequality,
suppose that S < R and let ε > 0 be so that S < S+ ε < R and

∑∞
n=0 an(S+ ε)n converges.

The existence of such an ε is guaranteed by the definition of R (3.3.1). By (1) of the present
remark, we get that

∑∞
n=0 |an|(S + ε

2)
n converges, contradicting the definition of S.

Combining the idea of the proof of Remark 3.13(1) with Theorem 3.9, we obtain the following
criterion for convergence of power series due to Abel.

Theorem 3.14 (Abel’s Lemma). Let
∑∞

n=0 an(z − z0)
n be a power series and assume there exists

z1 ∈ C so that sup{|an(z1 − z0)
n| : n ∈ N∗} < ∞. Then the series of functions

∑∞
n=0 an(z − z0)

n

converges absolutely–uniformly on each disk D(z0, r) with 0 < r < |z0 − z1|.

Proof. Define M := sup{|an(z1 − z0)
n| : n ∈ N∗} and let r > 0 be so that 0 < r < |z1 − z0|. The

functions D(z0, r) ∋ z 7→ an(z − z0)
n satisfy

|an(z − z0)
n| = |an(z1 − z0)

n|
∣∣∣∣ z − z0
z1 − z0

∣∣∣∣n ≤ |an(z1 − z0)
n|
(

r

|z1 − z0|

)n

≤M

(
r

|z1 − z0|

)n

.

Because
∑∞

n=0M
(

r
|z1−z0|

)n
<∞, Theorem 3.9 says that

∑∞
n=0 an(z − z0)

n converges absolutely–

uniformly on D(z0, r).

Observe that Theorem 3.14 provides a lower bound for the radius of convergence R of a power
series

∑∞
n=0 an(z−z0)n. Namely, if z1 is as in Theorem 3.14, then in particular

∑∞
n=0 anr

n converges
for all 0 ≤ r < |z0 − z1|, and so R ≥ |z0 − z1|.
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3.3.2 Convergence of Power Series: The Cauchy-Hadamard Theorem

In proper subdisks of the disk of convergence, the convergence of the power series is absolutely–
uniform, and the series always diverges outside the disk of convergence. Moreover, there is a
formula for the radius of convergence in terms of {an}n. This is the content of the next theorem.

Theorem 3.15 (Cauchy-Hadamard Theorem). Let
∑∞

n=0 an(z − z0)
n be a power series with radius

of convergence R ∈ [0,∞]. The following is satisfied.

(i) If 0 < r < R, the series
∑∞

n=0 an(z − z0)
n converges absolutely-uniformly on D(z0, r).

(ii) If z ∈ D(z0, R), the numerical series
∑∞

n=0 an(z− z0)n converges absolutely. We will express
this by saying that the series converges (absolutely) pointwise in D(z0, R).

(iii) For all z ∈ C so that |z − z0| > R, the numerical series
∑∞

n=0 an(z − z0)
n diverges.1

(iv) The radius of convergence R is given by the formula

R =
1

lim sup
n→∞

n
√

|an|
. (3.3.3)

In the case lim sup
n→∞

n
√
|an| = 0, we have R = ∞; and if lim sup

n→∞
n
√
|an| = ∞, we have R = 0.

(v) If an ̸= 0 for all n and lim
n→∞

|an|
|an+1| ∈ [0,+∞], then

R = lim
n→∞

|an|
|an+1|

. (3.3.4)

Proof.

(i) If 0 < r < R, then we can find ε > 0 so that r < r + ε < R and
∑∞

n=0 an(r + ε)n is convergent.
Taking any z1 ∈ S(z0, r+ε) so that |z1−z0| = r+ε, then sup{|an(z1−z0)n| : n ∈ N∗} <∞, and so
the series

∑∞
n=0 an(z−z0)n converges absolutely–uniformly on D(z0, s) for all s < |z1−z0| = r+ε,

which of course includes the disk D(z0, r).

(ii) Assume R > 0 (otherwise there is nothing to prove), and z ∈ D(z0, R). Clearly we can find
0 < r < R with z ∈ D(z0, r), e.g., taking |z − z0| < r < R. By (i) there is absolute–uniform
convergence of the power series in D(z0, r), and in particular absolute convergence at z = z0.

(iii) And if |z1−z0| > R, suppose, for the sake of contradiction, that
∑∞

n=0 an(z1−z0)n is convergent.
Then sup{|an(z1 − z0)

n| : n ∈ N∗} <∞ and Theorem 3.14 says that the series
∑∞

n=0 an(z − z0)
n

converges (absolutely–uniformly) on each disk D(z0, r) with 0 < r < |z1 − z0|. If ε > 0 is so that
|z1 − z0| > R+ ε, and we put z = z0 + (R+ ε) ∈ D(z0, R+ ε), the above gives the convergence of
the numerical series

∑∞
n=0 an(R+ ε)n, contradicting the definition of R; see (3.3.1).

(iv) 2 Consider first the case where lim sup
n→∞

|an|1/n ∈ (0,+∞) and denote r = 1
lim sup
n→∞

|an|1/n
. Recall

that lim sup
n→∞

|an|1/n = lim
n→∞

sup
m≥n

|am|1/m, and hence r = lim
n→∞

1/
(
sup
m≥n

|am|1/m
)
. So, for every ε > 0

there exists n0 ∈ N so that

r − ε

2
≤ 1

sup
m≥n

|am|1/m
≤ r +

ε

2
for all n ≥ n0. (3.3.5)

1Of course, this statement is vacuous when R = ∞.
2This proof can be very much simplified applying directly the Root Test (Proposition 3.4) to series of the form∑∞
n=0 |an|sr, in combination with formula (3.3.2). But we offer here the full argument to remind the reader the idea

of proof of the Root Test Criterion.
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From the left inequality of (3.3.5), we get, in particular, that |an| ≤
(
r − ε

2

)−1/n
for all n ≥ n0.

Thus we have the estimates

∞∑
n=0

|an|(r − ε)n =

n0−1∑
n=0

|an|(r − ε)n +

∞∑
n=n0

|an|(r − ε)n ≤
n0−1∑
n=0

|an|(r − ε)n +

∞∑
n=n0

(
r − ε

r − ε
2

)n

<∞.

Therefore, the series
∑∞

n=0 |an|(r − ε)n converges and so, by (3.3.1), r − ε ≤ R. And the second

inequality of (3.3.5) leads us to |ank
| ≥

(
r + ε

2

)−1/nk for a subsequence nk → ∞, as k → ∞. Hence,

∞∑
n=0

|an|(r + ε)n ≥
∞∑
k=0

|ank
|(r + ε)nk ≥

∞∑
k=0

(
r + ε

r + ε
2

)nk

= ∞.

By relation (3.3.2) in Remark 3.13, the above yields R ≤ r+ε.We have shown that r−ε ≤ R ≤ r+ε
for arbitrary ε > 0, and so R = r, as desired.

Now, if lim sup
n→∞

|an|1/n = ∞, then for every r > 0 we can find a subsequence (nk)k → ∞ with

|ank
| ≥

(
r+1
r

)nk . This gives

∞∑
n=0

|an|rn ≥
∞∑
k=0

|ank
|rnk ≥

∞∑
k=0

(
r + 1

r

)nk

rnk =

∞∑
k=0

(r + 1)nk = ∞.

Since r > 0 is arbitrary, this means, by e.g. formula (3.3.2), that R = 0.

Finally, in the case lim sup
n→∞

|an|1/n = 0, for every r > 0 we can find n0 ∈ N such that |an| ≤(
1

r+1

)n
for all n ≥ n0. Thus,

∞∑
n=0

|an|rn =

n0−1∑
n=0

|an|rn +

∞∑
n=n0

|an|rn ≤
n0−1∑
n=0

|an|rn +

∞∑
n=n0

(
r

r + 1

)n

<∞.

Because r > 0 is arbitrary, we have shown that R = ∞.

(v) Define r := lim
n→∞

|an|
|an+1| ∈ [0,+∞]. Let us begin with the case r < ∞. We have for every ε > 0,

that

lim
n→∞

|an+1|(r + ε)n+1

|an|(r + ε)n
= (r + ε) lim

n→∞

|an+1|
|an|

=

{
r+ε
r if r > 0

∞ if r = 0.

The limit is greater than 1 in any case, and by the Ratio Test (see Proposition 3.4), this implies
that

∑∞
n=0 |an|(r + ε)n does not converges. Identity (3.3.2) leads us to R ≤ r + ε, and because

ε > 0 is arbitrary, we get R ≤ r. This in particular proves the result in the case r = 0.

Consider now the case 0 < r < ∞, and 0 < ε < r. Again we use the Ratio Test for numerical
series:

lim
n→∞

|an+1|(r − ε)n+1

|an|(r − ε)n
= (r − ε) lim

n→∞

|an+1|
|an|

=
r − ε

r
< 1.

Thus the series
∑∞

n=0 |an|(r − ε)n converges and by the same reasoning we get that r − ε ≤ R for
all ε > 0, implying that r ≤ R. We conclude R = r.

And when r = ∞, we use an identical argument to show that, for each M > 0, the series∑∞
n=0 |an|Mn converges, which implies R = ∞ = r.

We now apply Theorem 3.15 to concrete examples of power series.

Example 3.16. Let us determine the radius and disk of convergence in the following cases.
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(i)
∑∞

n=0
(1+i)n

nn (z − i)n. The series is centered at i and the coefficients are an = (1+i)n

nn . To find

the radius of convergence R, we use formula (3.3.3). We have |an| = |1+ i|n/nn =
(√

2/n
)n
.

So,

lim sup
n→∞

n
√

|an| = lim sup
n→∞

n

√(√
2/n

)n
= lim sup

n→∞

√
2

n
= 0.

Therefore R = ∞. So the series converges pointwise in all of C, and absolutely–uniformly
on each bounded subset of C (as these are all contained in disks of the form D(z0, N) for
N ∈ N).

(ii)
∑∞

n=0(1+ni)
(
z+i
2

)n
. The center is z0 = −i and the coefficients are an = 1+ni

2n for all n ∈ N∗.

So the moduli are |an| =
√
1+n2

2n , and

lim sup
n→∞

|an|1/n = lim sup
n→∞

(√
1 + n2

2n

)1/n

=
1

2
lim sup
n→∞

(√
1 + n2

)1/n
=

1

2
.

Therefore, the radius and disk of convergence of the series are R = 2 and D(−i, 2). Within
each closed subsdisk of D(−i, 2), the series converges absolutely–uniformly. On the the
open disk D(−i, 2), we have pointwise convergence, and outside the disk D(−i, 2) the series
diverges at every point. These are all conclusions from Theorem 3.15.

But, what is the situation when z ∈ ∂D(−i, 2)? Unfortunately, Theorem 3.15 is useless here
and we need to study the convergence by other methods. If z is such that |z+i| = 2, then the
numerical series

∑∞
n=0(1 + ni)

(
z+i
2

)n
has general term equal to bn = 1+ni

2n (z + i)n. But then

|bn| = |1 + ni| =
√
1 + n2, which of course does not converge to 0. According to Proposition

3.2, the series
∑∞

n=0(1 + ni)
(
z+i
2

)n
diverges.

(iii)
∑∞

n=1
1+ni
n3 zn. The center is z0 = 0 and the coefficients are an = 1+ni

n3 for all n ∈ N. Hence

lim sup
n→∞

|an|1/n = lim sup
n→∞

(√
1 + n2

n3

)1/n

= 1.

The radius and disk of convergence are R = 1 and D(0, 1). By Theorem 3.15 we have
absolute–uniform convergence in closed subdisks of D(0, 1), pointwise convergence in D(0, 1)
and diverge in all of C\D(0, 1). In the boundary ∂D(0, 1), again Theorem 3.15 is inconclusive.
But if |z| = 1, the numerical series

∑∞
n=0

1+ni
n3 zn has general term equal to bn(z) =

1+ni
n3 zn,

with

|bn(z)| =
√
1 + n2

n3
|z|n =

√
1 + n2

n3
≤

√
2n

n3
=

√
2

n2
.

Because
∑∞

n=1

√
2

n2 < ∞, we have that
∑∞

n=0
1+ni
n3 zn is convergent for each z ∈ ∂D(0, 1).

Moreover, since the bound above is independent of z ∈ ∂D(0, 1), Theorem 3.9 tells us that
∂D(0, 1) ∋ z 7→

∑∞
n=1

1+ni
n3 zn converges absolutely–uniformly.

(iv)
∑∞

n=0
(n!)2

(2n)!z
n. The coefficients are an = (n!)2

(2n)! , and the center is z0 = 0. Perhaps in this case

formula (3.3.3) is not the easiest way to calculate the radius of convergence, especially if all
we know is that lim

n→∞
n
√

(n!)2 = lim
n→∞

n
√

(2n)! = ∞. We can try out Theorem 3.15(v) instead:

lim
n→∞

|an|
|an+1|

= lim
n→∞

(n!)2

(2n)!

((n+1)!)2

(2(n+1))!

= lim
n→∞

(2n+ 2)(2n+ 1)

(n+ 1)2
= 4.

Therefore, the radius of convergence is R = 4 and D(0, 4) is the disk of convergence. We
know very well what the convergence is in D(0, 4) and in C \ D(0, 4) from Theorem 3.15.

However, if z ∈ ∂D(0, 4), since lim
n→∞

(n!)2

(2n)!4
n = ∞,3 the series

∑∞
n=0

(n!)2

(2n)!z
n diverges.

3This is a consequence of Wallis’ product formula, which actually shows that (n!)2

(2n)!
4n ∼

√
n.
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(v) Let us treat some series with infinitely many terms equal to 0. Let φ : N∗ → N∗ be an
increasing function, and consider the series

∑∞
n=0 anz

φ(n). In oder to apply the Cauchy-
Hadamard formula (3.3.3), we can define new coefficients

bk =

{
an if k = φ(n), for some n ∈ N∗,

0 otherwise.

Then
∑∞

n=0 anz
φ(n) =

∑∞
n=0 bkz

k and their radius of covergence R satisfies, by (3.3.3),

R−1 = lim sup
k→∞

|bk|1/k = lim
k→∞

sup{|bj |1/j : j ≥ k} = lim
k→∞

sup{|an|1/φ(n) : j ≥ k, j = φ(n), n ∈ N∗}

= lim
k→∞

sup{|an|1/φ(n) : φ(n) ≥ φ(k), n ∈ N∗}

= lim
k→∞

sup{|an|1/φ(n) : n ≥ k, n ∈ N∗} = lim sup
n→∞

|an|1/φ(n).

In the fourth equality we used that if {ck}n ⊂ R is non-decreasing, then lim
k→∞

ck = lim
k→∞

cφ(k).

So we can again derive a formula for R in terms of {an}n.
For example, let us examine

∑∞
n=0 anz

2n. By the above, the radius of convergence R satisfies

R−1 = lim sup
n→∞

|an|1/2n =

(
lim sup
n→∞

n
√
|an|

)1/2

.

If it is difficult to figure out lim sup
n→∞

n
√

|an|, we can try a variation of the Ratio Formula (3.3.4),

always provided that an ̸= 0 from some N on. Note that (3.3.4) cannot be applied as it is for
the series

∑∞
n=0 anz

2n, because the coefficients of the terms of the form z2n+1 are all zero.
Thus we go back to the Ratio Test for numerical series (Proposition 3.4), and use that

lim
n→∞

|an+1|r2(n+1)

|an|r2n
= r2 lim

n→∞

|an+1|
|an|

,

for r > 0, to obtain

∞∑
n=0

|an|rn =


converges, if lim

n→∞
|an+1|
|an| < 1/r2,

diverges, if lim
n→∞

|an+1|
|an| > 1/r2.

By (3.3.2), this clearly shows that R =
(
lim
n→∞

|an|
|an+1|

)1/2
.

3.3.3 Convergence on the Boundary

We have learnt from Example 3.16 that it is not so easy to determine the convergence of a power
series on the boundary of its disk of convergence. Theorem 3.15 is inconclusive in this respect: on
the boundary the series may converge or diverge at all points, or converge only at some points.
We next prove a criterion for convergence on the boundary, covering a reasonably big amount of
cases. We first need the useful Abel’s Summation by Parts formula.

Lemma 3.17 (Abel’s Summation by Parts). Let {an}n, {bn}n be sequences of complex numbers and
denote Bn =

∑n
k=0 bn for every n ∈ N∗. Then for all M,N ∈ N∗ with M > N we have

M∑
n=N

anbn = aMBM − aNBN−1 −
M−1∑
n=N

(an+1 − an)Bn.
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Proof. It is enough to spell out the last term of the right hand side:

−
M−1∑
n=N

(an+1 − an)Bn = −
M−1∑
n=N

an+1Bn +
M−1∑
n=N

anBn = −
M∑

n=N+1

anBn−1 +
M−1∑
n=N

anBn

= −aMBM−1 +
M−1∑

n=N+1

an(Bn −Bn−1) + aNBN

= −aMBM−1 +

M−1∑
n=N+1

anbn + aNBN

= −aMBM−1 − aMbM +
M∑

n=N

anbn − aNbN + aNBN

= −aMBM +
M∑

n=N

anbn + aNBN−1.

Theorem 3.18 (Picard’s Criterion). The following statements hold.

(i) If {an}n ⊂ C are such that
∑∞

n=0 |an+1−an| <∞ and lim
n→∞

an = 0, then the series
∑∞

n=0 anz
n

converges for all z with |z| = 1 and z ̸= 1.

(ii) In particular, if {an}n ⊂ R converges monotonically to 0, then the series
∑∞

n=0 anz
n converges

for all z with |z| = 1 and z ̸= 1.

Proof. We first prove part (i). Let z ∈ C with |z| = 1 and z ̸= 1. Let us show that the partial sums
of
∑∞

n=0 anz
n satisfy the Cauchy property. Indeed, if M > N are naturals, Lemma 3.17 permits

to write

M∑
n=0

anz
n −

N∑
n=0

anz
n =

M∑
n=N+1

anzn = aM

M∑
n=0

zn − aN+1

N∑
n=0

zn −
M−1∑

n=N+1

(an+1 − an)
n∑

k=0

zk.

Taking moduli, using the triangle inequality, and computing the geometric sum, we get∣∣∣∣∣
M∑
n=0

anz
n −

N∑
n=0

anz
n

∣∣∣∣∣ ≤ |aM |

∣∣∣∣∣
M∑
n=0

zn

∣∣∣∣∣+ |aN+1|

∣∣∣∣∣
N∑

n=0

zn

∣∣∣∣∣+
M−1∑

n=N+1

|an+1 − an|

∣∣∣∣∣
n∑

k=0

zk

∣∣∣∣∣
= |aM |

∣∣∣∣1− zM+1

1− z

∣∣∣∣+ |aN+1|
∣∣∣∣1− zN+1

1− z

∣∣∣∣+ M−1∑
n=N+1

|an+1 − an|
∣∣∣∣1− zn+1

1− z

∣∣∣∣
≤ 2

|1− z|

(
|aM |+ |aN+1|+

M−1∑
n=N+1

|an+1 − an|

)
;

where we used the crude estimate |1− zm| ≤ 1 + |z|m = 2 in the last inequality. Because an → 0,
we have that |aM |, |aN+1| → 0 as N,M → ∞. And the term

∑M−1
n=N+1 |an+1 − an| also tends to 0

as N,M → ∞ because it coincides with the difference of partial sums

M−1∑
n=0

|an+1 − an| −
N∑

n=0

|an+1 − an|,

of the convergent series
∑∞

n=0 |an+1 − an|. We conclude that the partial sums of
∑∞

n=0 anz
n have

the Cauchy property.

Now, to prove (ii), observe that
∑N

n=0 |an+1 − an| =
∣∣∣∑N

n=0(an+1 − an)
∣∣∣ as the sequence {an}n

is monotone. But the last term is equal to |aN+1 − a0|, whose limit is |a0|. Therefore the series∑N
n=0 |an+1 − an| converges, and we can apply (i).
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Here there is an obvious generalization of Theorem 3.18 for arbitrary radius and center.

Corollary 3.19. Let {an}n ⊂ C, z0 ∈ C, and r > 0. Assume that
∑∞

n=0 |rn+1an+1− rnan| <∞ and
lim
n→∞

rnan = 0. Then
∑∞

n=0 an(z − z0)
n converges for all z ∈ ∂D(z0, r) \ {z0 + r}.

In particular, if a sequence {anrn}n ⊂ R converges to 0 monotonically and lim
n→∞

rnan = 0, then∑∞
n=0 an(z − z0)

n converges for all z ∈ ∂D(z0, r) \ {z0 + r}.

Proof. Writing
∑∞

n=0 an(z−z0)n =
∑∞

n=0 anr
n
(
z−z0
r

)n
, it suffices to apply Theorem 3.18 for anr

n

in place of an and w = (z − z0)/r in place of z.

For example, the series
∑∞

n=1
zn

n has radius of convergence equal to 1, and so there is pointwise
converge in D(0, 1) and absolute–uniform convergence in disks D(0, r) for all r < 1. The coefficients
an = 1

n ↓ 0 and if z ∈ ∂D(0, 1) \ {1}, we can apply Theorem 3.18(ii) to conclude that
∑∞

n=1
zn

n is
convergent. In the case z = 1, the series clearly diverges.

3.3.4 Differentiability of Power Series

If R > 0 is the radius of convergence of a power series f(z) =
∑

n=0 an(z−z0)n, then Theorem 3.15
implies that, on every disk D(z0, r) with r < R, f is the uniform limit (as N → ∞) of the partial
sums

∑N
n=0 an(z−z0)n on z ∈ D(z0, r). By Proposition 3.10, f is continuous at every z ∈ D(z0, R).

So, power series are continuous on their disk of convergence. Our next objective is to show that
they are actually infinitely differentiable on the disk. The main technical difficulty is, as usual,
exchange the order of derivatives with limits of partial sums.

Theorem 3.20 (Differentiability of Power Series). Let
∑∞

n=0 an(z − z0)
n be a power series with

radius of convergence R > 0. Then the function f : D(z0, R) → C defined as

f(z) =
∞∑
n=0

an(z − z0)
n, z ∈ D(z0, R),

is holomorphic in D(z0, R) and

f ′(z) =
∞∑
n=1

nan(z − z0)
n−1, z ∈ D(z0, R).

Moreover the power series of f ′ above has radius of convergence equal to R.

Proof. Define the function D(z0, R) ∋ z 7→ g(z) :=
∑∞

n=1 nan(z − z0)
n−1. By Theorem 3.15,

(3.3.3), we have lim sup
n→∞

|an|1/n = 1/R and so

lim sup
n→∞

(n|an|)1/n = lim sup
n→∞

n1/n|an|1/n =
1

R
.

Then the radius of convergence of
∑∞

n=1 nan(z − z0)
n−1 is also R (again by (3.3.3)). This gives

plenty of information. First, we have confirmed that g is well defined in D(z0, R). Also, for every
0 < r < R, the series

∑∞
n=1 n|an|rn−1 is convergent (also thanks to (3.3.2)). Therefore, using

Proposition 3.2(ii), we get that

lim
N→∞

∞∑
n=N

n|an|rn−1 = 0. (3.3.6)

Moreover, from Theorem 3.15 we learnt that
∑∞

n=1 nan(z − z0)
n−1 converges (even uniformly) on

each disk D(z0, r) with 0 < r < R, so

g(z) = lim
N→∞

N∑
n=1

nan(z − z0)
n−1, z ∈ D(z0, r). (3.3.7)
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Now, to check that f is holomorphic with f ′ = g on D(z0, R), let us fix z ∈ D(z0, R), take r
with |z − z0| < r < R. In D(z0, r), the series defining f and g converge, and we can write, for all
w ∈ D(z0, r) and N ∈ N :

f(w) = fN (w) + fN (w), with fN (w) :=
N∑

n=0

an(w − z0)
n, fN (w) :=

∞∑
n=N+1

an(w − z0)
n,

g(w) = gN (w) + gN (w), with gN (w) :=

N∑
n=1

nan(w − z0)
n−1, gN (w) :=

∞∑
n=N+1

nan(w − z0)
n−1.

But notice that fN is just a polynomial function, with f ′N = gN on D(z0, R). Thus, the idea is that
we only need to verify that fN is differentiable at z, with (fN )′(z) = gN (z) for sufficiently large
N. Let us make this rigorous. Given ε > 0, these observations along with (3.3.6) and (3.3.7) yield
the existence of N ∈ N and δ > 0 with 0 < δ < r − |z − z0| such that

|g(z)− gN (z)| < ε

3
,

∞∑
n=N

n|an|rn−1 <
ε

3
, and

∣∣∣∣fN (w)− fN (z)

w − z
− gN (z)

∣∣∣∣ < ε

3
, (3.3.8)

whenever w ∈ D(z, δ)\{z}. Using the estimates of (3.3.8), we can write, for all w ∈ D(z, δ)\{z} ⊂
D(z0, r) :∣∣∣∣f(w)− f(z)

w − z
− g(z)

∣∣∣∣ = ∣∣∣∣fN (w)− fN (z)

w − z

∣∣∣∣+ ∣∣∣∣fN (w)− fN (z)

w − z
− gN (z)

∣∣∣∣+ |g(z)− gN (z)|

<

∣∣∣∣∣
∞∑

n=N+1

an
(w − z0)

n − (z − z0)
n

w − z

∣∣∣∣∣+ 2ε

3
=

∣∣∣∣∣
∞∑

n=N+1

an(w − z)

w − z

n−1∑
k=0

(w − z0)
n−1−k(z − z0)

k

∣∣∣∣∣+ 2ε

3

=

∣∣∣∣∣
∞∑

n=N+1

an

n−1∑
k=0

(w − z0)
n−k(z − z0)

k

∣∣∣∣∣+ 2ε

3
≤

∞∑
n=N+1

|an|
n−1∑
k=0

|w − z0|n−1−k|z − z0|k +
2ε

3

≤
∞∑

n=N+1

|an|
n−1∑
k=0

rn−1−krk +
2ε

3
=

∞∑
n=N+1

n|an|rn−1 +
2ε

3
<
ε

3
+

2ε

3
= ε.

We may conclude that f is differentiable at z, with f ′(z) = g(z).

According to Theorem 3.20, any power series is holomorphic on the disk of convergence and
its derivative is new power series (obtaining by differentiating termwise in the original series) with
the same radius of convergence. We can apply the theorem repeatedly to derive the following.

Corollary 3.21 (C∞ regularity of power series). Let
∑∞

n=0 an(z−z0)n be a power series with radius
of convergence R > 0, and let D(z0, R) ∋ z 7→ f(z) :=

∑∞
n=0 an(z − z0)

n. Then,

(i) f ∈ C∞(D(z0, R)).

(ii) f (k)(z) =
∑∞

n=k n(n− 1) · · · (n− k + 1)ak(z − z0)
n−k for all z ∈ D(z0, R).

(iii) The coefficients {an}n∈N∗ are unique and satisfy an = f (n)(z0)
n! for all n ∈ N∗. In particular,

on D(z0, R), the series
∑∞

n=0 an(z − z0)
n is the Taylor series of f centered at z0.

Proof. By iterating Theorem 3.20, we get that f is infinitely many times differentiable in Ω, with
each f (k) given by the power series

∑∞
n=k n(n−1) · · · (n−k+1)(z−z0)n−k on z ∈ D(z0, R), whose

radius of convergence is equal to R. And evaluating at z = z0, we get f (k)(z) = k! ak.

Similarly, we can obtain primitives (anti-derivatives) of power series by integrating termwise in
the series.
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Corollary 3.22 (Antiderivatives of Power Series). Let
∑∞

n=0 an(z−z0)n be a power series with radius
of convergence R > 0, and define D(z0, R) ∋ z 7→ f(z) :=

∑∞
n=0 an(z−z0)n. Then the power series

∞∑
n=0

an
n+ 1

(z − z0)
n+1

has radius of convergence equal to R, and the function g(z) =
∑∞

n=0
an
n+1(z−z0)

n+1 is holomorphic
in D(z0, R) with g

′(z) = f(z) for all z ∈ D(z0, R).

Proof. Because

lim sup
n→∞

(
|an|
n+ 1

)1/(n+1)

= lim sup
n→∞

(
|an|
n+ 1

)1/(n+1)

= lim sup
n→∞

(
|an|1/n

)n/(n+1)
=

1

R
,

the radius of convergence of the series
∑∞

n=0
an
n+1(z−z0)

n+1 is equal R by Theorem 3.15. Applying

Theorem 3.20 to this power series, we get that g(z) =
∑∞

n=0
an
n+1(z − z0)

n+1 is holomorphic in
D(z0, R) with

g′(z) =
∞∑
n=0

an(z − z0)
n = f(z), z ∈ D(z0, R).

3.4 Analytic Functions

Definition 3.23 (Analytic function). Let Ω ⊂ C be open and f : Ω → C a function. If z0 ∈ Ω, we
say that f is analytic at z0 if there exists r > 0 with D(z0, r) ⊂ Ω and a sequence {an}n∈N∗ ⊂ C
so that

f(z) =

∞∑
n=0

an(z − z0)
n for all z ∈ D(z0, r).

If f is analytic at every z0 ∈ Ω, we say that f is analytic in Ω. We denote the family of all
analytic functions in Ω by A(Ω).

Remark 3.24. If f : Ω → C is analytic at z0 ∈ Ω and f(z) =
∑

n=0 an(z−z0)n for all z ∈ D(z0, r) ⊂
Ω, then in particular

∑
n=0 ans

n is convergent (to f(z0 + s) ∈ C) for all 0 < s < r, and therefore
r ≤ R, the radius of convergence of the power series

∑
n=0 an(z − z0)

n; recall Definition 3.12.
Consequenly, f coincides with a power series on a disk D(z0, r) contained in its disk of convergence
D(z0, R). By Corollary 3.21, f ∈ C∞(D(z0, r)) and

f(z) =
∑
n=0

f (n)(z0)

n!
(z − z0)

n for all z ∈ D(z0, r).

And observe that in the case where f (n)(z0) = 0 for all n ∈ N∗ (understanding that f (0) = f), f is
identically zero on D(z0, r).

Note that Remark 3.24 implies that we only need to assume analyticity of f at a point z0 to
guarantee C∞ regularity on a whole disk D(z0, r) around z0.

3.4.1 Analyticity of Power Series

The next step is showing that actually analyticity at a point z0 implies analyticity on a disk
around z0. To prove this, we will show that all power series are analytic functions on their disk of
convergence. We first need a Fubini-type property for summation of iterated series to make our
proof entirely rigorous.
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Proposition 3.25. Let C : N∗ × N∗ → C be a function such that

either
∞∑
n=0

∞∑
k=0

|C(n, k)| <∞ or
∞∑
k=0

∞∑
n=0

|C(n, k)| <∞.

Then we have
∞∑
n=0

∞∑
k=0

C(n, k) =

∞∑
k=0

∞∑
n=0

C(n, k).

Proof. Assume, without loss of generality, that
∑∞

n=0

∑∞
k=0 |C(n, k)| <∞. Consequently

∞∑
k=0

C(n, k) ∈ C,
∞∑
k=0

|C(n, k)| ∈ C for all n and

∞∑
n=0

C(n, k) ∈ C,
∞∑
n=0

|C(n, k)| ∈ C for all k,

which we will be using systematically (and implicitly) in the proof. Now, let ε > 0. For each
n ∈ N∗, we have that φ(n) :=

∑∞
k=0 |C(n, k)| ∈ C, as a consequence of the assumption. Moreover,

the assumption says that
∑∞

n=0 φ(n) converges, and so the partial sums have the Cauchy property.
Thus there exists N0 ∈ N such that

M∑
n=N+1

∞∑
k=0

|C(n, k)| =
M∑

n=N+1

φ(n) ≤ ε

3
, for all M,N ≥ N0. (3.4.1)

The convergence of
∑∞

n=0

∑∞
k=0 |C(n, k)| also implies that L :=

∑∞
n=0

∑∞
k=0C(n, k) ∈ C. Thus we

can find N1 ≥ N0 such that ∣∣∣∣∣
N1∑
n=0

∞∑
k=0

C(n, k)− L

∣∣∣∣∣ ≤ ε

3
. (3.4.2)

But also lim
K→∞

∑K
k=0C(n, k) ∈ C for all n, and so we can find K1 (depending on N1 and ε) such

that, for every K ≥ K1 : ∣∣∣∣∣
N1∑
n=0

∞∑
k=0

C(n, k)−
N1∑
n=0

K1∑
k=0

C(n, k)

∣∣∣∣∣ ≤ ε

3
.

This estimate, in combination with (3.4.2), gives∣∣∣∣∣
K∑
k=0

N1∑
n=0

C(n, k)− L

∣∣∣∣∣ =
∣∣∣∣∣
N1∑
n=0

K∑
k=0

C(n, k)− L

∣∣∣∣∣ ≤ 2ε

3
for all K ≥ K1. (3.4.3)

It is now tempting to freeze K and let N1 → ∞ in (3.4.3), but we are not allowed to do so because
here K is at least K1, which depends on N1. We need to show an estimate like (3.4.3) replacing
N1 with every N ≥ N1. But we can use (3.4.1) with N > N1 ≥ N0 (and (3.4.3) itself) to get that,
for all K ≥ K1 and N ≥ N1,∣∣∣∣∣

K∑
k=0

N∑
n=0

C(n, k)− L

∣∣∣∣∣ ≤
∣∣∣∣∣
K∑
k=0

N∑
n=0

C(n, k)−
K∑
k=0

N1∑
n=0

C(n, k)

∣∣∣∣∣+
∣∣∣∣∣
K∑
k=0

N1∑
n=0

C(n, k)− L

∣∣∣∣∣
≤

K∑
k=0

N∑
n=N1+1

|C(n, k)|+ 2ε

3
≤ ε

3
+

2ε

3
= ε.

Now we can first freeze K and let N → ∞ to obtain
∣∣∣∑K

k=0

∑∞
n=0C(n, k)− L

∣∣∣ ≤ ε, and then

let K → ∞ to conclude |
∑∞

k=0

∑∞
n=0C(n, k)− L| ≤ ε. Since ε > 0 was arbitrary, we get∑∞

k=0

∑∞
n=0C(n, k) = L, as desired.
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Theorem 3.26 (Analyticity of Power Series). Let
∑∞

n=0 an(z − z0)
n be a power series with radius

of convergence R > 0. Then the function D(z0, R) ∋ z 7→ f(z) :=
∑∞

n=0 an(z − z0)
n is analytic in

D(z0, R).

Proof. Obviously we already have that f is analytic at z0. So let z1 ∈ D(z0, R)\{z0} and let r > 0
be so that r + |z1 − z0| < R. Note than then D(z1, r) ⊂ D(z0, R). For every z ∈ D(z1, r) and
n ∈ N∗, we write (z − z0)

n = ((z − z1) + (z1 − z0))
n and apply the Binomial Formula (1.1.3) to

obtain

f(z) =
∞∑
n=0

an(z − z0)
n =

∞∑
n=0

an

n∑
k=0

(
n

k

)
(z − z1)

k(z1 − z0)
n−k =

∞∑
n=0

∞∑
k=0

C(n, k); (3.4.4)

where C(n, k) :=

{
an
(
n
k

)
(z − z1)

k(z1 − z0)
n−k if 0 ≤ k ≤ n

0 if k > n.

It is now convenient to be able to apply Proposition 3.25 to change the order of summation∑
n

∑
k →

∑
n

∑
k, for which we will check first that

∑∞
n=0

∑∞
k=0 |C(n, k)| <∞. Indeed,

∞∑
n=0

∞∑
k=0

|C(n, k)| ≤
∞∑
n=0

n∑
k=0

|an|
(
n

k

)
|z − z1|k|z1 − z0|n−k =

∞∑
n=0

|an| (|z − z1|+ |z − z0|)n .

But s := |z−z1|+|z1−z0| < r+|z1−z0| < R, and R is the radius of convergence of
∑∞

n=0 an(z−z0)n,
so e.g. (3.3.2) says that series

∑∞
n=0 |an|sn. Therefore

∑∞
n=0

∑∞
k=0 |C(n, k)| <∞.

Continuing with the equalities of (3.4.4), we use Proposition 3.25 to arrive at

f(z) =
∞∑
n=0

∞∑
k=0

C(n, k) =
∞∑
k=0

∞∑
n=0

C(n, k) =
∞∑
k=0

∞∑
n=k

an

(
n

k

)
(z − z1)

k(z1 − z0)
n−k =

∞∑
k=0

bk(z − z1)
k;

(3.4.5)

where bk :=

∞∑
n=k

an

(
n

k

)
(z1 − z0)

n−k, k ∈ N∗.

Let us justify why bk ∈ C for all k. Because
(
n
k

)
≤ nk

k! , we have the estimate

∞∑
n=k

|an|
(
n

k

)
|z1 − z0|n−k ≤ 1

k!|z1 − z0|k
∞∑
n=k

|an|nk|z1 − z0|n,

and we check whether this series converges using e.g. the Root Test; see Proposition 3.4. We have

lim sup
n→∞

(
|an|nk|z1 − z0|n

)1/n
= |z1 − z0| lim sup

n→∞
|an|1/n =

|z1 − z0|
R

,

by virtue of formula (3.3.3), as R is the radius of convergence of the series
∑∞

n=0 an(z − z0)
n.

But |z1 − z0| < R, so the previous limit superior is smaller than 1, and so the numerical series∑∞
n=k |an|nk|z1 − z0|n is convergent, as so is the series defining the number bk. From (3.4.5), we

see that f is analytic at z1.

Corollary 3.27. Let Ω ⊂ C be open and z0 ∈ Ω. If f is analytic at z0, then f is analytic on a disk
D(z0, r) ⊂ Ω.

Proof. By Remark 3.24, f is a power series on a disk D(z0, r) contained in the disk of convergence
of this series. By Theorem 3.26, f is then analytic in D(z0, r).
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3.4.2 Examples

Let us find the power series expansions of some of the elementary functions we constructed in
Section 2.4.

Example 3.28. The complex exponential C ∋ z 7→ ez ∈ C from Definition 2.48 is analytic in C, and

ez =
∞∑
n=0

zn

n!
for all z ∈ C. (3.4.6)

To see this, let us recall known results from real analysis:

ex =

∞∑
n=0

xn

n!
, cos y =

∞∑
n=0

(−1)n

(2n)!
y2n, sin y =

∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1, x, y ∈ R.

This is shown via computing the Taylor series at the origin of the functions R ∋ x 7→ ex, R ∋ y 7→
cos y, sin y. The series of cos y and sin y above converge absolutely, and so we can sum termwise
and take into account (1.1.2) to obtain

cos y + i sin y =

∞∑
n=0

(−1)n

(2n)!
y2n + i

∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1 =

∞∑
n=0

i2n

(2n)!
y2n +

∞∑
n=0

i · i2n

(2n+ 1)!
y2n+1

=
∞∑
n=0

(iy)2n

(2n)!
+

∞∑
n=0

(iy)2n+1

(2n+ 1)!
=

∞∑
n=0

(
(iy)2n

(2n)!
+

(iy)2n+1

(2n+ 1)!

)
=

∞∑
n=0

(iy)n

n!
.

For all x, y ∈ R, the two numerical series
∑∞

n=0
xn

n! and
∑∞

n=0
(iy)n

n! converge absolutely (e.g. by
the Root Test from Proposition 3.4), and so their Cauchy product is absolutely convergent, and
converges to the product of the series by Proposition 3.6. From (3.1.2), the general term of the
Cauchy product is

cn(x, y) =

n∑
k=0

xk

k!

(iy)n−k

(n− k)!
=

n∑
k=0

1

n!

(
n

k

)
xk(iy)n−k =

(x+ iy)n

n!
,

after applying Newton’s binomial formula. This shows the identity

ex+iy = ex(cos y + i sin y) =

( ∞∑
n=0

xn

n!

)( ∞∑
n=0

(iy)n

n!

)
=

∞∑
n=0

cn(x, y) =
∞∑
n=0

(x+ iy)n

n!
,

thus showing (3.4.6). Using the definitions (2.4.2) in combination with (3.4.6), we get that z 7→
sin z, cos z are analytic in C with

cos z =
∞∑
n=0

(−1)n

(2n)!
z2n, sin z =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1, z ∈ C. (3.4.7)

Example 3.29. Let us prove that the principal branch of the logarithm (Definition 2.60) satisfies

Log(1− z) = −
∞∑
n=1

zn

n
, |z| ≤ 1, z ̸= 1. (3.4.8)

Indeed, it is immediate that the radius of convergence of the series above is R = 1, by (3.3.3).
Defining f(z) = −

∑∞
n=1

1
nz

n, by Corollary 3.21, the series obtained by differentiating termwise

g(z) := −
∞∑
n=1

zn−1 = −
∞∑
n=0

zn, |z| < 1,
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is holomorphic on D(0, 1) with g′ = f. But g is a geometric series, whose value is g(z) = 1
1−z . Now,

the points of the form w = 1− z, with |z| < 1, clearly satisfies Re(w) > 0, contained in the domain
of holomorphicity of Log, see Theorem 2.63. Thus (Log)′(1− z) = −1

1−z = f ′(z) for all |z| < 1. By
Corollary 2.37, D(0, 1) ∋ z 7→ Log(1 − z) and f differ by a constant, but evaluating at z = 0, we
see that f(0) = 0 = Log(1), from which we obtain (3.4.8) for all |z| < 1. Now, for z ∈ ∂D(0, 1)
with z ̸= 1, we have from Picard’s Criterion 3.18 that −

∑∞
n=1

1
nz

n is convergent. If r ∈ (0, 1) then
rz ∈ D(0, 1), and so

Log(1− rz) = −
∞∑
n=1

1

n
(rz)n = −

∞∑
n=1

1

n
znrn.

By the continuity of Log in C \ (−∞, 0] and Exercise 3.15, we deduce

Log(1− z) = lim
r→1−

Log(1− rz) = − lim
r→1−

∞∑
n=1

zn

n
rn = −

∞∑
n=1

1

n
zn,

and this proves completely (3.4.8). Note that (3.4.8) also implies

Log(1 + z) = −
∞∑
n=1

(−z)n

n
=

∞∑
n=1

(−1)n+1

n
zn, |z| ≤ 1, z ̸= −1.

3.4.3 Operations with Power Series and Analytic Functions

As expected, linear combinations of power series is another power series in the appropriate disks of
convergence. The same holds for the product, using the Cauchy product to obtain the coefficients
of the new series.

Proposition 3.30. Let
∑∞

n=0 an(z − z0)
n and

∑∞
n=0 bn(z − z0)

n be two power series centered at
z0 ∈ C with radius of convergence R1 > 0 and R2 > 0 respectively. Then,

(i) If λ ∈ C \ {0}, the power series
∑∞

n=0 λan(z − z0)
n has radius of convergence R1, and

∞∑
n=0

λan(z − z0)
n = λ

∞∑
n=0

an(z − z0)
n, z ∈ D(z0, R1).

(ii) The power series
∑∞

n=0(an + bn)(z − z0)
n has radius of convergence R ≥ min{R1, R2}, and

∞∑
n=0

(an+bn)(z−z0)n =

∞∑
n=0

an(z−z0)n+
∞∑
n=0

bn(z−z0)n, z ∈ D (z0,min{R1, R2}) . (3.4.9)

(iii) The power series
∑∞

n=0 cn(z − z0)
n, where cn =

∑n
k=0 akbn−k, n ∈ N∗, has radius of conver-

gence R ≥ min{R1, R2} and

∞∑
n=0

cn(z − z0)
n =

( ∞∑
n=0

an(z − z0)
n

)( ∞∑
n=0

bn(z − z0)
n

)
, z ∈ D (z0,min{R1, R2}) .

(3.4.10)

Proof.

(i) That
∑∞

n=0 λan(z − z0)
n has radius of convergence R1 is immediate from the definition (3.3.1),

and the equality because the sums for all z ∈ D(z0, R1) follows from the C-linearity of limits (of
partial sums, in this case).

(ii) For every r < min{R1, R2}, the two series
∑∞

n=0 anr
n and

∑∞
n=0 bnr

n are convergent, and so is∑∞
n=0(an + bn)r

n. Therefore R ≥ min{R1, R2}, and the equality (3.4.9) clearly holds.
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(iii) For every r < min{R1, R2}, and every z ∈ D(z0, r), the numerical series
∑∞

n=0 an(z− z0)
n and∑∞

n=0 bn(z − z0)
n converge absolutely; see Theorem 3.15. By Propostion 3.6, the series

∑∞
n=0 cn,z

also converges (even absolutely), where

cn,z :=
n∑

k=0

ak(z − z0)
kbn−k(z − z0)

n−k = (z − z0)
n

n∑
k=0

akbn−k = (z − z0)
ncn,

and (also thanks to Proposition 3.6), we have( ∞∑
n=0

an(z − z0)
n

)( ∞∑
n=0

bn(z − z0)
n

)
=

∞∑
n=0

cn,z =
∞∑
n=0

cn(z − z0)
n.

This holds for all z ∈ D(z0, r), 0 < r < min{R1, R2}, from which we get the bound R ≥ {R1, R2}
and the equality (3.4.10) for all z ∈ D (z0,min{R1, R2}) .

Consequently, analyticity is closed under multiplication with scalars, sums, and multiplications
of functions.

Corollary 3.31. Let Ω ⊂ C be open, and f, g ∈ A(Ω), λ ∈ C. Then also

λf ∈ A(Ω), f + g ∈ A(Ω), f · g ∈ A(Ω).

Proof. For every z0 ∈ Ω, we have expansions f(z) =
∑∞

n=0 an(z−z0)n and g(z) =
∑∞

n=0 bn(z−z0)n
on z ∈ D(z0, r). By Proposition (3.30), we have expansions for λf, f +g, and f ·g into power series
centered z0 on the disk D(z0, r) as well, and so those functions are analytic at z0.

The division of power series and/or analytic functions is a slightly more delicate issue and
we are not yet able to prove that dividing analytic functions gives another analytic function. If
f, g ∈ A(Ω) and g ̸= 0 on Ω, then f, g ∈ H(Ω) (Theorem 3.20), and h = f/g ∈ H(Ω) as well; see
Proposition 2.34. But we do not (yet) know that then h ∈ A(Ω). This will be proven in Chapter 4.
Nonetheless, assuming a priori that h is analytic, we can deduce an expression for the coefficients
of the power series of h in terms of those of f and g.

Namely, let f, g ∈ A(Ω), z0 ∈ Ω with g(z0) ̸= 0 and f(z) =
∑∞

n=0 an(z − z0)
n, g(z) =∑∞

n=0 bn(z − z0)
n, h(z) =

∑∞
n=0 cn(z − z0)

n on z ∈ D(z0, r). Let us express the coefficients cn in
terms of an, bn. We can assume that the convergence of the three series is absolutely–uniform on
D(z0, r), and because f = h · g, (3.4.10) says that

f(z) =

( ∞∑
n=0

cn(z − z0)
n

)
·

( ∞∑
n=0

bn(z − z0)
n

)
=

∞∑
n=0

n∑
k=0

ckbn−k(z − z0)
n, z ∈ D(z0, r);

whence an =
∑n

k=0 ckbn−k for all n ∈ N∗. Therefore

c0 =
a0
b0
, c1 =

1

b0
(a1 − c0b1) , . . . , cn =

1

b0

(
an −

k−1∑
k=0

ckbn−k

)
, n ∈ N∗.

3.4.4 Identity Principles for Analytic Functions

Analytic functions have a rather rigid structure. In particular, if at some point of a domain all
its derivatives are zero, the function is automatically everywhere zero on that domain. This is the
content of the next theorem.

Theorem 3.32 (1st Identity Theorem). Let Ω be open and connected, and f : Ω → C analytic in Ω.
The following statements are equivalent

(i) f(z) = 0 for all z ∈ Ω.
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(ii) There exists z0 ∈ Ω such that f(z0) = f (n)(z0) = 0 for all n ∈ N.

Proof. The impplication (i) =⇒ (ii) is obvious. Conversely, assume (ii) and define

E := {z ∈ Ω : f (n)(z) = 0 for all n ∈ N∗}.

The set E is nonempty because z0 ∈ E and obviously E ⊂ Ω.
Let us show that E is open. Indeed, if z ∈ E, then f (n)(z) = 0 for all n ∈ N∗, and since f is

analytic at z, there exists δ > 0 so that f(w) = 0 for all w ∈ D(z, δ); as we pointed out in Remark
3.24. Of course this implies f (n)(z) = 0 for all n ∈ N∗ and all w ∈ D(z, δ) as well, which shows
that D(z, δ) ⊂ E. Consequently, E is open.

Now, let us prove that E = F ∩ Ω, for some closed set F. Each function f (n) : Ω → C
is continuous on Ω (because f ∈ C∞(Ω)), and since {0} is closed, Proposition 2.20 says that(
f (n)

)−1
({0}) = Fn ∩ Ω for some Fn ⊂ C closed. But then F =

⋂∞
n=0 Fn is closed as well (by

virtue of Proposition 2.4), and clearly E = F ∩ Ω.
Since E is nonempty, E = F ∩Ω, with F closed, and Ω is open and connected, by Proposition

2.27, we conclude E = Ω, which means f ≡ 0 in Ω.

A particular consequence of Theorem 3.32 is that if f is analytic on a domain Ω and f ≡ 0 on
some open subset U ⊂ Ω, then f ≡ 0 on Ω as well. Actually the distribution of zeros of (non-null)
analytic functions is even more rigid: their zeros are isolated. This is a fundamental principle for
analytic functions, which is stated and proved in the next theorem.

For a function f : Ω → C, we denote the set of zeros of f in Ω by

ZΩ(f) := {z ∈ Ω : f(z) = 0}.

For every A, we denote by A′ the set of accumulation points of A; recall Definition 2.5.

Theorem 3.33 (2nd Identity Theorem). Let Ω be open and connected, and f : Ω → C analytic in
Ω. The following statements are equivalent

(i) f(z) = 0 for all z ∈ Ω.

(ii) There exist z0 ∈ Ω and a sequence {zk}k ⊂ Ω \ {z0} such that lim
k→∞

zk = z0 and f(zk) = 0 for

all k ∈ N. By Proposition 2.9, this is the same as saying that (ZΩ(f))
′ ∩ Ω ̸= ∅.

Proof. The implication (i) =⇒ (ii) is obvious. Conversely, assume that (ii) holds and let z0 ∈ Ω
and {zk}k be as in (ii). Since f is analytic at z0, Remark 3.24 says that we can write

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, z ∈ D(z0, r) ⊂ Ω.

Suppose, seeking a contradiction, that f ̸≡ 0 on Ω. By Theorem 3.32, there is some m0 ∈ N∗ such
that f (m0)(z0) ̸= 0. Letm ∈ N∗ be the smallest nonnegative integer with the property f (m)(z0) ̸= 0.
The series above then becomes

f(z) =

∞∑
n=m

f (n)(z0)

n!
(z − z0)

n = (z − z0)
mg(z); where g(z) =

∞∑
n=0

f (n+m)(z0)

(n+m)!
(z − z0)

n

for all z ∈ D(z0, r). Because zk → z0, we may assume that zk ∈ D(z0, r) for all k. The assumptions
says that 0 = f(zk) = (z− z0)

mg(zk), whence g(zk) = 0 because zk ̸= z0. But g : D(z0, r) → C is a

continuous function, and zk → z0 implies g(zk) → g(z0) =
f (m)(z0)

m! ̸= 0. This is a contradiction.

Theorems 3.32 and 3.33 are not true outside the class of analytic functions. For instance, the
real function f : R → R given by

f(x) =

{
e−

1
x2 if x > 0

0 if x ≤ 0,

is of class C∞(R,R) with f (n)(0) = 0 for all n ≥ 0, and obviously f is not identically null in R.
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3.5 Exercises

Exercise 3.1. Prove that the Cauchy product of the series
∑∞

n=0
(−1)n√
n+1

with itself is not a convergent
series.

Exercise 3.2. If {zn}n, {wn}n are sequences complex numbers, prove, justifying carefully all the
steps, that:

(i)
∑∞

n=1 zn converges if and only if
∑∞

n=1Re(zn) and
∑∞

n=1 Im(zn) converge.

(ii) If |zn| ≤ |wn| for all n ∈ N, and
∑∞

n=1wn converges absolutely, then
∑∞

n=1 zn converges
absolutely too.

(iii)
∑∞

n=1 zn converges absolutely if and only if
∑∞

n=1Re(zn) and
∑∞

n=1 Im(zn) converge abso-
lutely.

Exercise 3.3. Use Exercise 3.2 to show that if {zn}n ⊂ C is such that there exists 0 < θ < π/2 so
that |Arg(zn)| ≤ θ for all n ∈ N, then

∞∑
n=1

zn converges ⇐⇒
∞∑
n=1

zn converges absolutely.

Suggestion: Use the assumption on Arg(zn) to study the proportion between Im(zn) and Re(zn).

Exercise 3.4. Consider the sequence of functions {fn : C → C}n given by

fn(z) =
n+ ez

1 + n|z|2
, n ∈ N, z ∈ C.

Find f : C \ {0} → C so that {fn}n converges pointwise to f on C \ {0}. Then show that this
convergence is uniform on each set AR := {z ∈ C : 1/R ≤ |z| ≤ R}, with R > 0.

Suggestion: We remind that |ez| = eRe(z), see (2.4.1), which helps when estimating.

Exercise 3.5. For Ω := {z ∈ C : Im(z) > 0}, consider the sequence of functions {fn : Ω → C}n
given by fn(z) = tan(nz), z ∈ Ω, n ∈ N. Prove that fn converges pointwise to the constant
function f(z) = i for all z ∈ Ω, and that the convergence is uniform on each set of the form
{z ∈ C : Im(z) ≥ ε} with ε > 0.

Exercise 3.6. Let K ⊂ C be compact, and {fn : K → R}n a sequence of real-valued and continuous
functions on K such that {fn}n converges pointwise to a continuous f : K → R, and that fn(z) ≤
fn+1(z) for all z ∈ K, n ∈ N. Prove that {fn}n converges to f uniformly.

Exercise 3.7. Let A ⊂ C be a set, and {fn}n sequence of continuous functions fn : A → C
converging uniformly on A (to some function f : A → C). Show that also {fn}n converges
uniformly on A.

As a corollary, show that if a power series
∑∞

n=0 an(z − z0)
n, {an} ⊂ C, z0 ∈ C, converges

uniformly in some set A, then it converges uniformly on A.

Exercise 3.8. Prove that if a power series
∑∞

n=0 an(z−z0)n, {an}n ⊂ C, z0 ∈ C, converges uniformly
in all of C, then there exists n0 ∈ N so that an = 0 for all n ≥ n0.

Suggestion: Show first that the uniform convergence of
∑∞

n=0 an(z − z0)
n on z ∈ C, implies

that {|an(z − z0)
n|}n converges to 0 uniformly on z ∈ C as well.

Exercise 3.9. Consider the series of functions
∑∞

n=1 fn, with fn(x) =
(−1)n

n xn for all x ∈ A := [0, 1),
n ∈ N. Prove that

∑∞
n=1 fn converges absolutely and uniformly on A but not absolutely-uniformly

on A. This amounts to show that:
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(a) for each x ∈ A, the numerical series
∑∞

n=1 |fn(x)| converges;

(b) the sequence of functions given by the partial sums {
∑N

n=1 fn : A→ R}N converges uniformly
on A;

(c) the sequence of functions given by the partial sums {
∑N

n=1 |fn| : A→ R}N does not converge
uniformly on A.

Hint: For (b) and (c), it is easier to study the truth/falsity of the corresponding Cauchy prop-
erty.

Exercise 3.10. If Ω := {z ∈ C : Re(z) > 1}, prove the following about the series of functions∑∞
n=1

1
nz , z ∈ Ω :

(a)
∑∞

n=1
1
nz converges absolutely for each z ∈ Ω.

(b)
∑∞

n=1
1
nz converges absolutely–uniformly on each set {z ∈ C : Re(z) ≥ 1 + ε}, with ε > 0.

(c)
∑∞

n=1
1
nz does not converge uniformly on Ω.

Clarification: Here nz is the principal z-power of n, that is, nz = ez Logn = ez logn. For parts
(b) and (c), it’s perhaps easier to prove/disprove the corresponding Cauchy property.

Exercise 3.11. Let f : R → [0,∞) be a decreasing function with
∫∞
0 f(x) dx = ∞. Prove that the

series
∑∞

n=1 f(n)z
n has radius of convergence R ≤ 1.

Exercise 3.12. Determine the disk and the radius of convergence of the following power series.

a)
∑∞

n=1
1
n2 z

n b)
∑∞

n=1

(3 + 4i)n

(1 + i
n)

n3 (z − i)n c)
∑∞

n=1 (
n
√
n− 1)

n
(z − 1)n d)

∑∞
n=1 n!z

n

e)
∑∞

n=1 (2 + (−1)n)n zn f)
∑∞

n=1
n!
nn zn g)

∑∞
n=1(log n)

2zn h)
∑∞

n=1
nn

1+2nnn zn

i)
∑∞

n=1
1
4
√
n
zn j)

∑∞
n=1

nn

n! z
n k)

∑∞
n=1 z

n2
l)
∑∞

n=1 2
nzn!

m)
∑∞

n=1
1
n2 z

n! n)
∑∞

n=1
(−1)n

logn z
3n−1 o)

∑∞
n=1 3

n2
z1+2+···+n p)

∑∞
n=1

(3n)!
(n!)3

z3n.

If needed, feel free to use Stirling’s Theorem: lim
n→∞

n!en

nn
√
2πn

= 1.

Exercise 3.13. For the series a)–p) in Exercise 3.12, study the convergence in the boundary of their
disk of convergence.

Exercise 3.14. For every m ∈ N, find a power series with disk of convergence D(0, 1) and so that
it diverges precisely at m points of the boundary ∂D(0, 1) of D(0, 1).

Suggestion: Look at Theorem 3.18 and recall that there are precisely m mth-roots of unity.

Exercise 3.15. Let ξ ∈ C\{0} be so that
∑∞

n=0 anξ
n is convergent. Prove that the series of functions

{
∑∞

n=0 anr
nξn}n, defined on r ∈ [0, 1], converges uniformly on [0, 1]. Then deduce that

lim
r→1−

∞∑
n=1

anξ
nrn =

∞∑
n=1

anξ
n.

Suggestion: Use Abel’s Summation by Parts formula; Lemma 3.17.

Exercise 3.16. Prove the following power series expansions.

(a) cosh z =
∑∞

n=0
z2n

(2n)! for all z ∈ C.
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(b) sinh z =
∑∞

n=0
z2n+1

(2n+1)! for all z ∈ C.

(c) ez

1−z =
∑∞

n=0

(∑n
k=0

1
k!

)
zn for all |z| < 1.

(d) 1
(1−z)m =

∑∞
n=0

(
n+m−1
m−1

)
zn for all |z| < 1, and a fixed m ∈ N.

Suggestion: In (c), use the Cauchy Product, Definition 3.5, Proposition 3.6, of two known
series.

Exercise 3.17. Show that the following series converge in the given sets and calculate their sum.

(a)
∑∞

n=0 nz
n, for |z| < 1.

(b)
∑∞

n=0 n
2zn, for |z| < 1.

(c)
∑∞

n=0(2
n − 1)zn, for |z| < 1/2.

(d)
∑∞

n=1
cos(nθ)

n , for θ ∈ R, 0 < |θ| ≤ π.

(e)
∑∞

n=1
sin(nθ)

n , for θ ∈ R, 0 < |θ| ≤ π.

Suggestion: In (d), look at the logarithmic expansion (3.4.8), in Example 3.29.

Exercise 3.18. Express the following functions as power series centered at z = 0 and z = i.

(a)
1

z − 2
. (b)

1

(z − 2)2
. (c)

1

z2 − z − 2
.

Suggestion: In (c), use partial fraction decomposition.

Exercise 3.19. For the function f(z) = sin z, z ∈ C, show that Z(f) = {kπ : k ∈ Z} (the zeros of
f). This function is analytic in C, not identically null, and vanishes in a sequence. Explain why
this does not contradict the 2nd Identity Theorem 3.33.

Exercise 3.20. Let f ∈ A(D(0, 1)) such that f( 1
n2 ) =

n4

(n2−1)2
for all n ∈ N, n ≥ 2. Find the explicit

formula for f(z) for all z ∈ D(0, 1).

Exercise 3.21. Let f ∈ A(D(0, 1)) such that f( 1n) =
n2

n2+1
for all n ∈ N, n ≥ 2. Find the explicit

formula for f(z) for all z ∈ D(0, 1), and calculate f (n)(0) for all n ∈ N.
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Chapter 4

Complex Integration. The Fundamental
Theorems

In this chapter we cover some of the most important theorems of the course, for the class of
holomorphic functions, as well as some of their consequences. Here is a brief summary:

• The Local Cauchy-Goursat Integral Theorems: holomorphic maps have null integrals over
triangles, and over closed paths in convex domains; see Theorem 4.20 and Corollary 4.23.

• The Cauchy Integral formula: an expression for a holomorphic map via path-integrals against
a rational function (Theorem 4.27 and Corollary 4.29).

• C∞-regularity for holomorphic functions and the Cauchy Formulae for the derivatives: holo-
morphic maps are infinitely differentiable and the derivatives have integral expressions against
rational functions; see Theorem 4.32.

• Analyticity of holomorphic maps: holomorphic functions are analytic; see Theorem 4.39.

• The Morera Theorem: a characterization of holomorphicity via null-integral condition over
triangles; see Theorem 4.36.

• The Weierstrass Convergence Theorem: the locally uniform limit of holomorphic functions
is holomorphic; see Theorem 4.37.

• The Maximum Modulus Principles: the modulus of holomorphic maps attain their maximum
in the boundary; see Theorems 4.48, 4.50.

• The Liouville Theorem: holomorphic maps in C are either unbounded or constant; see The-
orem 4.45.

• The Fundamental Theorem of Algebra: every complex polynomial of degree n has precisely
n roots counted with multiplicty; see Theorem 4.47.

4.1 Contour Integration

The contour integral is a type of integral defined for complex-valued functions over a sufficiently
suitable class of curves or paths. In these notes, we will use the terminology complex path-
integration.

4.1.1 Continuous and Piecewise C1-paths

In Section 2.3 we briefly discussed the differentiability of curves γ : (a, b) → C in order to deal
with angle-preserving and conformal maps; see Definition 2.40. Here we extend this concept to
piecewise continuous or piecewise C1 curves.
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Definition 4.1 (Path). A path is any continuous function γ : [a, b] → C with a, b ∈ R, and a ≤ b.
Then the trace of the γ is the set

γ∗ := γ([a, b]) = {γ(t) : t ∈ [a, b]}.

We also say that the path γ : [a, b] → C is closed if γ(a) = γ(b).

Observe that the trace γ∗ = γ([a, b]) of a path γ : [a, b] → C is always a compact set, as the
image of the compact set [a, b] by a continuous function; see Proposition 2.25.

There are two basic operations with paths that we will use systematically.

Definition 4.2 (Reverse path and Composition of paths). If γ : [a, b] → C is a path, the reverse
path γ− of γ is the path γ− : [a, b] → C given by

γ−(t) := γ(a+ b− t), t ∈ [a, b].

In particular, γ−(a) = γ(b), γ−(b) = γ(a) and γ∗ = (γ−)∗.

Also, if γ1 : [a, b] → C and γ2 : [c, d] → C are two paths with γ1(b) = γ2(c), the concatenation
or composition of γ1 and γ2 is the path γ1 ⋆ γ2 : [0, 1] → C given by

(γ1 ⋆ γ2)(t) =

{
γ1(a+ (b− a)2t) if t ∈ [0, 1/2]

γ2(c+ (d− c)(2t− 1)) if t ∈ [1/2, 1].
(4.1.1)

The continuity of γ1 and γ2 and γ1(b) = γ2(c) imply the continuity of γ1 ⋆ γ2 in [0, 1].

Example 4.3. Some instances of paths are the following:

• Given z, w ∈ C, the segment line [z, w] joining z and w can be described via the path
γ : [0, 1] → C, γ(t) = tw + (1 − t)z for all t ∈ [0, 1]. Note that this path γ has certain
orientation, meaning that the initial and terminal points are z and w respectively. The reverse
path γ− : [0, 1] → C given by γ(t) = tz + (1 − t)w for all t ∈ [0, 1], has initial and terminal
points equal to w and z respectively. The traces of these paths are γ∗ = (γ−)∗ = [z, w].

• Given z0 ∈ C, r > 0, n ∈ N, the trace γ∗ of the path γ : [0, 2π] → C given by γ(t) = z0+re
int,

t ∈ [0, 2π], is the circle S(z0, r). However, γ travels on the circle n times and counterclockwise.
The reverse path γ− of γ is γ−(t) = z0 + re−int, t ∈ [0, 2π], which takes precisely n loops on
the circle S(z0, r) but in the clockwise direction.

• The set ∂Q = {z ∈ C : max{|Re(z)|, | Im(z)|} = 1} is the boundary of the unit square of
R2, which can be written as the trace of the concatenation γ1 ⋆ γ2 ⋆ γ3 ⋆ γ4 of the paths

γ1(t) = 1 + ti, γ2(t) = −t+ i, γ3(t) = −1− ti, γ4(t) = t− i, t ∈ [−1, 1].

The closed path γ := γ1 ⋆γ2 ⋆γ3 ⋆γ4 travels ∂Q counterclockwise with 1− i as initial (and terminal)
point.

According to Definition 2.40, a path γ : [a, b] → C is differentiable at a point t ∈ (a, b) when
the real functions Re(γ), Im(γ) : [a, b] → R are differentiable at t0. The one-sided derivatives of γ
and the points a, b are defined in the natural way:

γ′+(a) := lim
t→a+

γ(t)− γ(a)

t− a
, γ′−(b) := lim

t→b−

γ(t)− γ(b)

t− b
. (4.1.2)

This enables us to define paths that are C1 in [a, b] except at finitely many points.
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Definition 4.4 (Piecewise C1-paths). We say that γ : [a, b] → C is a C1-path if γ is differentiable at
all point of (a, b), the one-sided derivatives (4.1.2) exist (meaning that they are complex numbers),
and the derivative γ′ : [a, b] → C is continuous in [a, b].

More generally, we say that γ : [a, b] → C is a piecewise C1-path if there exist finitely many
points a = t1 < t2 < · · · < tN−1 < tN = b so that each restricted curve γ|[tn,tn+1]

: [tn, tn+1] → C is

a C1-path for all n ∈ {1, . . . , N − 1}.

Remark 4.5. If γ : [a, b] → C is a C1-path (resp. piecewise C1-path), the reverse path γ− : [a, b] →
C is C1 (resp. piecewise C1) as well.

Also, it is clear that if γ1 : [a, b] → C, γ2 : [c, d] → C are piecewise C1-paths with γ1(b) = γ2(c),
the composition γ1 ⋆ γ2 : [0, 1] → C is also piecewise C1.

Furthermore, if γ : [a, b] → C is piecewise C1, then there are C1-paths γ1, . . . , γN with γn :
[an, bn] → γ∗ for all n = 1, . . . , N , γn−1(bn−1) = γn(an) for all n = 2, . . . , N and γ◦ϕ = γ1⋆ · · ·⋆γN ,
where ϕ : [0, 1] → [a, b] is given by ϕ(t) = a + t(b − a) for all t ∈ [0, 1]. This tells us that every
piecewise C1-path is, up to a reparametrisation, the concatenation of finitely many C1-paths.
Definition 4.7 below will clarify this concept.

Definition 4.6. If γ : [a, b] → C is a piecewise C1-path, the length of γ is

length(γ) :=

∫ b

a

∣∣γ′(t)∣∣ dt. (4.1.3)

We will sometimes use the notation length(γ) = ℓ(γ) to shorten.

We observe that [a, b] ∋ t 7→ |γ′(t)| is continuous (possibly) except at finitely many points, as
γ is a piecewise C1-path, and so the integral (4.1.3) is well-defined.

For example, if γ : [0, 2π] → C is given by γ(t) = eint for t ∈ [0, 2π], then γ′(t) = ineit and

length(γ) =

∫ 2π

0

∣∣ineit∣∣ dt = ∫ 2π

0
n dt = 2πn.

Also, if φ : [0, 1] → C is given by φ(t) = tw + (1− t)z, t ∈ [0, 1] and z, w ∈ C, then φ′(t) = w − z
and length(φ) = |w − z|.

Paths with the same trace and orientation can be represented by means of many different
mappings γ : [a, b] → C. To express this rigorously we need to define the following concept.

Definition 4.7 (Reparametrisation of paths). Let γ : [a, b] → C be a piecewise C1-path. We say that
a piecewise C1-path η : [c, d] → C is a reparametrisation of γ if there exists a C1 and increasing
bijection ϕ : [c, d] → [a, b] with η(s) = γ(ϕ(s)) for all s ∈ [c, d].

In such case, we say that γ and η are equivalent paths.

A bijection ϕ : [c, d] → [a, b] of class C1 with ϕ′(t) > 0 for all t ∈ [a, b] (as the one appearing
in Definition 4.7) is often called an orientation-preserving change of variables between [c, d] and
[a, b].

An observation that follows from the Change of Variables in the Riemann integral is that two
equivalent paths γ : [a, b] → C, η : [c, d] → C have the same length. Indeed, if ϕ is as in Definition
4.7, then

length(η) =

∫ d

c

∣∣η′(s)∣∣ ds = ∫ d

c

∣∣(γ ◦ ϕ)′ (s)
∣∣ ds = ∫ d

c
|γ′(ϕ(s))|ϕ′(s) ds =

∫ b

a
|γ′(t)|dt = length(γ).

4.1.2 Complex Path-Integral and Arc-Length Integral

The integral of complex functions h : [a, b] → C whith both real and imaginary part Riemann-
integrable is defined in the obvious way. The integration along a piecewise C1 path γ involves the
derivative γ′.
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Definition 4.8 (Integral and Complex Path-Integral). Let h : [a, b] → C be a function with Re(h), Im(h) :
[a, b] → R Riemann integrable in [a, b]. The integral of h in [a, b] is defined by∫ b

a
h(t) dt :=

∫ b

a
Re(h(t)) dt+ i

∫ b

a
Im(h(t)) dt. (4.1.4)

Now, if γ : [a, b] → C is a piecewise C1-path and f : γ∗ → C is continuous, we define the
path-integral of f along γ by∫

γ
f(z) dz :=

∫ b

a
f(γ(t)) · γ′(t) dt =

∫ b

a
Re
(
f(γ(t))γ′(t)

)
dt+ i

∫ b

a
Im
(
f(γ(t))γ′(t)

)
dt. (4.1.5)

We remark that the product f(γ(t)) · γ′(t) appearing in (4.1.5) is the complex product. Also,
note that the functions [a, b] ∋ t → Re ((f ◦ γ)(t) · γ′(t)) , Im ((f ◦ γ)(t) · γ′(t)), being continuous
on [a, b] except (possibly) at finitely many points, are Riemann-integrable in [a, b] and (4.1.5) is
well-defined.

Example 4.9. Let z0 ∈ C, r > 0, k ∈ Z, and consider the curve γ : [0, 2π] → C given by
γ(t) = z0 + reikt, t ∈ [0, 2π]. If f(z) = 1

z−z0
for z ∈ S(z0, r), then clearly f is continuous and

the path-integral of f on γ is∫
γ
f(z) dz =

∫ 2π

0

1

γ(t)− z0
γ′(t) dt =

∫ 2π

0

1

reikt
· ikreikt dt =

∫ 2π

0
ik dt = 2πki.

We will discuss more about this type of integral in Corollary 4.19 below.

The notion of arc-length integral over a path is inspired by the Definition 4.6 of length.

Definition 4.10 (Arc-Length Integral). Let γ : [a, b] → C be a piecewise C1-path and f : γ∗ → C be
continuous. The arc-length integral of f on γ is defined by∫

γ
f(z)|dz| :=

∫ b

a
f(γ(t))|γ′(t)|dt =

∫ b

a
Re(f(γ(t)))|γ′(t)| dt+ i

∫ b

a
Im(f(γ(t)))|γ′(t)|dt. (4.1.6)

We now establish some basic properties concerning the previous integrations.

Proposition 4.11. Let γ : [a, b] → C be a piecewise C1-path, h : [a, b] → R Riemann integrable, and
f, g : γ∗ → C continuous. The following properties hold.

(i) If ξ ∈ C, then
∫
γ(ξf + g) = ξ

∫
γ f +

∫
γ g.

(ii)
∫
γ− = −

∫
γ f.

(iii) If η : [c, d] → C is another piecewise C1-path equivalent to γ, then∫
η
f =

∫
γ
f.

(iv) If σ : [c, d] → C is another piecewise C1-path with γ(b) = σ(c), then∫
γ⋆σ

f =

∫
γ
f +

∫
σ
f.

(v)
∣∣∣∫ b

a h(t) dt
∣∣∣ ≤ ∫ b

a |h(t)|dt.

(vi)
∣∣∣∫γ f(z) dz∣∣∣ ≤ ∫γ |f(z)||dz| ≤ (sup{|f(w)| : w ∈ γ∗}) length(γ).



83

Proof.

(i) Clearly the path-integral of a sum of functions is the sum of the two path-integrals, so we may
assume that g = 0. Now, if ξ ∈ R, the property holds immediately from the R-linearity of the
mappings Re, Im : C → R and Definition 4.8. Now, consider the case ξ = i. Then,

∫
γ
ξf =

∫ b

a
if(γ(t))γ′(t) dt =

∫ b

a

[
− Im

(
f(γ(t))γ′(t)

)
+ iRe

(
f(γ(t))γ′(t)

)]
dt

=

∫ b

a
− Im

(
f(γ(t))γ′(t)

)
dt+ i

∫ b

a
Re
(
f(γ(t))γ′(t)

)
dt

= −
∫ b

a
Im
(
f(γ(t))γ′(t)

)
dt+ i

∫ b

a
Re
(
f(γ(t))γ′(t)

)
dt

= i

[∫ b

a
Re
(
f(γ(t))γ′(t)

)
dt+ i

∫ b

a
Im
(
f(γ(t))γ′(t)

)
dt

]
= i

∫
γ
f = ξ

∫
γ
f.

The third equality is from the definition of path-integral (4.1.5), the fourth is a consequence of the
(already proven) R-linearity of the path integral, and the fifth is again by definition (4.1.5).

Finally, the arbitrary case ξ ∈ C follows from combining the previous cases.

(ii) Since γ− : [a, b] → C is defined by γ−(t) = γ(b + a − t), one has (γ−)′(t) = −γ′(b + a − t) for
all t ∈ [a, b]. Therefore,

∫
γ−
f =

∫ b

a
f(γ−(t)) · (γ−)′(t) dt = −

∫ b

a
f(γ(b+ a− t)) · γ′(b+ a− t) dt

=

∫ a

b
f(γ(s)) · γ′(s) ds = −

∫ b

a
f(γ(t)) · γ′(t) dt = −

∫
γ
f,

after applying the change of variables s = b+ a− t in the integral in the third equality.

(iii) There exists a C1 bijection ϕ : [c, d] → [a, b] with φ′(s) > 0 for all s ∈ (a, b] and η(s) = γ(ϕ(s))
for all s ∈ [a, b]. By the Chain Rule we have η′(s) = γ′(ϕ(s))ϕ′(s) for all s in [c, d] except for
finitely many points. Applying this and the Change of Variables to the Riemann Integrals from
path-integral Definition 4.8, we obtain

∫
η
f =

∫ d

c
f(η(s))η′(s) ds =

∫ d

c
f(γ(ϕ(s)))γ′(ϕ(s))ϕ′(s) ds =

∫ b

a
f(γ(t))γ′(t) dt =

∫
γ
f ;

where in the middle Riemann integrals, the derivatives are defined except at finitely many points.

(iv) Clearly there exist reparametrisations γ̃ : [0, 1/2] → C, η̃ : [1/2, 1] → C of γ and η respectively,
so that the composite path γ ⋆ η : [0, 1] → C defined via formula (4.1.1) satisfies

(γ ⋆ η)(t) =

{
γ̃(t) if t ∈ [0, 1/2]

η̃(t) if t ∈ [1/2, 1].

Using (iii), we get ∫
γ⋆η

f =

∫
γ̃
f +

∫
η̃
f =

∫
γ
f +

∫
η
f.

(v) The case where
∫ b
a h = 0 is trivial, so we assume

∫ b
a h ̸= 0. Observe that in such case, the
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definition (4.1.4) gives∣∣∣∣∫ b

a
h(t) dt

∣∣∣∣2 = ∣∣∣∣∫ b

a
Re(h(t)) dt+ i

∫ b

a
Im(h(t)) dt

∣∣∣∣2 = (∫ b

a
Re(h(t)) dt

)2

+

(∫ b

a
Im(h(t)) dt

)2

=

∫ b

a

(∫ b

a
Re(h(t)) dt

)
Re(h(s)) ds+

∫ b

a

(∫ b

a
Im(h(t)) dt

)
Im(h(s)) ds

=

∫ b

a

[(∫ b

a
Re(h(t)) dt

)
Re(h(s)) +

(∫ b

a
Im(h(t)) dt

)
Im(h(s))

]
ds

≤
∫ b

a

∥∥∥∥(∫ b

a
Re(h(t)) dt,

∫ b

a
Im(h(t)) dt

)∥∥∥∥ ∥(Re(h(s)), Im(h(s)))∥ ds

=

∥∥∥∥(∫ b

a
Re(h(t)) dt,

∫ b

a
Im(h(t)) dt

)∥∥∥∥∫ b

a
∥(Re(h(s)), Im(h(s)))∥ ds

=

∣∣∣∣∫ b

a
h(t) dt

∣∣∣∣ ∫ b

a
|h(t)| dt.

The inequality is due to Cauchy-Schwarz inequality: u, v ∈ R2 implies ⟨u, v⟩ ≤ ∥u∥∥v∥. The fifth
equality is the R-linearity of the integral, and the sixth one is by the definition of complex integral
(4.1.4). The above clearly implies the desired estimate.

(vi) To obtain the first inequality we apply property (v) and formula (4.1.6):∣∣∣∣∫
γ
f

∣∣∣∣ = ∣∣∣∣∫ b

a
f(γ(t)) · γ′(t) dt

∣∣∣∣ ≤ ∫ b

a

∣∣f(γ(t)) · γ′(t)∣∣ dt = ∫ b

a
|f(γ(t))| |γ′(t)| dt =

∫
γ
|f(z)||dz|.

For the second inequality, note that |f | is bounded in γ∗, as |f | : γ∗ → R is continuous and
γ∗ = γ([a, b]) is compact, as a continuous image of a compact set; see Proposition 2.25. We then
apply the definition of arc-length integral and use the linearity and monotonicity of the Riemann-
integral (for real-valued functions):∫

γ
|f(z)||dz| =

∫ b

a
|f(γ(t))| |γ′(t)| dt ≤ sup

w∈γ∗
|f(w)|

∫ b

a
|γ′(t)| dt =

(
sup
w∈γ∗

|f(w)|
)
length(γ);

where the last equality is the just the definition of length; (4.1.3).

A consequence of Proposition 4.11 is that one can interchange limit and integral when the
convergence is uniform.

Corollary 4.12. Let γ : [a, b] → C a piecewise C1-path, and {fn : γ∗ → C}n a sequence of continuous
functions in γ∗ converging uniformly to f : γ∗ → C. Then,

lim
n

∫
γ
fn(z) dz =

∫
γ
f(z) dz.

Proof. By Proposition 3.10, one has that f : γ∗ → C is a continuous functions, and so
∫
γ f is

well-defined. Also, since fn → f uniformly on γ∗, we actually have that

lim
n→∞

sup
w∈γ∗

|fn(w)− f(w)| = 0.

Thus, by Proposition 4.11(vi), the above implies

lim
n→∞

∣∣∣∣∫
γ
fn(z) dz −

∫
γ
f(z) dz

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
γ
(fn(z)− f(z)) dz

∣∣∣∣ ≤ lim
n→∞

∫
γ
|fn(z)− f(z)| | dz|

≤
(

lim
n→∞

sup
w∈γ∗

|fn(w)− f(w)|
)
length(γ) = 0.
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4.1.3 Primitives and a Fundamental Theorem of Calculus

Definition 4.13. Let Ω ⊂ C be open and f : Ω → C be a function We say that F : Ω → C is a
primitive of f in Ω if F ∈ H(Ω) and F ′(z) = f(z) for all z ∈ Ω.

Remark 4.14. Primitives are unique up to an additive constant when Ω is a domain. Indeed, if
F,G : Ω → C are two primitives of f : Ω → C, then (F − G)′ = F ′ − G′ = f − f = 0 on Ω and
Corollary 2.37 implies that F −G is constant in Ω.

We now show a version of the Fundamental Theorem of Calculus for the complex path-integral.

Theorem 4.15. Let Ω ⊂ C be open, f : Ω → C be continuous, and F : Ω → C be primitive of f in
Ω. If γ : [a, b] → Ω is a piecewise C1-path, then∫

γ
f(z) dz = F (γ(b))− F (γ(a)). (4.1.7)

In particular, if γ : [a, b] → C is additionally a closed path, one has
∫
γ f(z) dz = 0.

Proof. Let us first prove (4.1.7) in the case where γ is a C1-path (not only piecewise C1-path).
As shown in Lemma 2.41 (there, the paths were defined in (−ε, ε) but the result is identical for
C1 paths in (a, b)), we have that F ◦ γ : (a, b) → C is differentiable at all point t ∈ (a, b) with
(F ◦γ)′(t) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t).Moreover, since F ′ = f and f is continuous, we have that
F ◦γ ∈ C1(a, b). Also note that F ◦γ : [a, b] → C is continuous in [a, b] because so are γ : [a, b] → Ω
and f : Ω → C. Thus Re(F ◦ γ), Im(F ◦ γ) : [a, b] → C are continuous in [a, b] and C1(a, b) (in the
real sense), and the Fundamental Theorem of Calculus applies for both functions:∫

γ
f =

∫ b

a
f(γ(t))γ′(t) dt =

∫ b

a
(F ◦ γ)′(t) dt =

∫ b

a
Re
(
(F ◦ γ)′(t)

)
dt+ i

∫ b

a
Im
(
(F ◦ γ)′(t)

)
dt

=

∫ b

a
(Re(F ◦ γ))′ (t) dt+ i

∫ b

a
(Im(F ◦ γ))′ (t) dt

= Re(F ◦ γ)(b)− Re(F ◦ γ)(a) + i (Im(F ◦ γ)(b)− Im(F ◦ γ)(a)) = F (γ(b))− F (γ(a)).

This proves the assertion when γ is a C1-path. If γ is piecewise C1-path, by Remark 4.5, there
are C1-paths γ1, . . . , γN with γn : [an, bn] → γ∗ and γn−1(bn−1) = γn(an) for all n = 2, . . . , N and
η = γ1 ⋆ · · · ⋆ γN , where η : [0, 1] → C is a reparametrisation of γ. By Proposition 4.11(iv) and the
proven C1 case, we deduce∫

γ
f =

N∑
n=1

∫
γn

f =
N∑

n=1

(F (γn(bn))− F (γn(an))) = F (γN (bN ))− F (γ1(a1)) = F (γ(b))− F (γ(a)).

Theorem 4.15 in the particular case of γ equal to a line segment, we deduce the following.

Corollary 4.16. Let Ω ⊂ C be open, f : Ω → C be holomorphic with f ′ continuous in Ω.1 If
w, ξ ∈ Ω so that [w, ξ] ⊂ Ω, then

f(ξ)− f(w) =

∫
[w,ξ]

f ′(z) dz =

∫ 1

0
f ′ (w + t(ξ − w)) · γ′(t) dt. (4.1.8)

Proof. We apply Theorem 4.15 for γ(t) = w + t(ξ − w), t ∈ [0, 1].

1We will see in Theorem 4.32 that assuming that f ′ is continuous is unnecessary, as holomorphic functions are of
class C∞.
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Example 4.17. Let us apply Theorem 4.15 to some concrete examples.

(1) If f(z) = z2, z ∈ C, then clearly f has the primitive F (z) = z3

3 in C. Therefore, using
Theorem 4.15, for any piecewise C1-path γ : [a, b] → C, one has∫

γ
z2 dz = F (γ(b))− F (γ(a)) =

γ(b)3

3
− γ(a)3

3
.

(2) If f : C\{0} → C is given by f(z) = 1/z, then f has no primitive in any disk D(0, r). Indeed,
if γ : [0, 2π] → ∂D(0, r) is given by γ(t) = reit, then γ is a piecewise C1-path, and∫

γ

1

z
dz =

∫ 2π

0

γ′(t)

γ(t)
dt =

∫ 2π

0

rieit

reit
dt = 2πi ̸= 0.

So Theorem 4.15 says that there is no F ∈ H(D(0, r)) with F ′ = f on D(0, r). Although the
principal logarithm Log : C\(−∞, 0] → C satisfies Log′(z) = 1/z, it is not valid as a primitive
of 1/z in any disk D(0, r), due to the discontinuity of Log at every point z ∈ (−∞, 0].

(3) If f : C \ {0} → C is given by f(z) = 1/z2, then F (z) = −1/z is a primitive of f in C \ {0}.
Therefore, for any piecewise C1-path γ : [a, b] \ C \ {0}, we have, by Theorem 4.15, that∫

γ

1

z2
dz =

−1

γ(b)
− −1

γ(a)
=

1

γ(a)
− 1

γ(b)
.

4.1.4 Differentiation under the Integral sign

Using Theorem 4.15, we prove the following result on differentiation under the integral sign will
permit us to handle several technicalities in the coming sections.

Theorem 4.18. Let Ω ⊂ C be open, γ : [a, b] → C a piecewise C1-path, and φ : γ∗ × Ω → C a
continuous functions such that for every ξ ∈ γ∗ the function Ω ∋ z 7→ φ(ξ, z) is holomorphic in Ω,
and γ∗ × Ω ∋ (ξ, z) 7→ ∂φ

∂z (ξ, z) is continuous in γ∗ × Ω. Then, the function F : Ω → C given by

F (z) =

∫
γ
φ(ξ, z) dξ, z ∈ Ω,

is holomorphic in Ω and

F ′(z) =

∫
γ

∂φ

∂z
(ξ, z) dξ, z ∈ Ω.

Proof. Fix z0 ∈ Ω and r > 0 so that D(z0, r) ⊂ Ω. For any w ∈ D(z0, r), consider the C1-path
ℓw : [0, 1] → D(z0, r) defined by ℓw(t) = z0 + t(w − z0) for all t ∈ [0, 1], and apply Theorem 4.15
for the function D(z0, r) ∋ z 7→ ∂φ

∂z (ξ, z) along this path to obtain

φ(ξ, w)− φ(ξ, z0) =

∫
ℓw

∂φ

∂z
(ξ, z) dz =

∫ 1

0

∂φ

∂z
(ξ, ℓw(t))(w − z0) dt,

for all ξ ∈ γ∗. Taking into account this identity, we see that the differentiability of F at z0 amounts
to study the existence of the following limits, as w ∈ D(z0, r) \ {z0} :

lim
w→z0

F (w)− F (z0)

w − z0
= lim

w→z0

∫
γ (φ(ξ, w)− φ(ξ, z0)) dξ

w − z0
= lim

w→z0

∫
γ

(∫ 1

0

∂φ

∂z
(ξ, ℓw(t)) dt

)
dξ.

(4.1.9)
So, let {wn}n ⊂ D(z0, r) \ {z0} be a sequence converging to z0. We now claim that the sequence
of functions {hn}n converges uniformly to h on γ∗ × [0, 1], where hn and h are define by:

γ∗ × [0, 1] ∋ (ξ, t) 7→ hn(ξ, t) :=
∂φ

∂z
(ξ, ℓwn(t)), n ∈ N

γ∗ × [0, 1] ∋ (ξ, t) 7→ h(ξ, t) :=
∂φ

∂z
(ξ, z0).
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Indeed, suppose, seeking a contradiction, that hn does not converge uniformly to h on the set
γ∗ × [0, 1]. Then there exist ε > 0, a subsequence {nk}k and sequences {ξk}k ⊂ γ∗, {tk}k ⊂ [0, 1]
for which∣∣∣∣∂φ∂z (ξk, z0 + tk(wnk

− z0))−
∂φ

∂z
(ξk, z0)

∣∣∣∣ = |hnk
(ξk, tk)− h(ξk, tk)| ≥ ε, for all k ∈ N. (4.1.10)

By the compactness of the sets γ∗, [0, 1] and D(z0, r), we can assume, passing to subsequences
that ξk → ξ ∈ γ∗, tk → t ∈ [0, 1] and wnk

→ z0; see Bolzano-Weierstrass Theorem 2.12. By the
assumption, γ∗ ×Ω ∋ (ξ, w) 7→ ∂φ

∂z (ξ, w) is continuous, and so letting k → ∞ in (4.1.10) leads to a
contradiction. We have proven that

lim
n→∞

sup
ξ∈γ∗

sup
t∈[0,1]

∣∣∣∣∂φ∂z (ξ, ℓwn(t))−
∂φ

∂z
(ξ, z0)

∣∣∣∣ = 0.

By Proposition 4.11(v), this clearly shows

lim
n→∞

sup
ξ∈γ∗

∣∣∣∣∫ 1

0

∂φ

∂z
(ξ, ℓwn(t)) dt−

∂φ

∂z
(ξ, z0)

∣∣∣∣ = 0. (4.1.11)

For every n, consider the mapping γ∗ ∋ ξ 7→ gn(ξ) :=
∫ 1
0

∂φ
∂z (ξ, ℓwn(t)) dt and apply Proposition

4.11(v) to get, for every ξ, ξ′ ∈ γ∗ :

|g(ξ)− g(ξ′)| ≤
∫ 1

0

∣∣∣∣∂φ∂z (ξ, ℓwn(t))−
∂φ

∂z
(ξ′, ℓwn(t))

∣∣∣∣ dt ≤ sup
u∈D(z0,r)

∣∣∣∣∂φ∂z (ξ, u)− ∂φ

∂z
(ξ′, u)

∣∣∣∣ .
For every ξ ∈ γ∗, the last term tends to 0 as γ∗ ∋ ξ′ → ξ, as otherwise Theorem 2.12 would give
ε > 0 and sequences γ∗ ⊃ {ξn} → ξ, D(z0, r) ⊃ {un}n → u ∈ D(z0, r), and the contradiction:

0 =

∣∣∣∣∂φ∂z (ξ, u)− ∂φ

∂z
(ξ, u)

∣∣∣∣ = lim inf
n→∞

∣∣∣∣∂φ∂z (ξ, un)− ∂φ

∂z
(ξn, un)

∣∣∣∣ ≥ inf
n∈N

∣∣∣∣∂φ∂z (ξ, un)− ∂φ

∂z
(ξn, un)

∣∣∣∣ ≥ ε;

the second equality due to the continuity of ∂φ
∂z on γ∗ × Ω. Thus {gn : γ∗ → C}n are continuous

functions which, by (4.1.12), converge to ∂φ
∂z (ξ, z0) uniformly on ξ ∈ γ∗. Proposition 4.12 then

yields

lim
n→∞

∫
γ

(∫ 1

0

∂φ

∂z
(ξ, ℓwn(t))

)
dξ =

∫
γ

∂φ

∂z
(ξ, z0) dξ. (4.1.12)

Since {wn}n is any sequence in D(z0, r) \ {z0} converging to z0, we can conclude from the combi-
nation of (4.1.10) and (4.1.12) that

lim
w→z0

F (w)− F (z0)

w − z0
=

∫
γ

∂φ

∂z
(ξ, z0) dξ.

Let us apply Theorem 4.18 to very important particular situation, which we will use to prove
the Cauchy Integral Formula.

Corollary 4.19. Let z0 ∈ C, r > 0, k ∈ Z, and let γ : [0, 2π] → C the path γ(t) = z0 + reikt,
t ∈ [0, 2π]. Then ∫

γ

1

ξ − z
dξ = 2πki, for all z ∈ D(z0, r).
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Proof. Clearly γ∗ = S(z0, r), and we define Ω := C \ S(z0, r) and the function φ : γ∗ × Ω → C by

φ(ξ, z) =
1

ξ − z
, (ξ, z) ∈ γ∗ × Ω.

For each ξ ∈ γ∗, the function Ω ∋ z 7→ φ(ξ, z) is holomorphic in Ω, and

∂φ

∂z
(ξ, z) =

1

(ξ − z)2
, (ξ, z) ∈ γ∗ × Ω,

is continuous in γ∗ × Ω. By Theorem 4.18, the function

F (z) =

∫
γ
φ(ξ, z) dξ =

∫
γ

1

ξ − z
dξ, z ∈ Ω,

is holomorphic in Ω with

F ′(z) =

∫
γ

∂φ

∂z
(ξ, z) dξ =

∫
γ

1

(ξ − z)2
dξ, z ∈ Ω. (4.1.13)

We claim that F ′(z) = 0 for all z ∈ D(z0, r). Indeed, given z ∈ D(z0, r), let ε > 0 be so that
z ∈ D(z0, r − ε), and define U = D(z0, r + ε) \D(z0, r − ε). Clearly g(ξ) := 1

(ξ−z)2
, ξ ∈ U, defines

a continuous function which has a holomorphic primitive G(ξ) = 1
z−ξ , ξ ∈ U. Since the path

γ : [0, 2π] → S(z0, r) is closed and takes values in U, we can apply Theorem 4.15 to deduce that∫
γ

1

(ξ − z)2
dξ = 0,

and then (4.1.13) implies that F ′(z) = 0. Since D(z0, r) is open and connected, by Corollary 2.37,
F is constant in D(z0, r). But then Example 4.9 shows that

F (z) = F (z0) =

∫
γ

1

ξ − z0
dξ = 2πki, z ∈ D(z0, r).

4.2 The Cauchy-Integral Theorem

4.2.1 The Cauchy-Goursat Theorem in a triangle

Naturally, by a triangle T ⊂ C we understand the union of three segment lines [a, b], [b, c], [c, a];
where a, b, c ∈ C are not align in the plane. Note that here T is only the boundary of the solid
triangle ∆ generated by a, b, c. Since ∆ is clearly the convex envelope of T, given any triangle T,
we will denote by co(T ) the corresponding solid triangle. In other words, T = ∂ (co(T )) ; recall
the Definition 2.5 of boundary. Also, we will always assume (without loss of generality in the
next theorems) that the segments [u, v] forming the edges of T are parametrized by the C1-path
[0, 1] ∋ t 7→ u+ t(v − u).

Theorem 4.20 (Cauchy-Goursat). Let Ω ⊂ C be open, T be a triangle such that co(T ) ⊂ Ω, z0 ∈ Ω,
and f : Ω → C continuous in Ω and holomorphic in Ω \ {z0}. Then∫

T
f(z) dz = 0.

Proof. Let [a, b], [b, c], [c, a] be the edges of T . We need to consider several cases depending on the
location of the distinguished point z0.
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Case 1: z0 /∈ co(T ). We will compare
∫
T f with the integral

∫
Tn
f over smaller and smaller subtri-

angles Tn of co(T ). Then, in those Tn, we will compare f with its first-degree Taylor polynomial,
which admits a holomorphic primitive, and so its integral over any triangle is null.

Define T0 := T and join the midpoints of the edges [a, b], [b, c], [c, a] of T by three segment lines,
which are naturally contained in co(T ). These three lines form a triangle T 4

0 , and moreover split
co(T ) into the convex envelopes of four triangles T 1

0 , T
2
0 , T

3
0 , T

4
0 . Parametrizing all these triangles

with segment lines following the same orientation (clockwise/counterclockwise) as T0, we claim
that ∫

T
f =

∫
T0

f =
4∑

j=1

∫
T j
0

f. (4.2.1)

Indeed, denote by ℓjk, k = 1, 2, 3, j = 1, 2, 3, 4 the kth edge of T j
0 , with orientations determined

by the orientation of T j
0 . Denote L = {(k, j) ∈ {1, 2, 3} × {1, 2, 3, 4} : ℓjk ⊂ T}. Then Proposition

4.11(iv) gives

4∑
j=1

∫
T j
0

f =

4∑
j=1

3∑
k=1

∫
ℓjk

f =
∑

(k,j)∈L

∫
ℓjk

f +
∑

(k,j)/∈L

∫
ℓjk

f =

∫
T
f +

∑
(k,j)/∈L

∫
ℓjk

f.

Now, the set {1, 2, 3}×{1, 2, 3, 4}\L corresponds to the segments ℓjk that are in the interior region
of the triangle T0. These are precisely 6 segments, and more precisely the segments ℓ1,4, ℓ2,4, ℓ3,4
(edges of T 4

0 ) along with their reverse paths ℓ−1,4, ℓ
−
2,4, ℓ

−
3,4. So, by Proposition 4.11(ii), we see that

∑
(k,j)/∈L

∫
ℓjk

f =

3∑
k=1

(∫
ℓk,4

f +

∫
ℓ−k,4

f

)
=

3∑
k=1

(∫
ℓk,4

f −
∫
ℓk,4

f

)
= 0,

and then (4.2.1) follows. By the triangle inequality, there must exist at least some j ∈ {1, 2, 3, 4},
giving raise to a triangle T j

0 which we denote by T1 from now on, so that

co(T1) ⊂ co(T0), length(T1) =
1

2
length(T0), and

∣∣∣∣∫
T1

f

∣∣∣∣ ≥ 1

4

∣∣∣∣∫
T0

f

∣∣∣∣ .
Repeating the same tiling procedure for T1 in place of T0, we obtain a new triangle T2 with the
properties

co(T2) ⊂ co(T1), length(T2) =
1

4
length(T0), and

∣∣∣∣∫
T2

f

∣∣∣∣ ≥ 1

42

∣∣∣∣∫
T0

f

∣∣∣∣ .
By induction we obtain a sequence of triangles {Tn}∞n=0 with the properties

co(Tn) ⊂ co(Tn−1), length(Tn) =
1

2n
length(T0), and

∣∣∣∣∫
Tn

f

∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
T0

f

∣∣∣∣ , n ∈ N. (4.2.2)

By Lemma 2.15, there exists a unique w0 ∈
⋂∞

n=0 co(Tn) ⊂ Ω \ {z0}. And f is differentiable at w0,
so, given ε > 0 we can find r > 0 with D(w0, r) ⊂ Ω and

|f(w)− f(w0)− f ′(w0)(w − w0)| ≤ ε|w − w0|, w ∈ D(w0, r). (4.2.3)

Since lim
n→∞

diam(co(Tn)) = 0 by (4.2.2) and w0 ∈
⋂∞

n=0 co(Tn), we can find n0 ∈ N so that |w0−w| <
r for all w ∈ co(Tn), n ≥ n0. Now, the polynomial w 7→ f(w0) + f ′(w0)(w−w0) is continuous and
clearly has a primitive (in all of C). Since triangles are closed piecewise C1-paths, Theorem 4.15
tells us that ∫

Tn

(
f(w0) + f ′(w0)(w − w0)

)
dw = 0, for all n ∈ N ∪ {0}. (4.2.4)
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Applying first (4.2.4), then Proposition 4.11(vi), then (4.2.3), then Proposition 4.11(vi) again, and
finally the second property of (4.2.2), we obtain, for n ≥ n0,∣∣∣∣∫

Tn

f

∣∣∣∣ = ∣∣∣∣∫
Tn

(
f(w)− f(w0)− f ′(w0)(w − w0)

)
dw

∣∣∣∣
≤
∫
Tn

|f(w)− f(w0)− f ′(w0)(w − w0)||dw|

≤
∫
Tn

ε|w − w0||dw| ≤ ε (length(Tn))
2 ≤ (length(T0))

2

4n
ε.

By the third property of (4.2.2), we may conclude∣∣∣∣∫
T
f

∣∣∣∣ = ∣∣∣∣∫
T0

f

∣∣∣∣ ≤ 4n
∣∣∣∣∫

Tn

f

∣∣∣∣ ≤ 4n
(length(T0))

2

4n
ε = (length(T0))

2 ε,

implying that
∫
T f = 0 because ε > 0 was arbitrary.

Case 2: z0 ∈ {a, b, c}. Without loss of generality, we can assume z0 = a. By the continuity of f in
the compact set co(T ), there exists M > 0 so that |f(z)| ≤ M for all z ∈ co(T ); see Proposition
2.25. Given ε > 0 we can find points ξ1 ∈ [a, b] and ξ2 ∈ [c, a] such that if T1 denotes the triangle
with edges [a, ξ1], [ξ1, ξ2], [ξ2, a], then length(T1) ≤ ε/M. We also define the triangles T2, with
edges [ξ1, b], [b, ξ2], [ξ2, ξ1], and T3, with edges [b, c], [c, ξ2], [ξ2, b].We again consider the orientations
in T1, T2, T3 determined from the one in T. As in Case 1, we use Proposition 4.11(ii) to write

3∑
j=1

∫
Tj

f =

∫
[a,ξ1]

f +

∫
[ξ1,ξ2]

f +

∫
[ξ2,a]

f +

∫
[ξ1,b]

f +

∫
[b,ξ2]

f +

∫
[ξ2,ξ1]

f +

∫
[b,c]

f +

∫
[c,ξ2]

f +

∫
[ξ2,b]

f

=

∫
[a,ξ1]

f +

∫
[ξ1,ξ2]

f +

∫
[ξ2,a]

f +

∫
[ξ1,b]

f +

∫
[b,ξ2]

f −
∫
[ξ1,ξ2]

f +

∫
[b,c]

f +

∫
[c,ξ2]

f −
∫
[b,ξ2]

f

=

∫
[a,ξ1]

f +

∫
[ξ1,b]

f +

∫
[b,c]

f +

∫
[c,ξ2]

f +

∫
[ξ2,a]

f =

∫
T
f. (4.2.5)

Since z0 /∈ T2 ∪ T3, by Case 1, we have ∫
T2

f =

∫
T3

f = 0.

Also, by Proposition 4.11(vi), we can estimate∣∣∣∣∫
T1

f

∣∣∣∣ ≤ ( sup
w∈T1

|f(w)|
)
length(T1) ≤

(
sup

w∈co(T )
|f(w)|

)
length(T1) ≤M

ε

M
= ε.

Using these two observations in (4.2.5), we can conclude∣∣∣∣∫
T
f

∣∣∣∣ ≤ ∣∣∣∣∫
T1

f

∣∣∣∣ ≤ ε,

and since ε > 0 we get that
∫
T f = 0.

Case 3: z0 ∈ co(T ) \ {a, b, c}. In this case we can form triangles Tj , j = 1, 2, 3 with co(Tj) ⊂ co(T )
and so that z0 is a vertex of each of them. Applying Case 2, we have

∫
Tj
f = 0 for j = 1, 2, 3, and

providing the triangles with the suitable orientation, we have∫
T
f =

3∑
j=1

∫
Tj

f = 0.
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4.2.2 Cauchy Theorem in Convex Sets. Existence of Primitives

A first application of Theorem 4.20 is the existence of primitives of holomorphic mappings in
convex domains. We first prove, without utilizing Theorem 4.20, a version for merely continuous
functions that will be useful later on.

Lemma 4.21. Ω ⊂ C be open and convex, and let f : Ω → C be continuous in Ω and with the
property that, for every triangle T with co(T ) ⊂ Ω, one has∫

T
f = 0. (4.2.6)

Then there exists F : Ω → C holomorphic with F ′ = f in Ω.

Proof. If we fix a point w0 ∈ Ω, then the segment lines [w0, w] are entirely contained in Ω by the
convexity of Ω. This enables to define our primitive F by the formula

F (w) =

∫
[w0,w]

f, w ∈ Ω. (4.2.7)

Here, we understand that the integral is along the path γ(t) = w0 + t(w − w0), t ∈ [0, 1]. Because
f is continuous on Ω, the function F is well-defined. Let us now fix w ∈ Ω and prove that
F ′(w) = f(w). Given ε > 0, we can find r > 0 so that D(w, r) ⊂ Ω and

|f(z)− f(w)| < ε, z ∈ D(w, r). (4.2.8)

Then, if ξ ∈ D(w, r), we define Tξ as the triangle with edges [w0, w], [w, ξ], [ξ, w0]. By the convexity
of Ω, these segments lines are contained in Ω, as well as co(Tξ) ⊂ Ω. By the definition of F in
(4.2.7) we get

F (ξ)− F (w) =

∫
[w0,ξ]

f −
∫
[w0,w]

f =

∫
[w,ξ]

f −

(∫
[w0,w]

f +

∫
[w,ξ]

f +

∫
[ξ,w0]

f

)
=

∫
[w,ξ]

f −
∫
Tξ

f ;

and by the assumption (4.2.6) applied for Tξ, this means that F (ξ)−F (w) =
∫
[w,ξ] f. Then we can

write

|F (ξ)− F (w)− f(w)(ξ − w)| =

∣∣∣∣∣
∫
[w,ξ]

(f(z)− f(w)) dz

∣∣∣∣∣ ≤
(

sup
z∈[w,ξ]

|f(z)− f(w)|

)
length([w, ξ])

≤

(
sup

z∈D(w,r)
|f(z)− f(w)|

)
|ξ − w| ≤ ε|ξ − w|;

where we employed (4.2.8) in the last inequality. This shows that F is differentiable at w, with
F ′(w) = f(w).

Theorem 4.22 (Primitives in Convex Domains). Let Ω ⊂ C be open and convex, let z0 ∈ Ω, and
let f : Ω → C be continuous in Ω and holomorphic in Ω \ {z0}. Then there exists F : Ω → C
holomorphic with F ′ = f in Ω

Proof. By Theorem 4.20,
∫
T f = 0 for every triangle T with co(T ) ⊂ Ω. Thus, Lemma 4.21 implies

the existence of F : Ω → C with F ′ = f in Ω.

As a consequence of Theorem 4.22, we can show a more general version of the Cauchy-Gourset
Theorem 4.20, where we can replace the triangle with any path contained in a convex domain.

Corollary 4.23 (Cauchy Theorem in a Convex Domain). Let Ω ⊂ C be open and convex, z0 ∈ Ω,
and let f : Ω → C be continuous in Ω and holomorphic in Ω\{z0}. Then, for every closed piecewise
C1-path γ : [a, b] → Ω, one has ∫

γ
f = 0.

Proof. By Theorem 4.22, we can find F ∈ H(Ω) with F ′ = f on Ω. Thus, applying Theorem 4.15
to F and the closed path γ, we obtain that

∫
γ f = 0.
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4.3 The Cauchy Integral Formulae

The main result of this section is the Cauchy Integral Formula for a holomorphic function f ∈
H(Ω) :

f(z) =
1

2πi

∫
S(z,r)

f(w)

w − z
dw, z ∈ Ω;

where the integral is understood along the path that travels the circle S(z, r) only once and with
counterclockwise orientation; see Corollary 4.28 for the precise statement. This formula will have
numerous implications in holomorphic functions that we will show in the following sections.

4.3.1 The Winding Numbers

The Cauchy Integral formula can be generalized to path-integrals over more general closed paths
than the circle. This is done via the winding numbers.

Definition 4.24. Let γ : [a, b] → C be a closed piecewise C1-path and let z ∈ C \ γ∗. We define the
winding number of γ around z by

W (γ, z) :=
1

2πi

∫
γ

1

w − z
dw. (4.3.1)

These numbers can be interpreted as the number of times that a path travels counterclockwise
around a point. Let us examine an elementary example.

Example 4.25. Given z0 ∈ C and k ∈ Z, consider the path γk : [0, 2π] → C, γk(t) = z0 + reikt. By
Corollary 4.19, for every z ∈ D(z0, r), one has

W (γ, z) =
1

2πi

∫
γk

1

w − z
dw =

2πki

2πi
= k.

We collect some properties of the winding numbers in the following proposition.

Proposition 4.26. Let γ : [a, b] → C a closed and piecewise C1-path, and z ∈ C \ γ∗. The following
properties hold.

(i) If γ− : [a, b] → C is the reverse path of γ, then W (γ−, z) = −W (γ, z).

(ii) If σ : [c, d] → C is another closed and piecewise C1-path, with γ(b) = σ(c), and z ∈ C\γ∗∪σ∗,
then

W (γ ⋆ σ, z) =W (γ, z) +W (σ, z).

(iii) W (γ, z) ∈ Z.

(iv) If z, w are in the same connected component of C \ γ∗, then W (γ, z) =W (γ,w).

(v) If z is in the unbounded connected component of C \ γ∗, then W (γ, z) = 0.

Proof.

(i), (ii) They are immediate from Proposition 4.11 and Definition 4.24 of winding numbers.

(iii) We define the function h : [a, b] → C by

h(t) :=

∫ t

a

γ′(s)

γ(s)− z
ds, t ∈ [a, b].

Because γ′ is continuous (possibly) except at finitely many points, we get (by virtue of the Fun-
damental Theorem of Calculus) that h is piecewise C1 in [a, b], and

h′(t) =
γ′(t)

γ(t)− z
, t ∈ [a, b] \ {t1, . . . , tN}.



93

We also define H : [a, b] → C by the formula H(t) := (γ(t)− z)e−h(t), t ∈ [a, b]. By differentiating
we get

H ′(t) = γ′(t)e−h(t) − (γ(t)− z) e−h(t)h′(t) = 0

for all t ∈ [a, b] \ {t1, . . . , tN}. Since H is continuous in [a, b], this implies that H is constant in
[a, b]. Thus

γ(a)− z = (γ(a)− z)e0 = (γ(a)− z)e−h(a) = H(a) = H(b) = (γ(b)− z)e−h(b);

which together with γ(a) = γ(b) yields that e−h(b) = 1. But according to Theorem 2.49, this means
that h(b) ∈ 2πiZ, and so we have we have that

W (γ, z) =
1

2πi

∫
γ

1

w − z
dz =

1

2πi

∫ b

a

γ′(s)

γ(s)− z
ds =

h(b)

2πi
∈ Z.

(iv) We first claim that the function C \ γ∗ ∋ z 7→ W (γ, z) is continuous. This can be justified for
example by considering the function

γ∗ × C \ γ∗ ∋ (w, z) 7→ φ(w, z) :=
1

w − z
,

so that, for every w ∈ γ∗, the mapping C \ γ∗ ∋ z 7→ φ(w, z) is holomorphic, and ∂φ
∂z

γ∗ × C \ γ∗ ∋ (w, z) 7→ ∂φ

∂z
(w, z) =

1

(w − z)2

is continuous in γ∗×C\γ∗. By Theorem 4.18, C\γ∗ 7→
∫
γ

1
w−z dw is holomorphic, and in particular

continuous in C \ γ∗.
Therefore, C \ γ∗ ∋ z 7→ W (γ, z) is continuous. But we saw in (iii) that W (γ, z) ∈ Z for all

z ∈ C \ γ∗, so Proposition 2.28 says that W (γ, z) must be constant on each connected component
of C \ γ∗.

(v) Since ξ∗ is a compact set, there exists R > 0 such that ξ∗ ⊂ D(0, R). By (iv), we know that
W (γ, z) = W (γ, n) for every n ∈ N with n ≥ 2R. Applying Proposition 4.11(v) we get, for all
n ≥ 2R :

|W (γ, z)| = |W (γ, n)| =
∣∣∣∣ 1

2πi

∫
γ

1

w − n
dw

∣∣∣∣ ≤ 1

2π

∫
γ

1

|w − n|
|dw| ≤ 1

2π

∫
γ

1

n−R
|dw| ≤ length(γ)

2π(n−R)
.

Letting n→ ∞ in the last term, we may conclude W (γ, z) = 0.

4.3.2 The Cauchy Integral Formula. The Mean Value Property

Theorem 4.27 (Cauchy Integral Formula in Convex Domains). Let Ω ⊂ C be a convex open set,
γ : [a, b] → Ω a closed piecewise C1-path and f : Ω → C holomorphic. Then,

W (γ, z)f(z) =
1

2πi

∫
γ

f(w)

w − z
dw, for all z ∈ Ω \ γ∗. (4.3.2)

Proof. Fix z ∈ Ω \ γ∗ and define a new function h : Ω → C by

h(w) =


f(w)− f(z)

w − z
if w ∈ Ω \ {z},

f ′(z) if w = z.

Because f is holomorhic in Ω, we have that h is continuous in Ω and holomorphic in Ω \ {z}.
Corollary 4.23 tells us that

0 =

∫
γ
h(w) dw =

∫
γ

f(w)− f(z)

w − z
dw =

∫
γ

f(w)

w − z
dw−

∫
γ

f(z)

w − z
dw =

∫
γ

f(w)

w − z
dw−2πif(z)W (γ, z);

which clearly yields (4.3.2).
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A particular case of Theorem 4.27 gives the following corollary.

Corollary 4.28 (Local Cauchy Integral Formula). Let Ω ⊂ C be an open set, f : Ω → C holomorphic,
and D(z0, r) ⊂ Ω a closed disk. Then,

f(z) =
1

2πi

∫
∂D(z0,r)

f(w)

w − z
dw, for all z ∈ D(z0, r); (4.3.3)

where the integral is along the circle ∂D(z0, r) traveled counterclockwise once.

Proof. Letting γ : [0, 2π] → C be the path γ(t) = z0+re
it.We saw in Example 4.25 thatW (γ, z) =

1 for all z ∈ D(z0, r). Consequently, Theorem 4.27 implies (4.3.3).

We can improve a bit Corollary 4.28 as follows.

Corollary 4.29 (Cauchy Integral Formula in a disk). Let f : D(z0, r) → C be continuous in D(z0, r)
and holomorphic in D(z0, r). Then,

f(z) =
1

2πi

∫
∂D(z0,r)

f(w)

w − z
dw, for all z ∈ D(z0, r); (4.3.4)

where the integral is along the circle ∂D(z0, r) traveled counterclockwise once.

Proof. Let {an}n ⊂ (0, 1) be a sequence with an ↑ 1. Define, for each n ∈ N, the function

fn : D(z0,
r
an
) → C, fn(z) = f(anz), z ∈ D(z0,

r
an
).

Because f is continuous in holomorphic in D(z0, r), we see that fn is holomorphic in D(z0,
r
an
).

Notice that D(z0, r) ⊂ D(z0,
r
an
) and we can apply Corollary 4.28 to fn, thus obtaining

fn(z) =

∫
∂D(z0,r)

f(w)

w − z
dw for all z ∈ D(z0, r), n ∈ N. (4.3.5)

Let us now show that {fn}n converges to f uniformly in D(z0, r). Indeed, since D(z0, r), f is
uniformly continuous there; see Proposition 2.25. Thus, given ε > 0, we can find δ > 0 such that
|f(ξ)− f(w)| ≤ ε for all ξ, w ∈ D(z0, r) with |ξ − w| ≤ δ. Let N ∈ N such that (1− aN )r ≤ δ. We
have that |anw − w| = (1− an)|w| ≤ (1− an)rδ, for all n ≥ N, and consequently

sup
w∈D(z0,r)

|fn(w)− f(w)| = sup
w∈D(z0,r)

|f(anw)− f(w)| ≤ ε, for all n ≥ N.

This confirms that {fn}n converges to f uniformly in D(z0, r). Combining Proposition 4.12 with
(4.3.5), we can conclude

f(z) = lim
n→∞

fn(z) =
1

2πi

∫
∂D(z0,r)

lim
n→∞

fn(w)

w − z
dw =

1

2πi

∫
∂D(z0,r)

f(w)

w − z
dw.

Also, Corollary 4.29 implies the following identity principle, giving a bit of a hint of what we
will obtain in Section 4.4.3.

Corollary 4.30. Let f, g : D(z0, r) → C continuous in D(z0, r) and holomorphic in D(z0, r). If
f = g on ∂D(z0, r), then f = g on D(z0, r).

Proof. It suffices to apply formula (4.3.4) in Corollary 4.29 to the function f − g.

Another consequence of Corollary 4.29 is the following mean value (integral) property for
holomorphic functions.
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Corollary 4.31 (Mean Value Property). Let f : D(z0, r) → C be continuous in D(z0, r) and holo-
morphic in D(z0, r). Then,

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit) dt. (4.3.6)

Proof. We apply Corollary 4.29 for z = z0, where ∂D(z0, r) is parametrized by the path γ :
[0, 2π] → C, γ(t) = z0 + reit, to obtain

f(z0) =
1

2πi

∫ 2π

0

f(γ(t))

γ(t)− z0
γ′(t) dt =

1

2πi

∫ 2π

0

f(z0 + reit)

reit
ireit dt =

1

2π

∫ 2π

0
f(z0 + reit) dt.

4.4 Differentiability and Analiticity of Holomorphic functions

4.4.1 The Cauchy Formulae and Estimates for the Derivatives

We continue deriving fundamental properties from the Cauchy Integral Formula; Theorem 4.27 or
Corollary (4.28). More precisely, derivatives of holomorphic functions are holomorphic, and their
derivatives can be written via formulas similar to that of (4.3.3).

Theorem 4.32 (Cauchy Formulas for the Derivatives). Let Ω ⊂ C be open and f : Ω → C holo-
morphic. Then, for all n ∈ N, the nth derivative f (n) : Ω → C exists and is holomorphic in Ω.
Moreover, for every open disk D with D ⊂ Ω, the following formula holds:

f (n)(z) =
n!

2πi

∫
∂D

f(w)

(w − z)n+1
dw for all z ∈ D, n ∈ N ∪ {0}. (4.4.1)

Proof. We prove both the existence and holomorphicity of f (n) and (4.4.1) at the same time and
by induction on N∪ {0}. In the case n = 0, then f (n) = f and the claims (the holomorphicity of f
is already known from the assumption) follow from Theorem 4.27. Now assume that f (n) : Ω → C
exists and is holomorphic and that (4.4.1) holds. Denoting by γ : [0, 2π] → ∂D the curve that
travels ∂D once and counterclockwise, we define the function

γ∗ ×D ∋ (w, z) 7−→ φ(w, z) :=
n!

2πi

f(w)

(w − z)n+1
.

This function is continuous in γ∗ × D and for each w ∈ γ∗, the function D ∋ z 7→ φ(w, z) is
holomorphic in D with derivative (with respect to z) equal to

∂φ

∂z
(w, z) =

(n+ 1)!

2πi

f(w)

(w − z)n+2
, z ∈ D;

which defines a continuous function in γ∗ ×D. Applying Theorem 4.18, we get that

D ∋ z 7−→ f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw =

∫
γ
φ(w, z) dw

is holomorphic in D, with

D ∋ z 7−→ f (n+1) =
(
f (n)

)′
(z) =

∫
γ

∂φ

∂z
(w, z) dw =

(n+ 1)!

2πi

∫
γ

f(w)

(w − z)n+2
dw.

By induction, the claims are proven for all n ∈ N.

An extension of The Cauchy Integral Formulas (4.4.1) are also true when the circle path are
replaced by any piecewise C1-path, provided we have our function holomorphic in a convex domain.
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Corollary 4.33 (Cauchy Formulas in Convex Domains). Let Ω ⊂ C be open and convex, γ : [a, b] →
Ω a closed piecewise C1-path, and f : Ω → C holomorphic. Then, the following formulae holds:

W (γ, z)f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw for all z ∈ Ω \ γ∗, n ∈ N ∪ {0}. (4.4.2)

Proof. We already know from Theorem 4.32 that all the derivatives of f exist in Ω. Let γ : [a, b] → Ω
be a closed piecewise C1-path, and let us show (4.4.2). In the case n = 0, then f (n) = f and the
formula holds by virtue of (4.3.2). For n ∈ N, we can apply formula (4.3.2) to f (n) and repeatedly
Exercise 4.6 (to f (n−1), . . . , f ′, f) and we get

W (γ, z)f (n)(z) =
1

2πi

∫
γ

f (n)(w)

w − z
dw =

1

2πi

∫
γ

f (n−1)(w)

(w − z)2
dw =

2

2πi

∫
γ

f (n−2)(w)

(w − z)3
dw

= · · · = (n− 1)!

2πi

∫
γ

f ′(w)

(w − z)n
dw =

n!

2πi

∫
γ

f(w)

(w − z)n+1
dw.

Another consequence of Theorem 4.32 is the following collection of useful inequalities for the
derivatives of holomorphic functions.

Corollary 4.34 (Cauchy Estimates for the Derivatives). Let D(z0, R) be an open disk and f :
D(z0, R) → C a holomorphic and bounded function. Then∣∣∣f (n)(z)∣∣∣ ≤ n! ·R · sup{|f(w)| : w ∈ D(z0, R)}

(R− |z − z0|)n+1 , for all z ∈ D(z0, R), n ∈ N ∪ {0}. (4.4.3)

Also, if Ω ⊂ C is open, D(z0, R) ⊂ Ω and f : Ω → C is holomorphic, then∣∣∣f (n)(z0)∣∣∣ ≤ n!

Rn
sup{|f(w)| : w ∈ ∂D(z0, R)}, for all n ∈ N ∪ {0}. (4.4.4)

Proof. Let n ∈ N ∪ {0} and z ∈ D(z0, R). Observe that

|w − z| = |w − z0 − (z − z0)| ≥ |w − z0| − |z − z0|, for all w ∈ D(z0, R). (4.4.5)

Now, let 0 < r < R so that z ∈ D(z0, r). Since D(z0, r) ⊂ D(z0, R) and f is analytic in the latter
disk, we can apply Theorem 4.32 in combination with Proposition 4.11(vi), and then (4.4.5), to
derive, for all z ∈ D(z0, r) :∣∣∣f (n)(z)∣∣∣ ≤ ∣∣∣∣∣ n!2πi

∫
∂D(z0,r)

f(w)

(w − z)n+1
dw

∣∣∣∣∣ ≤ n!

2π

∫
∂D(z0,r)

|f(w)|
|w − z|n+1

|dw|

≤ n!

2π

∫
∂D(z0,r)

|f(w)|
(|w − z0| − |z − z0|)n+1 |dw| =

n!

2π

∫
∂D(z0,r)

|f(w)|
(r − |z − z0|)n+1 |dw|

≤ n! sup{|f(w)| : w ∈ ∂D(z0, r)}
2π (r − |z − z0|)n+1 length(∂D(z0, r)) =

n! · r · sup{|f(w)| : w ∈ ∂D(z0, r)}
(r − |z − z0|)n+1

(4.4.6)

≤ n! · r · sup{|f(w)| : w ∈ D(z0, R)}
(r − |z − z0|)n+1 .

Letting r ↑ R, we conclude (4.4.3).
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For the second part, when D(z0, R) ⊂ Ω and f : Ω → C is holomorphic, we can repeat the
previous computations replacing r with R and z with z0 up to line (4.4.6), obtaining,∣∣∣f (n)(z0)∣∣∣ ≤ n! ·R · sup{|f(w)| : w ∈ ∂D(z0, R)}

Rn+1
=

n!

Rn
sup{|f(w)| : w ∈ ∂D(z0, R)}.

Furthermore, Theorem 4.32 permits to prove the following extension-type property.

Corollary 4.35 (Holomorphic Extension to a Point). Let Ω ⊂ C be open, z0 ∈ Ω, and f : Ω → C be
continuous with f ∈ H(Ω \ {z0}). Then f ∈ H(Ω).

Proof. For every z ∈ Ω, we can find an open disk D with z ∈ D. Since D is convex, and f
is continuous in D and holomorphic in D \ {z0}, Theorem 4.22 says that there is F : D → C
holomorphic in D with F ′ = f. But Theorem 4.32 tells us that F ′ : D → C is holomorphic in D
too, implying, in particular, that f is complex-differentiable at z.

4.4.2 Morera’s Theorem. Weierstrass Convergence Theorem

Theorem 4.36 (Morera’s Theorem). Let Ω ⊂ C be open, and f : Ω → C be continuous. Suppose
that for every triangle T with co(T ) ⊂ Ω, we have∫

T
f = 0.

Then f is holomorphic in Ω.

Proof. For every z ∈ Ω, we can find an open disk D with z ∈ D ⊂ Ω. Thus D is convex, and by
the assumption we have that

∫
T f = 0 for every triangle T with co(T ) ⊂ D. Since f is continuous

in D, Lemma 4.21 yields the existence of F : D → C holomorphic with F ′ = f in D. But Theorem
4.32 then implies that F ′ is holomorphic in D, and consequently f is differentiable at z.

Theorem 4.37 (Weierstrass Theorem). Let Ω ⊂ C be open, f : Ω → C a function, and let {fk :
Ω → C}k be sequence of holomorphic functions in Ω converging locally uniformly to f in Ω. Then,

(i) f is holomorphic in Ω.

(ii) For every n ∈ N, the sequence of nth-derivatives {f (n)k : Ω → C}k converges locally uniformly
in Ω to the nth-derivative f (n) of f .

Proof.

(i) By Proposition 3.10, the function f : Ω → C is continuous in Ω. To show that f ∈ H(Ω), let
z ∈ Ω and r > 0 so that D(z, r) ⊂ Ω and fk converges to f uniformly in D. Observe that, for every
triangle T with co(T ) ⊂ D, Theorem 4.20 says that∫

T
fk = 0, k ∈ N;

as each fk is holomorphic in D(z, r). Since the uniform converge fk → f holds in the piecewise
C1-path T, Corollary 4.12 gives ∫

T
f = lim

k→∞

∫
T
fk = 0.

But since T , with co(T ) ⊂ D, we can apply Morera’s Theorem 4.36 to f in D, to deduce that f is
holomorphic in D.
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(ii) By part (i), we know that gk := f − fk : Ω → C is holomorphic in Ω, for every k ∈ N. Given
z0 ∈ Ω, let r > 0 be so that D(z0, 2r) ⊂ Ω and fk converges to f uniformly in D(z0, 2r). That is,

lim
k→∞

sup
w∈D(z0,2r)

|gk(w)| = 0. (4.4.7)

Let us show that

lim
k→∞

sup
z∈D(z0,r)

|g(n)k (z)| = 0, for all n ∈ N. (4.4.8)

Note that if z ∈ D(z0, r), then D(z, r) ⊂ D(z0, 2r) ⊂ Ω. We can then apply inequality (4.4.4) of
Corollary 4.34 to gk and the disk D(z, r) to infer that, for all n ∈ N,∣∣∣g(n)k (z)

∣∣∣ ≤ n!

rn
sup{|gk(w)| : w ∈ ∂D(z, r)} ≤ n!

rn
sup

w∈D(z0,2r)

|gk(w)|.

By (4.4.7), we have, taking limits of supremums in z ∈ D(z0, r) :

lim
k→∞

sup
z∈D(z0,r)

|g(n)k (z)| ≤ lim
k→∞

n!

rn
sup

w∈D(z0,2r)

|gk(w)| = 0,

for all n ∈ N. This implies (4.4.8), and we haved proved (ii).

Corollary 4.38. If Ω ⊂ C is open and {fk : Ω → C}k is a sequence of holomorphic functions in Ω
so that

∑∞
k=1 fk converges locally uniformly in Ω, then

∑∞
k=1 fk is a holomorphic function in Ω.

For instance, consider the series of functions
∑∞

n=1
1
nz , for all z ∈ Ω := {z ∈ C Re(z) > 1};

see Exercise 3.10. Naturally, the functions Ω ∋ z 7→ 1/nz are holomorphic for all n ∈ N, as 1/nz is
nothing but

1

nz
=

1

ez logn
= e−z logn.

The series
∑∞

n=1
1
nz converges uniformly on each set Ωε := {z ∈ C : Re(z) ≥ 1 + ε}, ε > 0. But

for every z ∈ Ω, we can find ε > 0 and r > 0 for which D(z, r) ⊂ Ωε, and in particular
∑∞

n=1
1
nz

converges uniformly on D(z, r). That is, the series converges locally-uniformly in Ω. According to
Corollary 4.38, the sum of the series

F (z) :=

∞∑
n=1

1

nz
, z ∈ Ω,

defines a holomorphic function in Ω.

4.4.3 Analyticity of Holomorphic functions

Theorem 4.39 (Analiticity of Holomorphic Functions). Let Ω ⊂ C be open and f : Ω → C a
holomorphic function. Then, for every closed disk D(z0, r) contained in Ω, we have that

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, for all z ∈ D(z0, r); (4.4.9)

and the series converges absolutely-uniformly in z ∈ D(z0, r). In particular, f is analytic in Ω.

Proof. IfD(z0, r) ⊂ Ω, then by the compactness of this disk, there exists ε > 0 so thatD(z0, r+ε) ⊂
Ω as well. Observe that for w ∈ ∂D(z0, r + ε) and z ∈ D(z0, r), we have the bounds

|z − z0|
|w − z0|

≤ r

r + ε
< 1. (4.4.10)
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Thus we can express (w − z)−1 as a geometric sum:

1

w − z
=

1

(w − z0)

(
1− z − z0

w − z0

) =
1

w − z0

∞∑
n=0

(
z − z0
w − z0

)n

=
∞∑
n=0

(z − z0)
n

(w − z0)n+1
.

Moreover, bearing in mind (4.4.10), we can apply the Weierstrass M-test (Theorem 3.9) with
Mn = rn/(r+ε)n to deduce that the convergence of the series above is uniform in w ∈ ∂D(z0, r+ε).
Now, on the disk D(z0, r+ ε), we use first Corollary 4.28 (formula (4.3.3)) and then Theorem 4.32
for the derivatives of f (see (4.4.1)) to write, for all z ∈ D(z0, r) ⊂ D(z0, r + ε):

f(z) =
1

2πi

∫
∂D(z0,r+ε)

f(w)

w − z
dw =

1

2πi

∫
∂D(z0,r+ε)

f(w)
∞∑
n=0

(z − z0)
n

(w − z0)n+1
dw

=
∞∑
n=0

(
1

2πi

∫
∂D(z0,r+ε)

f(w)

(w − z0)n+1
dw

)
(z − z0)

n =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n.

Note that in the third equality we used the uniform convergence of the series in w ∈ ∂D(z0, r+ ε)
and Corollary 4.12 to move the series outside of the integral. We have shown (4.4.9) for all
z ∈ D(z0, r). To show that the converge is absolute-uniform, we apply Corollary 4.34, estimate
(4.4.4) at the point z0 and over the circle D(z0, r + ε), obtaining the bound∣∣∣∣∣f (n)(z0)n!

∣∣∣∣∣
1/n

≤ (sup{|f(w)| : w ∈ ∂D(z0, r + ε)})1/n

r + ε
, n ∈ N.

The limit superior of the last term is at most 1/(r+ ε), so by Theorem 3.15 (formula (3.3.3)), the
radius of convergence R of the power series

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n

is at least r + ε. In particular, again by Theorem 3.15, this series converges absolutely-uniformly
on D(z0, r).

Corollary 4.40. Let Ω ⊂ C be open, f : Ω → C holomorphic, and let R ∈ (0,+∞] be the radius of
convergence of the Taylor series

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n

centered at z0 ∈ Ω. Then R ≥ sup{r > 0 : D(z0, r) ⊂ Ω}.

According to Corollary 4.40, if we know that an f : D(z0, r) → C is holomorphic in D(z0, r),
then

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n, z ∈ D(z0, r),

with absolute pointwise convergence in D(z0, r) and absolute–uniform convergence on each closed
subdisk D(z0, s) with s < r.

Also, if f : C → C is holomorphic, then for all z0 ∈ C we can write

f(z) =
f (n)(z0)

n!
(z − z0)

n, z ∈ C,

with absolute pointwise convergence in D(z0, r) and absolute–uniform convergence on each closed
subdisk D(z0, r) with r > 0.

The Identity Principles for analytic functions from Section 3.4.4 are then true for holomorphic
functions. They follow as an immediate consequence of Theorems 4.39, 3.32, and 3.33.
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Corollary 4.41 (First Identity Principle for Holomorphic Functions). Let Ω ⊂ C be open and
connected, and f, g : Ω → C two holomorphic functions such that there is z0 ∈ Ω with f (n)(z0) =
g(n)(z0) for all n ∈ N ∪ {0}. Then f = g on Ω.

Observe that in Corollary 4.41, we really need the identity f (n)(z0) = g(n)(z0) for all n ∈ N∪{0}
in order to claim that f = g in Ω, and assuming that identity for infinitely many n’s is not enough.
For example, the function f(z) = cos z in C has the property that f (2n−1)(0) = 0 for all n ∈ N,
and of course f ̸≡ 0 in C.

However, it is natural to wonder about the case where the firstm−1 derivatives of a holomorphic
function are zero, but not the m-th one. Let us discuss this now.

Definition 4.42 (Order of a zero). Let Ω ⊂ C be open, z0 ∈ Ω, m ∈ N, and f : Ω → C a holomorphic
function. We say that f has a zero of order m at z0 provided that

f(z0) = f ′(z0) = · · · = fm−1(z0) = 0 and f (m)(z0) ̸= 0.

A function with a zero of order m at z0 admits a factorization via (z − z0)
m.

Proposition 4.43. Let Ω ⊂ C be open, z0 ∈ Ω, m ∈ N, and f : Ω → C a holomorphic function.
Then f has a zero of order m at z0 if and only if there exists g ∈ H(Ω) with g(z0) ̸= 0 and

f(z) = (z − z0)
mg(z), for all z ∈ Ω.

Proof. Assume that f has a zero of order m ∈ N at z0. By Theorem 4.39 there exists r > 0 with
D(z0, r) ⊂ Ω and such that for all z ∈ D(z0, r) :

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)

n = (z − z0)
m

∞∑
n=m

f (n)(z0)

n!
(z − z0)

n−m, (4.4.11)

with uniform convergence of the series in D(z0, r). Defining h : D(z0, r) → C by

h(z) =
∞∑

n=m

f (n)(z0)

n!
(z − z0)

n−m, z ∈ D(z0, r),

we notice that h is continuous in D(z0, r) by the uniform convergence of the series there (recall
Proposition 3.10), and that h(z0) = f (m)(z0)/m! ̸= 0. The desired function g is defined by

g(z) =

{
f(z)

(z−z0)m
if z ∈ Ω \ {z0}

h(z0) if z = z0.

We immediately see that g(z0) = h(z0) ̸= 0 and that g is holomorphic in Ω \ {z0}. Also, (4.4.11)
yields that g(z) = h(z) for all z ∈ D(z0, r), so the continuity of h at z0 implies the continuity of g
at z0. According to Corollary 4.35, g ∈ H(Ω).

Conversely, assume the factorization f(z) = (z−z0)mg(z), z ∈ Ω, for somem ∈ N and g ∈ H(Ω)
with g(z0) ̸= 0. Differentiating the expression (z − z0)

mg(z) at z0 up to m times we get that

f(z0) = f ′(z0) = · · · = fm−1(z0) = 0 and f (m)(z0) = m!g(z0) ̸= 0,

and thus f has zero of order m at z0.

Finally, as a consequence of Theorems 4.39 and 3.33, we get that the zeros of a holomorphic
function are isolated.

Corollary 4.44 (Second Identity Principle for Holomorphic Functions). Let Ω ⊂ C be open and
connected, and f, g : Ω → C two holomorphic functions such that there are z0 ∈ Ω and a sequence
{zk}k ⊂ Ω \ {z0} such that lim

k→∞
zk = z0 and f(zk) = g(zk) for all k ∈ N. Then f = g on Ω.

In other words, if f = g in a set E ⊂ Ω with E′ ∩ Ω ̸= ∅, then f = g in Ω.



101

4.4.4 Liouville’s Theorem and The Fundamental Theorem of Algebra

Theorem 4.45 (Liouville’s Theorem). Let f : C → C be holomorphic and bounded. Then f is
constant in C.

Proof. For every z ∈ C and r > 0, the estimate (4.4.4) for f ′ in the disk D(z, r) gives

|f ′(z)| ≤ sup{|f(w)| : w ∈ ∂D(z, r)}
r

≤ sup{|f(w)| : w ∈ C}
r

.

Since the last supremum is a finite positive number, letting r → ∞ in the above inequality implies
that f ′(z) = 0. But because C is connected, Corollary 2.37 says that f is constant in C.

A consequence is that the image of a non-constant holomorphic map f : C → C is dense in C.

Corollary 4.46. Let f : C → C be a non-constant holomorphic. Then f(C) = C.

Proof. Suppose, for the sake of contradiction, that there is w0 ∈ C \ f(C). Then there exists ε > 0
so that D(w0, ε) ∩ f(C) = ∅; see (2.1.1) in Proposition 2.6. Therefore, the function g : C → C
given by

g(z) =
1

f(z)− w0
, z ∈ C;

is holomorphic in C, as |f(z)−w0| ≥ ε > 0 for all z ∈ C. Precisely thanks to this estimate we have
that |g(z)| ≤ 1

ε for all z ∈ C. That is, g is bounded, and hence g (and consequently f) is constant
in C, a contradiction.

There is a stronger result due to Picard (called Picard’s Little Theorem), which shows that a
non-constant holomorphic function C → C takes all the values (possibly) except one.

We are finally equipped with the necessary analytic tools to give a proof of the Fundamental
Theorem of Algebra, using ingredients from complex analysis.

Theorem 4.47 (Fundamental Theorem of Algebra). Let P (z) = anz
n + · · · + a1z + a0, z ∈ C, a

polynomial of degree n ∈ N, that is, an ̸= 0. Then there numbers z1, . . . , zn ∈ C so that

P (z) = an(z − z1) · · · (z − zn), z ∈ C. (4.4.12)

In particular, P has at least one root.

Proof. We will prove first that every polynomial P of degree n ∈ N, must have at least one root.
Suppose, for the sake of contradiction, that P (z) ̸= 0 for all z ∈ C. The polynomial P (z) =
anz

n + · · · + a1z + a0 is holomorphic in C, and so is the function f = 1/P : C → C; see e.g.
Proposition 2.34. Observe that, for all z ̸= 0,

|P (z)| =
∣∣anzn + an−1z

n−1 + · · ·+ a1z + a0
∣∣ ≥ |z|n

(
|an| −

|an−1|
|z|

− · · · − |a1|
|z|n−1

− |a0|
|z|n

)
;

which clearly shows that lim
|z|→∞

|P (z)| = ∞, and so lim
|z|→∞

|f(z)| = 0. Thus there is r > 0 so

that |f(z)| ≤ 1 for all |z| ≥ r. Since of course |f | is also bounded in D(0, r),(by continuity; see
Proposition 2.25), we get that f : C → C is bounded and holomorphic. By Theorem 4.45, f must
be a (non-zero) constant in C, and so P must be constant in C. This contradicts what we proved
above lim

|z|→∞
|P (z)| = ∞. Therefore, this shows that there exists some z ∈ C with P (z) = 0.

Now, let us prove the factorization (4.4.12) for P. Let z1 ∈ C be so that P (z1) = 0. We can
manually factorize P in terms of z − z1, for all z ∈ C, using the identity (1.1.4):

P (z) = P (z)− P (z1) =
n∑

k=1

akz
k −

n∑
k=1

akz
k
1 =

n∑
k=1

ak(z
k − zk1 ) =

n∑
k=1

ak(z − z1)

k−1∑
j=0

zk−1−j
1 zj

= (z − z1)
n∑

k=1

ak

k−1∑
j=0

zk−1−j
1 zj = (z − z1)P1(z), where P1(z) =

n∑
k=1

ak

k−1∑
j=0

zk−1−j
1 zj .
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Now, P1 is polynomial of degree n− 1, and the coefficient of the monomial zn−1 of P1 is equal to
an. By what we have proved already in the current proof, there exists some z2 ∈ C with P1(z2) = 0.
Repeating the factorization above for P1, we obtain a new polynomial P2 of degree n − 2, with
coefficient of the term zn−2 equal to an and such that

P1(z) = (z − z2)P2(z), P (z) = an(z − z1)(z − z2)P2(z) z ∈ C.

By repeating this argument, we obtain numbers z1, . . . , zn−1 ∈ C and a polynomial Pn−1 of degree
1 with coefficient of the monomial z equal to an, and such that

P (z) = (z − z1)(z − z2) · · · (z − zn−1)Pn−1(z) z ∈ C.

Obviously there exists zn ∈ C such that Pn−1(z) = an(z − zn) for all z ∈ C, yielding (4.4.12).

4.5 The Maximum Modulus Principles

In this section we show that the modulus of holomorphic functions attain their maximum on the
boundary of a disk, or more generally, on the boundary of bounded domains. These are the
Maximum Modulus Principles.

Theorem 4.48 (Maximum Modulus Principle I). Let Ω ⊂ C be open and connected, f : Ω → C be
holomorphic in Ω, and z0 ∈ Ω, r > 0 so that D(z0, r) ⊂ Ω. Then

|f(z0)| ≤ max{|f(z)| : z ∈ ∂D(z0, r)}. (4.5.1)

Moreover, the inequality (4.5.1) becomes equality if and only if f is constant in Ω.

Proof. Define M(r) := max{|f(z)| : z ∈ ∂D(z0, r)}. By Corollary 4.31, we have

|f(z0)| =
∣∣∣∣ 12π

∫ 2π

0
f(z0 + reit) dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0

∣∣f(z0 + reit)
∣∣ dt ≤ 1

2π

∫ 2π

0
M(r) dt =M(r),

which proves (4.5.1). To prove the second part, assume that |f(z0)| = M(r). In the case where
M(r) = 0, we have that f = 0 on ∂D(z0, r); which by Corollary 4.44 implies that f = 0 on Ω. So,
let us study the case where |f(z0)| = M(r) > 0. Define the function g(z) = e−iArg(f(z0))f(z) for
all z ∈ Ω, and note that g(z0) = e−iArg(f(z0))f(z0) = |f(z0)| > 0 and M(r) = max{|g(z)| : z ∈
∂D(z0, r)}. Applying Corollary 4.31 to g, we get

g(z0) =
1

2π

∫ 2π

0
Re
(
g(z0 + reit)

)
dt+ i

1

2π

∫ 2π

0
Im
(
g(z0 + reit)

)
dt;

which clearly implies
1

2π

∫ 2π

0

(
Re(g(z0 + reit))− g(z0)

)
dt = 0. (4.5.2)

But on the other hand, we have that√
(Re (g(z0 + reit)))2 + (Im (g(z0 + reit)))2 =

∣∣g(z0 + reit)
∣∣ ≤M(r) = g(z0) (4.5.3)

holds for all t ∈ [0, 2π]. Since the function [0, 2π] ∋ t 7→ Re(g(z0 + reit)) is continuous, (4.5.2) and
(4.5.3) together give Re(g(z0 + reit)) = g(z0) and Im(g(z0 + reit)) = 0 for all t ∈ [0, 2π]. Thus g is
constantly equal to g(z0) in the set ∂D(z0, r). By Corollary 4.44, g and f are constants in Ω.

As a corollary, we deduce that non-constant holomorphic function cannot attained their max-
imum in the interior of their domain.

Corollary 4.49. Let Ω ⊂ C be open and connected, f : Ω → C be holomorphic in Ω, and assume
there exists z0 ∈ Ω with |f(z0)| ≥ |f(z)| for all z ∈ Ω. Then f is constant in Ω.
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Proof. Let r > 0 be so that D(z0, r) ⊂ Ω. Denoting M(r) := max{|f(z)| : z ∈ ∂D(z0, r)}, we
know from Theorem 4.48 that |f(z0)| ≤M(r). The assumption of the current corollary says that

|f(z0)| ≥ sup{|f(z)| : z ∈ Ω} ≥ max{|f(z)| : z ∈ ∂D(z0, r)} =M(r).

Thus |f(z0)| =M(r) and the second part of Theorem 4.48 yields that f is constant in Ω.

Theorem 4.48 or Corollary 4.49 do not hold for smooth real functions. For example, notice
that the function f : R2 → R2 given by f(x, y) = e−(x2+y2) is of class C∞(R2) (even real-analytic
in R2), but

f(0, 0) = 1 = max{|f(x, y)| : (x, y) ∈ D(0, 1)} = max{|f(x, y)| : (x, y) ∈ R2}.

Theorem 4.50 (Maximum Modulus Principle II). Let Ω ⊂ C be open, connected, and bounded.
Let f : Ω → C be continuous in Ω and holomorphic in Ω. Then, the maximum of f in Ω is attained
in the boundary:

max{|f(z)| : z ∈ Ω} = max{|f(z)| : z ∈ ∂Ω}. (4.5.4)

Proof. Suppose, seeking a contradiction, that (4.5.4) is false. The set Ω, being closed and bounded,
is compact; see Theorem 2.14. Since f is continuous in Ω, Proposition 2.25 says that there is z0 ∈ Ω
at which |f | attains the maximum on Ω. This information together with the (assumed) falsity of
(4.5.4) is gathered as follows:

|f(z0)| = max{|f(z)| : z ∈ Ω} > max{|f(z)| : z ∈ ∂Ω}. (4.5.5)

Then necessarily z0 ∈ int(Ω) = Ω and |f(z0)| ≥ |f(z)| for all z ∈ Ω. Corollary 4.49 tells us that
f(z) = f(z0) for all z ∈ Ω. The continuity of f in Ω implies that also f(z) = f(z0) for all z ∈ ∂Ω,
contradicting (4.5.5).

In Theorem 4.50, the assumption that Ω is bounded is really needed. For example, the right
half-plane Ω = {z ∈ C : Re(z) > 0} has boundary ∂Ω = iR, the pure imaginary numbers, and the
holomorphic function f(z) = ez satisfies

max{|f(z)| : z ∈ ∂Ω} = max{eRe(z) : z ∈ iR} = e0 = 1.

But |ez| = eRe(z) is clearly unbounded in Ω, that is, sup{|f(z)| : z ∈ Ω} = ∞.

4.5.1 The Schwarz Lemma

As a consequence of Theorem 4.48, we show that bounded holomorphic mappings between the unit
disk have a quite rigid structure. Let us denote by D the open unit disk of C, that is,

D := {z ∈ C : |z| < 1}.

Theorem 4.51 (Schwarz Lemma). Let f : D → C be a holomorphic function with f(0) = 0 and
∥f∥∞ := sup{|f(z)| : z ∈ D} ≤ 1. Then

(i) |f(z)| ≤ |z| for all z ∈ D.

(ii) |f ′(0)| ≤ 1.

(iii) If either (i) holds with equality for some z ∈ D \ {0} or (ii) holds with equality, then there
exists λ ∈ C with |λ| = 1 so that

f(z) = λz for all z ∈ D.
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Proof. We define a new function g : D → C by

g(z) =


f(z)

z
, if z ∈ D \ {0},

f ′(0) if z = 0.

Since f ∈ H(D) and f(0) = 0, then g is continuous in D and g ∈ H(D \ {0}). By Corollary 4.35,
g ∈ H(D) as well. For every r ∈ (0, 1), we apply Theorem 4.50 to g in the disk D(0, r) ⊂ D,
obtaining for all z ∈ D(0, r) the estimate:

|g(z)| ≤ max{|g(w)| : w ∈ ∂D(0, r)} =
max{|f(w)| : w ∈ ∂D(0, r)}

r
≤ 1

r
;

the last inequality being due to the assumption ∥f∥∞ ≤ 1. Therefore, one has

|g(z)| ≤ lim
r→1−

1

r
= 1, for all z ∈ D. (4.5.6)

This implies that |f(z)| ≤ |z| for all z ∈ D and that |f ′(0)| = |g(0)| ≤ 1, proving (i) and (ii).
To show (iii), observe that if either |f(z)| = |z| for some z ∈ D \ {0} or |f ′(0)| = 1, then we

have that |g(z0)| = 1 for some z0 ∈ D. By (4.5.6), this yields that |g(z0)| ≥ max{|g(z)| : z ∈ D},
and then Corollary 4.49 tells us that g is constant in D. Thus there is λ ∈ C with |λ| = 1 such that
f(z) = g(z)z = λz for all z ∈ D.

4.6 Exercises

Exercise 4.1. Compute the following path-integrals in the indicated paths, where, for the closed
paths, we understand that the paths are traveled once and counterclockwise.

(a)
∫
γ z dz, for γ equal to the circle ∂D(0, R), R > 0.

(b)
∫
γ z dz, for γ equal to the boundary of the square [−R,R]× [−R,R], for R > 0.

(c)
∫
γ |z|dz, for γ ≡ {z ∈ C : |z| = 1, Arg(z) ∈ [0, π]} and γ ≡ ∂D(0, 1).

(d)
∫
γ z

2 dz, for γ ≡ [1 + i, 2].

(e)
∫
γ Im(z) dz, for γ equal to the triangle with vertices 1, i,−i.

Exercise 4.2. Prove the following inequalities.

(a)
∣∣∣∫γ ez

z dz
∣∣∣ ≤ πe, where γ ≡ {z ∈ C : |z| = 1, Arg(z) ∈ [0, π]}.

(b)
∣∣∣∫γ 1

z2+1
dz
∣∣∣ ≤ π/6, where γ ≡ {z ∈ C : |z| = 2, Arg(z) ∈ [0, π/2]}.

(c)
∣∣∣∫γ eiz

z dz
∣∣∣ ≤ 21−e−R

R , where γ ≡ [R,R+ iR], R > 0.

(d)
∣∣∣∫γ 1

z2+1
dz
∣∣∣ ≤ πR

|R2−1| , where γ ≡ {z ∈ C : |z| = R, Arg(z) ∈ [0, π]}, R > 0, R ̸= 1.

(e)
∣∣∣∫γ 1−e2iz

z2(z2+1)
dz
∣∣∣ ≤ 2π

R(R2−1)
, where γ ≡ {z ∈ C : |z| = R, Arg(z) ∈ [0, π]}, R > 1.

Suggestion: Use appropriately the inequalities from Proposition 4.11(vi).

Exercise 4.3. Let Ω ⊂ C be open, f : Ω → C continuous, γ : [a, b] → Ω a C1-path, and {γn :
[a, b] → Ω}n a sequence of C1-paths so that γn → γ and γ′n → γ′ uniformly in [a, b]. Show that

lim
n→∞

∫
γn

f(z) dz =

∫
γ
f(z) dz.
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Exercise 4.4. Compute the following path-integrals in the indicated sets/paths.

(a)
∫
γ e

z dz, where γ(t) = ieit for t ∈ [0, π].

(b)
∫
γ z

3 dz, where γ(t) = eit for t ∈ [0, π].

(c)
∫
γ cos z dz, where γ(t) = i+ eit for t ∈ [0, π/4].

(d)
∫
γ

1
z2

dz, where γ(t) = cos t+ 2i sin t, t ∈ [0, 2π].

(e)
∫
γ

1
z dz, where γ is the segment line [1, i].

(f)
∫
γ(z − z0)

n dz, where z0 ∈ C, n ∈ Z, and γ ≡ {z ∈ C : |z − z0| = 1, Arg(z − z0) ∈ [0, π]},
traveled once and with the counterclockwise orientation.

Suggestion: Theorem 4.15.

Exercise 4.5. Let Ω be open and convex, and f : Ω → C holomorphic (with f ′ continuous) in Ω
with Re(f ′(z)) > 0 for all z ∈ Ω. Show that f is injective in Ω.

Exercise 4.6. Let Ω ⊂ C open, f : Ω → C holomorphic and γ : [a, b] → Ω a closed piecewise
C1-path. Prove that if n ∈ N ∪ {0} and z0 /∈ γ∗, then∫

γ

f ′(z)

(z − z0)n
dz = n

∫
γ

f(z)

(z − z0)n+1
dz.

Exercise 4.7. Let Ω ⊂ C open, f, g : Ω → C holomorphic (so f ′, g′ are continuous), and γ : [a, b] →
Ω a closed piecewise C1-path. Then∫

γ
f ′(z)g(z) dz = f(γ(b))g(γ(b))− f(γ(a))g(γ(a))−

∫
γ
f(z)g′(z) dz.

Exercise 4.8. Let r > 0, z0 ∈ D(0, r) and n ∈ N. Prove that for every polynomial P with deg(P ) ≤
n, one has ∫

∂D(z0,r)

P (z)

zn+1(z − z0)
dz = 0.

Suggestion: Use the linearity of the integral and observe the decomposition into simple fractions
of the integrands.

Exercise 4.9. Let z1, z2 ∈ C and r > 0 so that |z1| < r < |z2|. Show that∫
∂D(0,r)

dz

(z − z1)(z − z2)
=

2πi

z1 − z2
.

Exercise 4.10. Compute the following path-integrals in the indicated sets/paths.

(a)
∫
γ

z2+1
z(z2+4)

dz, where γ = ∂D(0, r) for r ̸= 2.

(b)
∫
γ

e1/z

z2+z
dz, where γ = ∂D(−1, 1/2).

(c)
∫
γ

cos(πz)
|z−2|2 dz, where γ = ∂D(0, 1).

(d)
∫
γ

sin(ez)
z dz, where γ = ∂D(0, 1).

(e)
∫
γ

ez

z2(z−1)
dz, where γ = ∂D(0, 2).

(f)
∫
γ z

2 sin
(
1
z

)
dz, where γ = ∂D(0, 1).
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Suggestion: In (f), recall the Taylor expansion of the complex sin function.

Exercise 4.11. Prove that:

(a)
∫
γ

3z−1
(z+1)(z−3) dz = 6πi, where γ = ∂D(0, 4).

(b)
∫
γ

2z
z2+1

dz = 4πi, where γ = ∂D(0, 2).

(c)
∫
γ

z3

z4−1
dz = 2πi, where γ = ∂D(0, 2).

(d)
∫
γ

ez

(z−2)2
dz = 2πie2, where γ = ∂D(2, 1).

Exercise 4.12. Define f : D(0, 1) → C by f(z) =
z

|1− z|2
, z ∈ D(0, 1). Prove, for every 0 < r < 1,

that
1

2π

∫ 2π

0

∣∣f(reit)∣∣ dt = r

1− r2
.

Suggestion: It is helpful to calculate the integral
∫
∂D(0,r)

dz
(1−z)(z−r2)

first with the Cauchy Integral

Formula, and then with the definition of complex path-integral. Here ∂D(0, r) is traveled once and
counterclockwise.

Exercise 4.13. Let r > 0 and let P be a polynomial whose roots are all contained in the open disk
D(0, r). Prove that ∫

∂D(0,r)

P ′(z)

P (z)
dz = 2πideg(P ).

Suggestion: It is very helpful to use Theorem 4.47 to factorize P . Recall that for a polynomial
P (z) = anz

n + · · ·+ a1z + a0 with an ̸= 0, we have deg(P ) = n.

Exercise 4.14. Let Ω ⊂ C be open so that D(z0, r) ⊂ Ω, and let f : Ω → C be holomorphic. Prove
that

|f(z0)|2 ≤
1

πr2

∫ 2π

0

∫ r

0
|f(z0 + seit)|2 s ds dt.

Exercise 4.15. Use appropriately the Cauchy Integral Formula to calculate the integral∫
∂D(0,1)

dz

(z − 3/2)(z − 2/3)
.

Then calculate the real integral ∫ 2π

0

dt

13− 12 cos t
.

Exercise 4.16. Let ξ ∈ C with |ξ| ≠ 1. Compute the integral∫ 2π

0

dt

1− 2ξ cos t+ ξ2
.

Exercise 4.17. Define, for each r > 0, the path γr : [0, π/4] → C by γr(t) = reit. Prove that

lim
r→+∞

∫
γr

e−z2 dz = 0.

Then, integrate the function e−z2 over the paths Γr := [0, r] ⋆ γr ⋆ [re
iπ
4 , 0], r > 0, to show that∫ ∞

0
sin(x2) dx =

∫ ∞

0
cos(x2) dx =

√
2π

4
.
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Suggestions: For the limit part, take into account the inequality cos(2t) ≥ 1− 4
π t for all t ∈ [0, π4 ].

For the second part, what is the value of
∫
Γr
e−z2 dz for all r > 0?

Exercise 4.18. Define, for each r > 0, the path γr : [0, π] → C by γr(t) = reit. Prove that:

(a) lim
r→0

∫
γr

eiz

z dz = πi.

(b) lim
r→∞

∫
γr

eiz

z dz = 0.

(c) Integrate the function z 7→ eiz

z over the paths [−R,−r] ⋆ γ−r ⋆ [r,R] ⋆ γR, with R > r > 0, and
let r → 0 and R→ ∞ to prove the identity∫ ∞

0

sinx

x
dx =

π

2
.

Suggestions: In (a), estimate the modulus
∫
γr

eiz

z dz − πi =
∫
γr

eiz−1
z dz, and take into account

the Taylor Series of ew − 1 centered at w = 0.
In (b), the estimates sin t ≥ 2t/π and cos t ≥ 1− 2t/π for t ∈ [0, π/2] can be helpful.
In (c), find the winding number W (Γr,R, 0) of the path Γr,R := [−R,−r] ⋆ γ−r ⋆ [r,R] ⋆ γR around
0, for all r < R, and then use appropriately Theorem 4.27.

Exercise 4.19. Let f : C → C holomorphic such that there constants C, a > 0 with |f(z)| ≤ Cea|z|

for all z ∈ C. Prove that |f ′(z)| ≤ Caea|z|+1 for all z ∈ C.

Suggestion: Corollary 4.34.

Exercise 4.20. Let f : D → C be holomorphic. Prove that

2|f ′(0)| ≤ sup{|f(w)− f(−w)| : w ∈ D}.

Exercise 4.21. Let Ω := {z ∈ C : | Im(z)| < 1}, and let f : Ω → C be holomorphic so that there
are constants C > 0 and a ∈ R with

|f(z)| ≤ C (1 + |z|)a for all z ∈ Ω.

Prove that for every n ∈ N, there is a constant Cn > 0 so that∣∣∣f (n)(x)∣∣∣ ≤ Cn (1 + |x|)a for all x ∈ R.

Exercise 4.22. Let f : C → C be holomorphic. Prove that for every z ∈ C there exists M > 0 such
that |f (n)(z)| ≤M · n! for every n ∈ N.

Exercise 4.23. Let Ω be open, z0 ∈ Ω, and f : Ω → C holomorphic in Ω. Show that the estimates

|f (n)(z0)| ≥ n!nn

only can hold for finitely many n ∈ N.

Exercise 4.24. Let Ω be open and connected, and f : Ω → C be holomorphic so that there exists
z0 ∈ Ω and C > 0 with |f (n)(z0)| ≤ C for every n ∈ N. Prove that there is a function g : C → C
holomorphic with g = f on Ω.

Suggestion: What is the radius of convergence of the power series
∑∞

n=0
f (n)(z0)

n! (z−z0)n? Then,
at some point Corollary 4.44 can be helpful.

Exercise 4.25. Let Ω be open and connected, and f, g : Ω → C be two holomorphic functions with
f(z)g(z) = 0 for all z ∈ C. Show that either f = 0 in Ω or g = 0 in Ω.
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Suggestion: Use appropriately Corollary 4.44.

Exercise 4.26. Let f : C → C be holomorphic, and suppose there are constants r, C > 0, n ∈ N
such that |f(z)| ≤ C|z|n for all |z| ≥ r. Prove that f is a polynomial with deg(f) ≤ n.

Exercise 4.27. Let f : C → C be holomorphic with |f ′(z)| ≤ |z| for all z ∈ C. Show that there exist
w1, w2 ∈ C with |w2| ≤ 1/2 so that f(z) = w1 + w2z

2 for all z ∈ C.

Exercise 4.28. Let f : C → C be holomorphic, and suppose there are constants C > 0, α > 0 with
α /∈ N such that |f(z)| ≤ C|z|α for all z ∈ C. Prove that f is identically zero in C.

Exercise 4.29. Let f : C → C be holomorphic with lim
|z|→∞

f(z)
z = 0. Prove that f is constant in C.

Exercise 4.30. Let f : C → C be holomorphic so that there exist M > 0, α ∈ (0, 1) with |f(z)| ≤
M (1 + |z|α) for all z ∈ C. Prove that f is constant in C.

Exercise 4.31. Find the Taylor series of f centered at z0 in the following cases.

(i) f(z) = ez, z0 = 1.

(ii) f(z) = sin2 z, z0 = 0.

(iii) f(z) = ez sin z, z0 = 0.

Suggestion: In (ii), it is helpful to note that 2 sin2 z = 1− cos(2z).

Exercise 4.32. Show that there exist no function f : D(0, 2) → C holomorphic in D(0, 2) with
f(1/n) = −1/n2 and f

(
n+1
n

)
= 1/n for all n ≥ 2.

Suggestion: Use appropriately Corollary 4.44.

Exercise 4.33. Let f : D → C be holomorphic with f
(

1
n+1

)
∈ R for all n ∈ N. Show that f(z) =

f(z) for all z ∈ D.

Exercise 4.34. Let f : D(z0, R) → C be holomorphic. Prove that if 0 < r < R, then

(i)

1

2π

∫ 2π

0
|f(z0 + reit)|2 dt =

∞∑
n=0

∣∣∣∣∣f (n)(z0)n!

∣∣∣∣∣
2

r2n.

(ii) Denoting M(r) := max{|f(z)| : z ∈ ∂D(z0, r)}, then

∞∑
n=0

∣∣∣∣∣f (n)(z0)n!

∣∣∣∣∣
2

r2n ≤ (M(r))2.

Exercise 4.35. Let f : C → C be holomorphic. Prove that f is constant in any of the following
cases.

(i) |f(z)| ≥ 1 for all z ∈ C.

(ii) Either Re(f)(z) ≥ 0 for all z ∈ C or Im(f)(z) ≥ 0 for all z ∈ C.

(iii) Either Re(f)(z) ̸= 0 for all z ∈ C or Im(f)(z) ̸= 0 for all z ∈ C.

Suggestion: Use appropriately Theorem 4.45.
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Exercise 4.36. Let P (z) = a0z
n+a1z

n−1+ · · ·+an−1z+an a polynomial with a0 ̸= 0. Let z1, . . . , zn
be the roots of P. Show that:

n∑
k=1

zk = −a1
a0

and

n∏
k=1

zk = (−1)n
an
a0
.

Exercise 4.37. For any nonempty set A ⊂ C, denote M(A) := max{|ez| : z ∈ A}. Find M(A) in
the following cases:

(i) A = {z ∈ C : |z − 1− i| ≤ 1}.

(ii) A = {z ∈ C : |Re(z)− 2| ≤ 1 and | Im(z)− 3| ≤ 1}.

Exercise 4.38. For any nonempty set A ⊂ C, denote M(A) := max{| cos z| : z ∈ A}. Find M(A)
in the following cases:

(i) A = {z ∈ C : Re(z), Im(z) ∈ [0, 2π]}.

(ii) A = {z ∈ C : |z| ≤ 1}.

Suggestion: Theorem 4.50.

Exercise 4.39. Let Ω ⊂ C be open and connected, with D(0, r) ⊂ Ω for some r > 0. Let f, g : Ω → C
be holomorphic with |f(z)| = |g(z)| for all z ∈ ∂D(0, r) and f(z) ̸= 0 ̸= g(z) for all z ∈ D(0, r).
Prove that there exists λ ∈ C with |λ| = 1 so that f = λg in Ω.

Exercise 4.40. Let Ω ⊂ C be open and connected, f : Ω → C a non-constant holomorphic function
such that f(z) ̸= 0 for all z ∈ Ω. Prove that the function |f | : Ω → R has no local minimum in Ω.

Exercise 4.41. Let Ω ⊂ C be open and connected, {fn : Ω → C}n a sequence of holomorphic
functions in Ω with fn(z) ̸= 0 for all z ∈ Ω and n ∈ N. Prove that if {fn}n converges uniformly to
f : Ω → C in compact subsets of Ω, then either f(z) ̸= 0 for all z ∈ Ω or f = 0 in Ω.

Exercise 4.42. Let Ω ⊂ C be open and connected with D ⊂ Ω, and f : Ω → C a non-constant
holomorphic function such that |f(z)| = 1 for all z ∈ ∂D. Prove that f has finitely many, and at
least one, zeros in D.

Exercise 4.43. Let Ω ⊂ C be open and connected so that D ⊂ Ω and let f : Ω → C be holomorphic.
Prove the following statements.

(i) If f is non-constant in Ω and |f | is constant in ∂D, then there exists z0 ∈ D with f(z0) = 0.

(ii) If f is pure imaginary in ∂D (that is, f(∂D) ⊂ iR), then f is constant in Ω.

(iii) If f is real in ∂D (that is, f(∂D) ⊂ R), then f is constant in Ω.

Exercise 4.44. Let Ω ⊂ C be open, connected and bounded, and f : Ω → C continuous in Ω and
holomorphic in Ω. Prove that if |f | is constant in ∂Ω, then either f is constant in Ω or f has a
zero in Ω.

Exercise 4.45. Let f : C → C be a non-constant holomorphic function and c > 0. Prove that

{z ∈ C : |f(z)| < c} = {z ∈ C : |f(z)| ≤ c}.

Exercise 4.46. Let f : D → C holomorphic with |f(z)| ≤ 1 for all z ∈ D and so that f(w) = 0 for
some w ∈ D. Prove that

|f(z)| ≤
∣∣∣∣ z − w

1− wz

∣∣∣∣ for all z ∈ D.
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Chapter 5

Laurent Series and Singularities

In this chapter, we study the behaviour of functions f that are holomorphic in a punctured disk
D(z0, r) \ {z0}. We then say that the function has an isolated singularity at z0. These functions
f can still be written as power series around z0, if we include negative powers (z − z0)

−n in the
series. This series is called the Laurent Series of f around z0. We classify the type of singularities
depending on the coefficients of the Laurent Series. Our main goal is to prove the Cauchy Residues
Theorem, which, among other applications, permits to easily compute improper real integrals.

5.1 Laurent Series

Laurent Series are essentially formal power series containing all possible negative powers as well.

Definition 5.1 (Laurent Series). A Laurent Series centered at a point z0 ∈ C is any series of the
form

∞∑
n=−∞

an(z − z0)
n; where {an}n∈Z ⊂ C.

The series
∑∞

n=1 a−n(z − z0)
−n is called the principal part of the Laurent Series above.

Also, we say that the series
∑∞

n=−∞ an(z−z0)n converges at z ∈ C if both series
∑∞

n=0 an(z−
z0)

n and
∑∞

n=1 a−n(z − z0)
−n converge. Note that then

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

a−n(z − z0)
−n = lim

N→∞

N∑
n=−N

an(z − z0)
n.

Let us make some remarks on the radii of convergence of the series above, as well as the
holomorphicity of those.

Remark 5.2. Let
∑∞

n=−∞ an(z−z0)n be a Laurent series centered at z0. If we denote by R ∈ [0,+∞]
the radius of convergence of the power series

∑∞
n=1 a−nξ

n, we know that

R =

(
lim sup
n→+∞

|a−n|1/n
)−1

,

by virtue of Theorem 3.15. We actually know from that theorem that
∑∞

n=1 a−nξ
n converges

absolutely when |ξ| < R, and absolutely-uniformly on ξ ∈ D(0, r), for all r < R. Equivalently,∑∞
n=1 a−n(z − z0)

−n converges absolutely when |z − z0| > 1/R and absolutely-uniformly when
|z − z0| ≥ 1/r for all r < R. In other words, denoting

R1 = lim sup
n→+∞

|a−n|1/n,
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the principal part
∑∞

n=1 a−n(z − z0)
−n of the Laurent Series

∑∞
n=−∞ an(z − z0)

n is absolutely
convergent in the set {z ∈ C : |z − z0| > R1}, and absolutely-uniformly convergent on each set
{z ∈ C : |z − z0| ≥ r1} for all r1 > R1.

On the other hand, the series
∑∞

n=0 an(z − z0)
n has radius of converge R2 ∈ [0,+∞] given by

the formula

R2 =

(
lim sup
n→+∞

|an|1/n
)−1

,

again by Theorem 3.15. Thus, if R1 < R2, the Laurent Series

∞∑
n=−∞

an(z − z0)
n = lim

N→∞

N∑
n=−N

an(z − z0)
n,

converges absolutely whenever R1 < |z− z0| < R2, and absolutely–uniformly on each set {z ∈ C :
r1 ≤ |z − z0| ≤ r2}, with R1 < r1 ≤ r2 < R2.

Moreover, by Weierstrass Theorem 4.37, the Laurent series

∞∑
n=−∞

an(z − z0)
n

defines a holomorphic function in the set {z ∈ C : R1 < |z − z0| < R2}.

Throughout the rest of the chapter we will use the following notation, for z0 ∈ C, 0 ≤ r1 <
r2 ≤ +∞ :

Ar1,r2(z0) := D(z0, r2) \D(z0, r1) = {z ∈ C : r1 < |z − z0| < r2}.

That is, Ar1,r2(z0) is the annulus centered at z0 with larger radius r2 and smaller radius r1.

The following lemma for holomorphic functions over annuli is crucial.

Lemma 5.3. Let R1 ∈ [0,+∞) and R2 ∈ (0,+∞] with R1 < R2, let z0 ∈ C, and let g : AR1,R2(z0) →
C be holomorphic in AR1,R2(z0). Then, the value of the integral

∫
∂D(0,r) g(w) dw is the same for all

R1 < r < R2.

Proof. Let R1 < s < r < R2 and let ε > 0 be so that R1 < s− ε < s < r < r + ε < R2. We claim
first that for every θ ∈ [0, 2π], we have

Dθ := D

(
z0 +

s+ r

2
eiθ,

r − s

2
+
ε

2

)
⊂ As−ε,r+ε(z0).

Indeed, if z is in the disk of the left hand side, then the triangle inequality yields

s− ε < s+ r

2
−
∣∣∣∣z − (z0 + s+ r

2
eiθ
)∣∣∣∣ ≤ |z− z0| ≤

∣∣∣∣z − (z0 + s+ r

2
eiθ
)∣∣∣∣+ s+ r

2
< r+ ε. (5.1.1)

Now, denote by γs and γr the paths that travel once and counterclockwise the circles ∂D(0, s) and
∂D(0, r) respectively. Using the inclusions (5.1.1), clearly we can find a partition 0 = t0 < t1 <
· · · < tN < tN+1 = 2π of [0, 2π], and points θ0, . . . , θN+1 ∈ [0, 2π] so that, if we denote Dn := Dθn

for all n ∈ {0, . . . , N + 1}, then

Dn ∩Dn+1 ̸= ∅, n = 0, . . . , N + 1; and γs ([tn, tn+1]) ∪ γr ([tn, tn+1]) ⊂ Dn, n = 0, . . . , N.
(5.1.2)

But by (5.1.1), each Dn is convex subset of AR1,R2(z0); where g is holomorphic. So, Corollary
4.22 provides us with Fn : Dn → C holomorphic so that (Fn)

′ = g on Dn. But then in the set
Dn ∩Dn+1, both Fn and Fn+1 are primitives of g and so Fn+1 − Fn is a constant in Dn ∩Dn+1,
and by (5.1.2) this implies

Fn+1(γr(tn+1))− Fn+1(γs(tn+1)) = Fn(γr(tn+1))− Fn(γs(tn+1)), n = 0, . . . , N. (5.1.3)
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Now, applying Theorem 4.1.7 to each f on each path γs([tn, tn+1]), γr([tn, tn+1]), and taking into
account (5.1.3), we can write∫

γr

g(w) dw −
∫
γs

g(w) dw =
N∑

n=0

(∫
γr([tn,tn+1])

g(w) dw −
∫
γs([tn,tn+1])

g(w) dw

)

=

N∑
n=0

Fn(γr(tn+1))− Fn(γr(tn))−
N∑

n=0

Fn(γs(tn+1))− Fn(γs(tn))

=

N∑
n=0

[Fn(γr(tn+1))− Fn(γs(tn+1))− (Fn(γr(tn))− Fn(γs(tn)))]

=

N∑
n=0

[Fn+1(γr(tn+1))− Fn+1(γs(tn+1))− (Fn(γr(tn))− Fn(γs(tn)))]

= FN+1(γr(tN+1))− Fn+1(γs(tN+1))− (F0(γr(t0))− F0(γs(t0)))

= FN+1(γr(2π))− Fn+1(γs(2π))− (F0(γr(0))− F0(γs(0))) = 0− 0 = 0.

And the assertion is proven.

We are now ready to prove a version of the Cauchy Integral Formula on annuli; compare to
Corollary 4.28.

Theorem 5.4 (Cauchy Integral Formula in an Annulus). Let R1 ∈ [0,+∞) and R2 ∈ (0,+∞] with
R1 < R2, let z0 ∈ C, and let f : AR1,R2(z0) → C be holomorphic in AR1,R2(z0). Then, for every
r1, r2 with R1 < r1 < r2 < R2, we have

f(z) =
1

2πi

∫
∂D(z0,r2)

f(w)

w − z
dw− 1

2πi

∫
∂D(z0,r1)

f(w)

w − z
dw, whenever r1 < |z−z0| < r2. (5.1.4)

Proof. Fix r1, r2 with R1 < r1 < r2 < R2, and z with r1 < |z − z0| < r2. Define the function
g : AR1,R2(z0) → C by

g(w) =


f(w)− f(z)

w − z
if w ∈ AR1,R2(z0) \ {z},

f ′(z) if w = z.

It is clear that g is continuous in AR1,R2(z0) and holomorphic in AR1,R2(z0)\{z}, so Corollary 4.35
implies that actually g ∈ H (AR1,R2(z0)) . Denote by γr1 and γr2 the paths describing respectively
∂D(z0, r1) and ∂D(z0, r2) traveled once and counterclockwise. Then, by Lemma 5.3, we may write

0 =

∫
γr1

g(w) dw −
∫
γr2

g(w) dw =

∫
γr1

f(w)− f(z)

w − z
dw −

∫
γr2

f(w)− f(z)

w − z
dw

=

∫
γr1

f(w)

w − z
dw −

∫
γr2

f(w)

w − z
dw + f(z)

(∫
γr1

dw

w − z
−
∫
γr2

dw

w − z

)

=

∫
γr1

f(w)

w − z
dw −

∫
γr2

f(w)

w − z
dw + 2πif(z) (W (γr1 , z)−W (γr2 , z))

=

∫
γr1

f(w)

w − z
dw −

∫
γr2

f(w)

w − z
dw + 2πif(z).

In the last equality we used that W (γr1 , z) = 1 and W (γr2 , z) = 0; see Proposition 4.26. We have
thus shown (5.1.4).
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Finally, we show that holomorphic functions in annuli admit Laurent Series expansions.

Theorem 5.5 (Laurent Series Expansion). Let R1 ∈ [0,+∞) and R2 ∈ (0,+∞] with R1 < R2,
let z0 ∈ C, and let f : AR1,R2(z0) → C be holomorphic in AR1,R2(z0). Then there are numbers
{an}n∈N∗ , {bn}n∈N such that

f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

, for all z ∈ AR1,R2(z0), (5.1.5)

with absolute convergence for all z ∈ AR1,R2(z0). More precisely:

• The series
∑∞

n=0 an(z − z0)
n converges absolutely in D(z0, R2), and absolutely–uniformly in

D(z0, r2) for all 0 < r2 < R2;

• The series
∑∞

n=1
bn

(z−z0)n
converges absolutely in C \D(z0, R1), and absolutely–uniformly on

each set C \D(z0, r1) for all R1 < r1 <∞.

In particular, both series in (5.1.5) (simultaneously) converge absolutely-uniformly on each closed
annulus Ar1,r2 = {z ∈ C : r1 ≤ |z − z0| ≤ r2}, with R1 < r1 < r2 < R2. Furthemore, if
R1 < r < R2, we have

an =
1

2πi

∫
∂D(z0,r)

f(w)

(w − z0)n+1
dw, n ∈ N∗, and bn =

1

2πi

∫
∂D(z0,r)

f(w)(w−z0)n−1 dw, n ∈ N;

(5.1.6)
where ∂D(z0, r) is traveled once and counterclockwise.

Proof. We will denote by γr the path travelling ∂D(z0, r) once and counterclockwise, for every
r > 0. Define the functions f1 : C \D(z0, R1) → C and f2 : D(z0, R2) → C by

f1(z) :=
1

2πi

∫
γs

f(w)

w − z
dw, whenever |z − z0| > s, R1 < s < R2, (5.1.7)

f2(z) :=
1

2πi

∫
γr

f(w)

w − z
dw, whenever |z − z0| < r, R1 < r < R2. (5.1.8)

We need to verify that f1 (resp. f2) is well-defined in C\D(z0, R1) (resp. D(z0, R2)), since for each
z ∈ C \D(z0, R1) (resp. z ∈ D(z0, R2)) there are many s ∈ (R1, R2) with |z − z0| > s (resp. many
r ∈ (R1, R2) with |z − z0| < r). For each z ∈ C \D(z0, R1) and R1 < s < s′ < min{R2, |z − z0|},
let ε > 0 be so that

R1 < s− ε < s < s′ < s′ + ε < min{R2, |z − z0|},

and consider gz : As−ε,s′+ε(z0) → C given by gz(w) = f(w)
w−z , which is holomorphic, as f ∈

AR∞,R∈(‡′). By Lemma 5.3, we have∫
γs′

f(w)

w − z
dw =

∫
γs

f(w)

w − z
dw.

Thus, the value of f1(z) does not depend on the chosen s ∈ (R1, R2) with |z − z0| > s. Similarly,
for z ∈ D(z0, R2), and R1 < r′ < r < R2 with |z − z0| < r′, let ε > 0 be so that

max{|z − z0|, R1} < r′ − ε < r′ < r < r + ε < R2,

and define hz : Ar′−ε,r+ε(z0) → C given by hz(w) =
f(w)
w−z . By Lemma 5.3, we have that∫

γr

f(w)

w − z
dw =

∫
γr′

f(w)

w − z
dw,
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and f2(z) is well-defined. Also, we claim that

lim
|z|→∞

f1(z) = 0. (5.1.9)

Indeed, if we fix some s ∈ (R1, R2), by (5.1.7), we have

lim
|z|→∞

|f1(z)| = lim
|z|→∞

∣∣∣∣ 1

2πi

∫
γs

f(w)

w − z
dw

∣∣∣∣ ≤ lim
|z|→∞

1

2π

∫
γs

|f(w)|
|w − z|

|dw|

≤ lim
|z|→∞

2πs

2π

sup{|f(w)| : |w − z0| = s}
|z − z0| − s

= 0;

where we used that f is bounded in the compact set γs; recall Proposition 2.25.
We now check that f1 ∈ H

(
C \D(z0, R1)

)
and f2 ∈ H (D(z0, R2)) . If z ∈ C \D(z0, R1) there

exists ε > 0 and s ∈ (R1, R2) for which D(z, ε) ⊂ C \D(z0, s). Then

f1(ξ) =
1

2πi

∫
γs

f(w)

w − ξ
dw, ξ ∈ D(z, ε),

where the last integral defines a holomorphic function in ξ ∈ D(z, ε), bu virtue Theorem 4.18.
Thus f1 is holomorphic in a disk containing z, and we conclude that f1 ∈ H

(
C \D(z0, R1)

)
. An

identical argument permits to show that f2 ∈ H (D(z0, R2)) .
Now, define g : D(0, R1) → C by the formula

g(ξ) :=

{
f1

(
z0 +

1
ξ

)
if ξ ∈ D(0, R1) \ {0}

0 if ξ = 0
.

Because f1 ∈ H
(
C \D(z0, R1)

)
it is clear that g ∈ H (D(0, R1) \ {0}), and also that g is continuous

in all of D(0, R1) due to (5.1.9). By Corollary 4.35, we get that g ∈ H(D(0, R1)). By Theorem
4.39 and Corollary 4.40, g1 can be written as a power series with radius of convergence R1 around
0, that is

g1(ξ) =
∞∑
n=1

g
(n)
1 (0)

n!
ξn, ξ ∈ D(0, R1);

where the convergence is uniform in disks D(0, t), with t < R1. Also notice that the series begins

at n = 1, as g1(0) = 0, Denoting bn = −g(n)1 (0)/n! for all n ∈ N, the above implies that

f1(z) = −
∞∑
n=1

bn
(z − z0)n

, z ∈ C \D(z0, R1), (5.1.10)

where the convergence is uniform in sets of the form C \D(z0, s) with s > R1. On the other hand,
because f2 ∈ H (D(z0, R2)) , Theorem 4.39 and Corollary 4.40 says that

f2(z) =
∑
n=0

an(z − z0)
n, z ∈ D(z0, R2), an =

f
(n)
2 (z0)

n!
, n ∈ N∗, (5.1.11)

and the convergence is uniform on each closed diskD(z0, r) with r < R2. If we combine Theorem 5.4
with the definitions (5.1.7)–(5.1.8) of f1 and f2, and the power series expansions (5.1.10)–(5.1.11),
we can conclude that

f(z) = f2(z)− f1(z) =

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

, z ∈ AR1,R2(z0), (5.1.12)

with absolute-uniform convergence of both series in each closed sub-annuli of the form Ar1,r2(z0) =
D(z0, r2) \ D(z0, r1), with R1 < r1 < r2 < R2. It only remains to show formulae (5.1.5) for
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the coefficients an, bn. Let r ∈ (R1, R2) and n ∈ Z. We can use (5.1.12) and the fact that the
convergence of both series is uniform in the circle γr to write the equalities∫

γr

f(w)

(w − z0)n+1
dw =

∞∑
k=0

ak

∫
γr

(w − z0)
k−n−1 dw +

∞∑
k=1

bk

∫
γr

(w − z0)
−k−n−1 dw

=

{
2πian if n ≥ 0

2πibn if n < 0
.

This shows the validity of formulae (5.1.5).

Definition 5.6 (Laurent Series and Principal Part). Let R1 ∈ [0,+∞) and R2 ∈ (0,+∞] with
R1 < R2, let z0 ∈ C, and let f : AR1,R2(z0) → C be holomorphic in AR1,R2(z0). The Laurent Series

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

, z ∈ AR1,R2(z0),

from (5.1.5) in Theorem 5.5 is called the Laurent Series of f at z0. This series is unique, as the
coefficients {an}n∈N∗ , {bn}n∈N are uniquely determined by the formulae (5.1.6). Also, the series∑∞

n=1
bn

(z−z0)n
is called the principal part of the Laurent Series of f at z0.

5.2 Isolated Singularities

The definition of an isolated singularity is as follows.

Definition 5.7 (Isolated Singularity). We say that z0 ∈ C is an isolated singularity of f provided
that f : D(z0, r) \ {z0} → C is holomorphic in D(z0, r) \ {z0}.

We will refer to D(z0, r) \ {z0} as the punctured disk of center z0 and radius r.

Example 5.8. Here are some examples of isolated singularities.

(1) The function f : C \ {0} → C given by f(z) = 1/z has an isolated singularity at 0, as f is
holomorphic in C \ {0}.

(2) The function f : C \ {0} → C given by f(z) = sin(1/z) has an isolated singularity at 0 as
well.

(3) The function f(z) = 1/ sin(1/z) has an isolated singularity at every point of the form zk =
1/kπ, k ∈ Z \ {0}. However, f does not have an isolated singularity at z0 = 0. The reason
is that every punctured disk D(0, r) \ {0} contains (infinitely many) points zk, at which the
function is not defined.

To classify the various types of isolated singularities, we look at the Laurent Series expansion
of the function; see Definition 5.6. A particular case of Theorem 5.5 gives the following remark.

Remark 5.9. Let f : D(z0, r) \ {z0} → C be holomorphic, that is, with an isolated singularity at
z0. By Theorem 5.5 there are coefficients {an}n∈Z so that

f(z) =
∑
n∈Z

an(z − z0)
n, 0 < |z − z0| < r; (5.2.1)

with absolute-uniform convergence in annuli {z ∈ C : t ≤ |z − z0| ≤ s}, with 0 < t < s < r. More
precisely, defining bn := a−n for all n ∈ N, we can write

f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

, (5.2.2)
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where
∑∞

n=0 an(z− z0)
n converges absolutely in D(z0, r), and absolutely–uniformly in D(z0, s) for

all 0 < s < r, and the principal part of the Laurent series
∑∞

n=1
bn

(z−z0)n
converge absolutely in

C \ {z0} and absolutely–uniformly on C \D(z0, ε) for all ε > 0.

Definition 5.10 (Types of Isolated Singularity). Let f : D(z0, r) \ {z0} → C be holomorphic in
D(z0, r) \ {z0}, that is, with an isolated singularity at z0. Let {an}n∈Z ⊂ C as in the Laurent
expansion (5.2.1) of f at z0, in the punctured disk D(z0, r) \ {z0}. We say that

• f has a removable singularity at z0 if an = 0 for all n < 0.

• f has a pole at z0 if there exists N ∈ N with a−N ̸= 0 and an = 0 for all n < −N. More
precisely, in this case we say that f has a pole of order N at z0. Sometimes, poles of order
1 are called simple poles.

• f has an essential singulartiy at z0 if an ̸= 0 for infinitely many n < 0.

Let us make some clarifications concerning the aspect of f depending on the various singulari-
ties.

Remark 5.11. Let f : D(z0, r) \ {z0} → C with an isolated singularity at z0; that is f ∈
H (D(z0, r) \ {z0}) .

(1) If f has a removable singularity at z0, then by (5.2.1), we have that

f(z) =

∞∑
n=0

an(z − z0)
n, 0 < |z − z0| < r.

Defining f(z0) := a0, we get that actually

f(z) =

∞∑
n=0

an(z − z0)
n, z ∈ D(z0, r);

where the series defines a holomorphic function, e.g., by Theorem 3.26. Thus, the definition
of the original f : D(z0, r) \ {z0} → C can be extended to z0, obtaining a holomorphic
function in all of D(z0, r).

For example, if f : C \ {0} → C is defined by f(z) = ez−1
z for all z ∈ C \ {0}, then f has a

removable singularity at z0 = 0. Indeed, a power series expansion of f has the aspect

f(z) =
ez − 1

z
=

∑∞
n=0

zn

n! − 1

z
=

∑∞
n=1

zn

n!

z
=

∞∑
n=1

zn−1

n!
=

∞∑
n=0

zn

(n+ 1)!
, z ∈ C \ {0}.

The coefficients of the powers zn, for n < 0, in the Laurent Series are all equal to 0, confirming
that f has a removable singularity.

(2) If f has a pole of order N ∈ N at z0, then (5.2.1) becomes

f(z) =
a−N

(z − z0)N
+ · · ·+ a−1

z − z0
+

∞∑
n=0

an(z − z0)
n, 0 < |z − z0| < r.

And
a−N

(z−z0)N
+ · · ·+ a−1

z−z0
is the principal part of the Laurent series of f at z0 in the annulus

0 < |z − z0| < r. Moreover, the function

D(z0, r) ∋ z 7→
∞∑
n=0

an(z − z0)
n

is holomorphic in D(z0, r).

The simplest example of a function with a pole of order N at 0 is f(z) = 1
(z−z0)N

, z ∈ C\{z0}.
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(3) For example, the function f : C \ {0} → C given by f(z) = e1/z has an essential singularity
at z0 = 0. To see this, we can simply write the Laurent series of f at 0 :

f(z) = e1/z =

∞∑
n=0

1

n!

(
1

z

)n

= 1 +

∞∑
n=1

1

n!zn
, z ̸= 0,

where infinitely many (actually all) of the coefficients 1
n! of

1
zn are non-zero.

5.2.1 Removable Singularities. The Riemann Criterion

The following theorem due to Riemann gives a simple characterization of removability of isolated
singularities.

Theorem 5.12 (Riemann’s Theorem). If f : D(z0, r) \ {z0} → C is holomorphic, then f admits
an extension F : D(z0, r) → C holomorphic in all of D(z0, r) if and only if f is bounded in
D(z0, r) \ {z0}. In other words, f has a removable singularity at z0 if and only if f is bounded in
the punctured disk D(z0, r) \ {z0}.

Proof. Let 0 < ε < s < r and apply Theorem 5.4 to f in the annulus A0,r(z0) to obtain

f(z) =
1

2πi

∫
∂D(z0,s)

f(w)

w − z
dw − 1

2πi

∫
∂D(z0,ε)

f(w)

w − z
dw, whenever ε < |z − z0| < s. (5.2.3)

If we fix z ∈ D(z0, s) \ {z0}, let 0 < ε < |z − z0|, and note that then w ∈ ∂D(z0, ε) implies

|w − z| ≥ |z − z0| − |w − z0| = |z − z0| − ε.

Taking this into account and looking at the second integral of (5.2.3), we see that∣∣∣∣∣
∫
∂D(z0,ε)

f(w)

w − z
dw

∣∣∣∣∣ ≤
∫
∂D(z0,ε)

|f(w)|
|w − z|

|dw| ≤ sup{|f(w)| : w ∈ ∂D(z0, r)}
|z − z0| − ε

2πε.

Letting ε→ 0+, the last term goes to 0, and so (5.2.3) becomes

f(z) =
1

2πi

∫
∂D(z0,s)

f(w)

w − z
dw, whenever 0 < |z − z0| < s. (5.2.4)

Defining g : D(z0, s) → C by the formula g(z) = 1
2πi

∫
∂D(z0,s)

f(w)
w−z dw, from Theorem 4.18 we get

that g ∈ H(D(z0, s)). Thus, we can define F : D(0, r) → C by

F (z) =

{
f(z) if z ∈ D(z0, r) \ {z0},
g(z0) if z = z0.

We get that F = f in D(z0, r) \ {z0}, and so F ∈ H(D(z0, r) \ {z0}). And also F = g on D(z0, s);
on which g is holomorphic. This shows that F ∈ H(D(z0, r)).

Observe that Theorem 5.12 improves Corollary 4.35, since in that corollary we additional
required the function f to be continuous in all of D(z0, r).

5.2.2 Characterizations of Poles

Recall the Definition 4.42 of a zero of order N of a holomorphic function, and their characterization
from Proposition 4.43. There is a similar characterization for poles of order N.

Proposition 5.13. Let f : D(z0, r)\{z0} → C be holomorphic, and N ∈ N. The following statements
are equivalent.
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(i) f has a pole of order N at z0.

(ii) There exists g ∈ H(D(z0, r)) with g(z0) ̸= 0 and so that

g(z) = (z − z0)
Nf(z), z ∈ D(z0, r) \ {z0}. (5.2.5)

(iii) The function 1/f admits a holomorphic extension φ : D(z0, s) \ {z0} → C in a disk D(z0, s),
so that φ has a zero of order N at z0.

Proof.

(i) =⇒ (ii) : By Remark 5.9 and the Definition 5.10 of pole of orderN, there are numbers {an}n≥−N ⊂
C with a−N ̸= 0 and so that

f(z) =
a−N

(z − z0)N
+

a−N+1

(z − z0)N−1
+ · · ·+ a−1

z − z0
+

∞∑
n=0

an(z − z0)
n, 0 < |z − z0| < r.

Therefore,

(z− z0)Nf(z) = a−N +a−N+1(z− z0)+ · · ·+a−1(z− z0)+
∞∑
n=0

an(z− z0)n+N =

∞∑
n=0

an−N (z− z0)n,

(5.2.6)
for all 0 < |z − z0| < r. Since the last series converges for all z ∈ D(z0, r), the function

g(z) :=
∞∑
n=0

an−N (z − z0)
n, z ∈ D(z0, r)

is holomorphic in D(z0, r) (see e.g. Proposition 3.20). By the definition of g, we have g(z0) =
a−N ̸= 0. Moreover, by (5.2.6), we have g(z) = (z − z0)

Nf(z) for all z ∈ D(z0, r) \ {z0}.
(ii) =⇒ (iii) : Since g ∈ H(D(z0, r)) and g(z0) ̸= 0, there exists 0 < s < r with g(z) ̸= 0 for all
z ∈ D(z0, s). Thus the function

φ(z) :=
(z − z0)

N

g(z)
, z ∈ D(z0, s);

is well-defined and holomorphic in D(z0, s). Moreover, by Proposition 4.43, φ has a zero of order
N at z0. Also, by the expression (5.2.5), we get that f(z) ̸= 0 and φ(z) = 1/f(z) for all z ∈
D(z0, s) \ {z0}. This shows (iii).

(iii) =⇒ (i) : If φ is as in (iii), then by Proposition 4.43, there exists h ∈ H(D(z0, s)) with g(z0) ̸= 0
and φ(z) = (z − z0)

Nh(z) for all z ∈ D(z0, s). Moreover, replacing s with a smaller radius, we can
assume that h(z) ̸= 0 for all z0 ∈ D(z0, s). Thus the function 1/h(z) is holomorphic in D(z0, s)
and thus there are coefficients {cn}n≥0 ⊂ C such that

1

h(z)
=

∞∑
n=0

cn(z − z0)
n, z ∈ D(z0, s);

where c0 = 1/h(z0) ̸= 0. But then,

f(z) =
1

φ(z)
=

1

(z − z0)N
1

h(z)
=

∞∑
n=0

cn(z−z0)n−N =
c0

(z − z0)N
+ · · ·+ cN−1

z − z0
+

∞∑
n=0

cn+N (z−z0)n,

for all 0 < |z− z0| < s. By the uniqueness of the Laurent series (of f at the point z0), and the fact
that c0 ̸= 0, we deduce that f has a pole of order N at z0.

Without specifying the order of the pole, we have a simpler characterization.
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Proposition 5.14. Let f : D(z0, r) \ {z0} → C be holomorphic. The following statements are
equivalent.

(i) f has a pole at z0.

(ii) lim
z→z0

|f(z)| = ∞.

Proof.

(i) =⇒ (ii) : Since f has a pole of some order N ∈ N at z0, by Proposition 5.13, there exists
φ : D(z0, s) \ {z0} → C in a disk D(z0, s), with φ = 1/f in D(z0, s) \ {z0} and so that φ has a zero
of order N at z0. In particular φ is continuous at z0 and φ(z0). Thus

lim
z→z0

|f(z)| = lim
z→z0

1

|φ(z)|
= ∞.

(ii) =⇒ (i) : Since lim
z→z0

|f(z)| = ∞, in particular there exists 0 < s < r so that f(z) ̸= 0 for all

z ∈ D(z0, s) \ {z0}. We can then define

φ(z) =

{
1/f(z) if z ∈ D(z0, s) \ {z0}
0 if z = z0.

Then, φ ∈ H(D(z0, s)\{z0}) and φ is continuous in D(z0, r) (including at z = z0) by the condition
lim
z→z0

|f(z)| = ∞. By Corollary 4.35, we get φ ∈ H(D(z0, s)). Because φ(z0) = 0, we have that φ

has a zero of order N, for some N ∈ N. By Proposition 5.13 (see statement (iii) there), we may
conclude that f has a pole (of order N) at z0.

5.2.3 Essential Singularities: The Casorati-Weierstrass Theorem

As concerns essential singularities, the following theorem provides a characterization.

Theorem 5.15 (Casorati-Weierstrass). Let f : D(z0, r) \ {z0} → C be holomorphic. Then, the
following statements are equivalent.

(i) f has an essential singularity at z0.

(ii) f (D(z0, s) \ {z0}) = C for every 0 < s ≤ r. That is, for every w ∈ C there exists a sequence
{zn}n converging to z0, with zn ̸= z0 for all n ∈ N, so that {f(zn)}n converges to w.

Proof.

(i) =⇒ (ii) : Suppose, for the sake of contradiction, that there exists 0 < s < r so that

f (D(z0, r) \ {z0}) ⊊ C.

Then there exists w ∈ C and ε > 0 for which |f(z) − w| ≥ ε for all z ∈ D(z0, s) \ {z0}. We can
then define

h(z) =
1

f(z)− w
, z ∈ D(z0, s) \ {z0}.

Then h ∈ H(D(z0, s) \ {z0}) and

|h(z)| ≤ 1

|f(z)− w|
≤ 1

ε
, z ∈ D(z0, s) \ {z0}.

That is, h is bounded inD(z0, s)\{z0}. By Theorem 5.12, there exists g : D(z0, s) → C holomorphic
in D(z0, s) with g = h in D(z0, s) \ {z0}.
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Now note that f = w+ 1/g in D(z0, s) \ {z0}. If we had g(z0) = 0, then by the continuity of g
at z0 we would get that

lim
z→z0

|f(z)| = lim
z→z0

∣∣∣∣w +
1

g(z)

∣∣∣∣ = ∞.

And Proposition 5.14 would imply that f has a pole at z0, contradicting that the singularity of f
at z0 is essential. Therefore, we must have g(z0) ̸= 0. But then the continuity of g implies that
there exists δ > 0 and 0 < s′ < s with |g(z)| ≥ δ for all z ∈ D(z0, s

′). Therefore

|f(z)| ≤ |w|+ 1

|g(z)|
≤ |w|+ 1

δ
, z ∈ D(z0, s

′) \ {z0}.

Thus f is bounded in D(z0, s
′) and Theorem 5.12 says that f has a removable singularity at z0,

contradicting again that the singularity of f at z0 is essential. Therefore, (ii) must hold.

(ii) =⇒ (i) : For the sake of contradiction, assume that f does not have a removable singularity at
z0. If the singularity is removable, then there exists g ∈ H(D(z0, r)) with g = f on D(z0, r) \ {z0},
and then

lim
z→z0

f(z) = lim
z→z0

g(z) = g(z0).

This contradicts (ii), taking any w ∈ C with w ̸= g(z0). And if the singularity of f at z0 is a pole,
then Proposition 5.14 says that

lim
z→z0

|f(z)| = ∞,

and this contradicts (ii) as well.

5.3 Residues at isolated singularities

5.3.1 Definition and Calculus of Residues

Definition 5.16 (Residue of a function at a point). Let z0 ∈ C, r > 0 and f : D(z0, r) \ {z0} → C a
holomorphic function. Let {an}n≥0, {bn}n∈N be the unique sequences of complex numbers so that

f(z) =

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

, 0 < |z − z0| < r;

see Theorem 5.5. We define the residue of f at z0 as the complex number

Res(f, z0) = b1.

Remark 5.17. If f : D(z0, r) \ {z0} → C has an isolated singularity at z0, then Theorem 5.5 says
that in fact

Res(f, z0) =

∫
∂D(0,s)

f(w) dw, for all 0 < s < r.

On the other hand, if f has a removable singularity at z0, by Remark 5.11, we get that

Res(f, z0) = 0.

Let us now compute residues for some functions whose singularities are poles.

Example 5.18 (Residues of rational functions). Consider the function f(z) = P (z)
Q(z) , with P,Q

polynomials in C. Naturally, f is holomorphic in C \ {z ∈ C : Q(z) = 0}. Assume that z0 is a
root of Q of multiplicity N ∈ N and that P (z0) ̸= 0. Then f has a pole of order N and Res(f, z0)
coincides with the coefficient of the term 1

z−z0
in the partial fraction decomposition of f.

Indeed, f has partial fraction decomposition of the form

f(z) =
AN

(z − z0)N
+

AN−1

(z − z0)N−1
+ · · ·+ A1

z − z0
+ h(z);
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where h(z) is the sum of the remaining terms of the partial fraction decomposition of f. This
expression holds in some punctured disk D(z0, r) \ {z0}. The function h consists of a sum of
fractions of the form

aj,n
(z−zj)n

(where zj is a root of Q and n ∈ N), (possibly) plus a polynomial

(only when deg(P ) ≥ deg(Q)). In particular, h is holomorphic in a disk D(z0, s) (with s ≤ r), and
so analytic at the point z0. Therefore, the expression for f becomes

f(z) =
AN

(z − z0)N
+

AN−1

(z − z0)N−1
+ · · ·+ A1

z − z0
+
∑
n≥0

an(z − z0)
n; z ∈ D(z0, s);

for some coefficients {an}n≥0. The above sum is therefore the Laurent Series of f around z0. By
Definitions 5.10 and 5.16, we get that f has a pole of order N at z0, and that

Res(f, z0) = A1.

Let us look at a concrete rational function. Define

f(z) =
z2 + 2

z3 − z2 − z + 1
.

The roots of Q(z) = z3− z2− z+1 are 1 (with multiplicity 2) and −1 (with multiplicity 1). So, by
the previous discussion, f has a pole of order 2 at z0 = 1 and a pole of order 1 (also called simple
pole) at z0 = −1. To calculate the residues at those points, decompose f into partial fraction
decomposition

f(z) =
z2 + 2

z3 − z2 − z + 1
=

z2 + 2

(z − 1)2(z + 1)
=

3/2

(z − 1)2
+

1/4

z − 1
+

3/4

z + 1
.

By the previous discussion,

Res(f, 1) =
1

4
, Res(f,−1) =

3

4
.

The following two propositions are useful when dealing with functions which have simple poles.

Proposition 5.19. Let g, h : Ω → C holomorphic functions and z0 ∈ Ω. Assume that:

• g(z0) ̸= 0, and

• h(z0) = 0 and h′(z0) ̸= 0.

Then f :=
g

h
has a simple pole (pole of order 1) at z0 and

Res(f, z0) =
g(z0)

h′(z0)
.

Proof. The second condition says that h has a zero 1 at z0. So, by Proposition 5.13 ((i) ⇐⇒ (iii))
and the fact that g(z0) ̸= 0 (and thus g(z) ̸= z0 in some disk D(z0, s)), we know that f has a pole
of order 1 at z0. To calculate Res(f, z0), we use Proposition 4.43 to write

h(z) = (z − z0)h̃(z), z ∈ D(z0, s), h̃ ∈ H(D(z0, s)), h̃(z) ̸= 0, for all z ∈ D(z0, s).

Writing φ(z) =
g(z)

h̃(z)
for all z ∈ D(z0, s), we get that φ ∈ H(D(z0, s)) and hence

f(z) =
1

z − z0

∞∑
n=0

φ(n)(z0)

n!
(z − z0)

n =
φ(z0)

z − z0
+

∞∑
n=1

φ(n)(z0)

n!
(z − z0)

n−1, z ∈ D(z0, s).

Therefore Res(f, z0) = φ(z0). To compute φ(z0), note first that h′(z0) = h̃(z0), and then

φ(z0) =
g(z0)

h̃(z0)
=

g(z0)

h′(z0)
.
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Proposition 5.19 has the following generalization.

Proposition 5.20. Let g, h : Ω → C holomorphic functions, z0 ∈ Ω, and m ∈ N. Assume the
following two conditions:

• g has a zero of order m− 1 at z0 (in the case m = 1, this simply means that g(z0) ̸= 0).

• h has a zero of order m at z0.

Then f :=
g

h
has a simple pole (pole of order 1) at z0 and

Res(f, z0) =
mg(m−1)(z0)

h(m)(z0)
.

Proof. By Proposition 4.43, we can find functions ψ,φ ∈ H(Ω) with ψ(z0) ̸= 0 and φ(z0) ̸= 0 and
such that

g(z) = (z − z0)
m−1ψ(z), h(z) = (z − z0)

mφ(z), z ∈ Ω.

A simple computation shows that ψ(z0) = (m− 1)!g(m−1)(z0) and that φ(z0) = m!h(m)(z0). Then,
the formula for f becomes

f(z) =
g(z)

h(z)
=

(z − z0)
m−1ψ(z)

(z − z0)mφ(z)
=

ψ(z)

(z − z0)φ(z)
.

The functions ψ and z 7→ φ̃(z) := (z − z0)φ(z) satisfy the assumptions of Proposition 5.19, and
thus

Res(f, z0) =
ψ(z0)

(φ̃)′(z0)
=
ψ(z0)

φ(z0)
=

(m− 1)!g(m−1)(z0)

m!h(m)(z0)
=
mg(m−1)(z0)

h(m)(z0)
.

Example 5.21. Let us apply Proposition 5.19 to the calculus of residues of two concrete examples.

(1) Consider f(z) =
1

z4 + 1
. The denominator has the roots

〈
4
√
−1
〉
= {ei

Arg(−1)+2kπ
4 : k = 0, 1, 2, 3} = {z0 := ei

π
4 , z1 := ei

3π
4 , z2 := ei

5π
4 , z3 := ei

7π
4 }.

The function f then has an isolated singularity at each zk, k = 0, 1, 2, 3.Moreover, if g(z) := 1
and h(z) := z4 + 1, clearly

g(zk) ̸= 0, h(zk) = 0, h′(zk) = 4z3k ̸= 0, k = 0, 1, 2, 3.

By Proposition 5.19, we get that f has a simple pole at each zk, with

Res(f, zk) =
g(zk)

h′(zk)
=

1

4z3k
, k = 0, 1, 2, 3.

(2) Consider f(z) =
sin z

1− cos z
. The equation cos z = 1 has solutions {zk := 2πk : k ∈ Z}.

This is easily checked by observing that cos z = 0 if and only if e2iz − 2eiz + 1 = 0; where
e2iz−2eiz+1 = (eiz−1)2. And recall from Theorem 2.49, that ew = 1 if and only if w ∈ 2πZ.
Therefore f has an isolated singularity at each zk, k ∈ Z. Towards applying Proposition 5.20,
define g(z) := z and h(z) = 1− cos z, and compute:

g(zk) = sin(zk) = 0, g′(zk) = cos(zk) ̸= 0, h(zk) = h′(zk) = 0, h′′(zk) = cos(zk) ̸= 0,

for all k ∈ Z. Thus we can apply Proposition 5.20 at each zk to infer that f has a pole of
order 1 at zk, with

Res(f, zk) =
2g′(zk)

h′′(zk)
=

2 cos(zk)

cos(zk)
= 2, k ∈ Z.
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We next prove criteria for some functions to have a pole of order 2, together with the value of
the corresponding residue.

Proposition 5.22. Let g, h : Ω → C holomorphic functions and z0 ∈ Ω. Assume that:

• g(z0) ̸= 0, and

• h(z0) = h′(z0) = 0 and h′′(z0) ̸= 0 (that is, h has a zero of order 2 at z0).

Then f :=
g

h
has a pole of order 2 at z0 and

Res(f, z0) =
2g′(z0)

h′′(z0)
− 2

3

g(z0)h
′′′(z0)

(h′′(z0))
2 .

Proof. By Proposition 4.43, we can write

h(z) = (z − z0)
2φ(z), z ∈ D(z0, r), φ ∈ H(D(z0, r)), φ(z) ̸= 0 for all z ∈ D(z0, r).

Therefore the function ψ = g/φ is holomorphic in D(z0, r), and so it coincides with its Taylor
series at z0. Thus we have

f(z) =
g(z)

h(z)
=

1

(z − z0)2
g(z)

φ(z)
=

1

(z − z0)2

∞∑
n=0

ψ(n)(z0)

n!
(z − z0)

n

=
ψ(z0)

(z − z0)2
+
ψ′(z0)

z − z0
+

∞∑
n=2

ψ(n)(z0)

n!
(z − z0)

n−2 =
ψ(z0)

(z − z0)2
+
ψ′(z0)

z − z0
+

∞∑
n=0

ψ(n+2)(z0)

(n+ 2)!
(z − z0)

n,

for all z ∈ D(z0, r). This tells us that f has a pole of order 2 at z0, and that

Res(f, z0) = ψ′(z0) =
g′(z0)φ(z0)− g(z0)φ

′(z0)

(φ(z0))
2 =

g′(z0)

φ(z0)
− g(z0)φ

′(z0)

(φ(z0))
2

To express φ(z0) and φ′(z0) in terms of h, we look that the expression h(z) = (z − z0)
2φ(z) and

differentiate:

h′′(z) = 2φ(z) + 4(z − z0)φ
′(z) + (z − z0)

2φ′′(z), and so, h′′(z0) = 2φ(z0),

h′′′(z) = 6φ′(z) + 3(z − z0)φ
′′(z) + (z − z0)

2φ′′′(z), and so, h′′′(z0) = 6φ′(z0).

We conclude

Res(f, z0) =
g′(z0)

φ(z0)
− g(z0)φ

′(z0)

(φ(z0))
2 =

2g′(z0)

h′′(z0)
− 2

3

g(z0)h
′′′(z0)

(h′′(z0))
2 .

Proposition 5.23. Let g, h : Ω → C holomorphic functions and z0 ∈ Ω. Assume that:

• g(z0) = 0, g′(z0) ̸= 0 (that is, g has a zero of order 1 at z0),

• h(z0) = h′(z0) = h′′(z0) = 0 and h′′′(z0) ̸= 0 (that is, h has a zero of order 3 at z0).

Then f :=
g

h
has a pole of order 2 at z0 and

Res(f, z0) =
3g′′(z0)

h′′′(z0)
− 3

2

g′(z0)h
(iv)(z0)

(h′′′(z0))
2 .
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Proof. By Proposition 4.43, we can find functions g̃, h̃ ∈ H(Ω) with g̃(z0), h̃(z0) ̸= 0 and so that
g(z) = (z − z0)g̃(z) and h(z) = (z − z0)h̃(z) for all z ∈ Ω. Thus, for z ∈ Ω \ {z0},

f(z) =
g(z)

h(z)
=

(z − z0)g̃(z)

(z − z0)3h̃(z)
=

g̃(z)

(z − z0)2h̃(z)
=
φ(z)

ψ(z)
; φ(z) := g̃(z), ψ(z) := (z − z0)

2h̃(z).

We have that φ(z0) ̸= 0 and that ψ(z0) = ψ(z0) = 0, ψ′′(z0) ̸= 0. By Proposition 5.22, we have

Res(f, z0) =
2φ′(z0)

ψ′′(z0)
− 2

3

φ(z0)ψ
′′′(z0)

(ψ′′(z0))
2 .

But noticing that g(z) = (z−z0)φ(z) and h(z) = (z−z0)ψ(z) for all z ∈ Ω, we get (by differentiating
up to four times or by comparing the Taylor Series at z0) that

g′(z0) = φ(z0), g
′′(z0) = 2φ′(z0), h

′′(z0) = 2ψ′(z0), h
′′′(z0) = 3ψ′′(z0), h

(iv)(z0) = 4ψ′′′(z0).

We then get

Res(f, z0) =
2φ′(z0)

ψ′′(z0)
− 2

3

φ(z0)ψ
′′′(z0)

(ψ′′(z0))
2 =

3g′′(z0)

h′′′(z0)
− 3

2

g′(z0)h
(iv)(z0)

(h′′′(z0))
2 .

Example 5.24. Let us employ Proposition 5.22 (perhaps in combination with Proposition 5.20) to
the calculus of residues.

(1) Consider f(z) =
1 + z

1− cos z
. The denominator has zeros {zk := 2πk : k ∈ Z}. Define the

functions g(z) := 1 + z and h(z) = 1− cos z, and compute:

g(zk) = 1 + zk ̸= 0, h(zk) = h′(zk) = 0, h′′(zk) = cos(zk) ̸= 0, for all k ∈ Z.

By Proposition 5.22 applied to each zk, we get that f has a pole of order 2 at zk, with

Res(f, zk) =
2g′(zk)

h′′(zk)
− 2

3

g(zk)h
′′′(zk)

(h′′(zk))
2 =

2

cos(zk)
− 2

3

(1 + zk)(− sin(zk))

cos2(zk)
= 2, k ∈ Z.

(2) Consider f(z) =
z

1− cos z
. Again, the denominator has zeros {zk := 2πk : k ∈ Z}. Define

the functions g(z) := z and h(z) = 1− cos z, and compute:

g(zk) = zk ̸= 0, h(zk) = h′(zk) = 0, h′′(zk) = cos(zk) ̸= 0, for all k ∈ Z \ {0}.

So, for every k ∈ Z \ {0}, Proposition 5.22 implies that f has a pole of order 2 at zk, with

Res(f, zk) =
2g′(zk)

h′′(zk)
− 2

3

g(zk)h
′′′(zk)

(h′′(zk))
2 =

2

cos(zk)
− 2

3

(1 + zk)(− sin(zk))

cos2(zk)
= 2, k ∈ Z \ {0}.

However, for z0 = 0, we have that

g(z0) = 0, g′(z0) = 1 ̸= 0, h(z0) = h′(z0) = 0, h′′(z0) = cos(z0) ̸= 0.

By Proposition 5.20 for m = 2, we obtain that f has a pole of order 1 at z0 = 0 with

Res(f, 0) =
2g′(0)

h′′(0)
= 2.

If we a priori know the order of a pole of f, the following proposition gives an alternate way
to compute the residue.
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Proposition 5.25. Let f : D(z0, r)\{z0} → C be holomorphic in D(z0, r)\{z0} with a pole of order
N ∈ N at z0. Then

Res(f, z0) = lim
z→z0

1

(N − 1)!

dN−1

dzN−1

(
(z − z0)

Nf(z)
)
.

Proof. The Laurent Series of f at z0 is

f(z) =
a−N

(z − z0)N
+

a−N+1

(z − z0)N
+ · · ·+ a−1

z − z0
+

∞∑
n=0

an(z − z0)
n, z ∈ D(z0, r) \ {z0}.

By the definition of residue at z0, we have Res(f, z0) = a−1. Multiplying by (z − z0)
N , we get

(z − z0)
Nf(z) = a−N + a−N+1(z − z0) + · · ·+ a−1(z − z0)

N−1 +
∞∑
n=0

an(z − z0)
n+N .

The term in the right-hand side defines a holomorphic function g in D(z0, r), and its (N − 1)-
th derivative at z0 is (N − 1)! a−1. But since such a function g coincidies with (z − z0)

Nf(z) in
D(z0, r) \ {z0}, we get that

(N − 1)! a−1 = lim
z→z0

dN−1

dzN−1
(z − z0)

Nf(z).

In particular, if f has a pole of order 1 at z0, by Proposition 5.25, one has

Res(f, z0) = lim
z→z0

(z − z0)f(z).

5.3.2 The Cauchy Global Theorem

The following theorem is known as the Cauchy Homological Theorem or the Cauchy Global Theo-
rem. The amazingly short and elegant proof we include here is due to John D. Dixon [2], published
in 1971.

Theorem 5.26 (Cauchy Global Integral Formula). Let Ω ⊂ C be open and γ : [a, b] → Ω a closed
and piecewise C1-path in Ω so that W (γ, z) = 0 for all z /∈ Ω. Then, if f : Ω → C is holomorphic
in Ω, one has

W (γ, z)f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ, for all z ∈ Ω \ γ∗. (5.3.1)

Proof. Denote U := {z ∈ C\γ∗ : W (γ, z) = 0}. As we saw in the proof of Proposition 4.26(iii) (or
actually as a consequence of Proposition 4.26(iii)), the function C \ γ∗ ∋ z 7→ Nγ(z) :=W (γ, z) is
continuous and only takes integer values. Thus

U = N−1
γ ({0}) = N−1

γ ((−1/2, 1/2))

is the preimage of an open interval by a continuous function in the open set C \ γ∗, and thus U is
open; see Proposition 2.20. We next define, for each w ∈ Ω, the function gwΩ → C as

gw(ξ) =


f(w)−f(ξ)

w−ξ if ξ ̸= w

f ′(w) if ξ = w.
.

Because f is holomorphic in Ω, we immediately get that gw is continuous in Ω for all w ∈ Ω. Thus
we can define a new function h : C → C by the formula

h(w) =


∫
γ gw(ξ) dξ if w ∈ Ω∫
γ

f(ξ)
ξ−w dξ if w ∈ U.

(5.3.2)
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First of all, we need to verify that h is well defined. Let w ∈ Ω∩U. Then, w /∈ γ∗ andW (γ,w) = 0,
and in particular ξ ̸= w for all ξ ∈ γ∗. Thus, looking at the definitions of gw, we see that∫

γ
gw(ξ) =

∫
γ

f(w)− f(ξ)

w − ξ
dξ = −f(w)2πiW (γ,w)−

∫
γ

f(ξ)

w − ξ
dξ =

∫
γ

f(ξ)

ξ − w
dξ.

Thus the two branches of definition of h agree, and h is well-defined. Also, notice that h is defined
in all of C, by the assumption C \ Ω ⊂ U.

Now, since f is holomorphic in Ω, by the Differentiation Under the Integral Sign Theorem 4.18,
we get that h is holomorphic in Ω \ γ, as well as in U. Therefore, we have that h is holomorphic in
C. Let us now show that lim

|w|→∞
|h(w)| = 0. Indeed, since γ∗ is a compact set, there exists r > 0 so

that γ∗ ⊂ D(0, r), Thus, if |w| ≥ 2r, then w is in the unbounded connected component of C \ γ∗.
By Proposition 4.26, we get that W (γ,w) = 0, and so w ∈ U. Thus, for |w| ≥ 2r we can estimate

|h(w)| =
∣∣∣∣∫

γ

f(ξ)

ξ − w
dξ

∣∣∣∣ ≤ ∫
γ

|f(ξ)|
|ξ − w|

|dξ| ≤ sup{|f(ξ)| : ξ ∈ γ∗} · length(γ)
|w| − r

.

Since the supremum and the length above are finite, letting |w| → ∞ gives lim
|w|→∞

|h(w)| = 0. By

the continuity of h, this implies that h is bounded in C. Hence, Liouville’s Theorem 4.45 tells us
that h is constant, and actually constantly equal to 0, due to lim

|w|→∞
|h(w)| = 0. Therefore, for any

z ∈ Ω \ γ∗, we have that

0 = h(z) =

∫
γ
g(z, ξ) dξ =

∫
γ

f(z)− f(ξ)

z − ξ
dξ

= f(z)

∫
γ

dξ

z − ξ
+

∫
γ

f(ξ)

ξ − z
dξ = −2πif(z)W (γ, z) +

∫
γ

f(ξ)

ξ − z
dξ;

which yiels (5.3.1).

Theorem 5.26 should be compared to Theorem 4.27, where we assumed that Ω is convex. It is
not difficult to show that all closed piecewise C1-paths in a convex domain Ω satisfy the property
that W (γ, z) = 0 for all z /∈ Ω. Therefore Theorem 5.26 generalizes Theorem 4.27.

The following corollary of Theorem 5.26 is one of the key ingredients in the next subsection.

Corollary 5.27 (Cauchy Global Theorem). Let Ω ⊂ C be open and γ : [a, b] → Ω a closed and
piecewise C1-path in Ω so that W (γ, z) = 0 for all z /∈ Ω. Then, if f : Ω → C is holomorphic,∫

γ
f(ξ) dξ = 0.

Proof. If f : Ω → C is holomorphic, we fix a point z0 ∈ Ω \ γ∗, and define g(z) = f(z)(z − z0) for
all z ∈ Ω. Clearly g ∈ H(Ω) and we can apply Theorem 5.26 to g at the point z0 to obtain

0 =W (γ, z0)g(z0) =
1

2πi

∫
γ

g(ξ)

ξ − z0
dξ =

∫
γ

f(ξ)(ξ − z0)

ξ − z0
dξ =

∫
γ
f(ξ) dξ.

5.3.3 The Cauchy Residues Theorem

In the proof of Cauchy Residues Theorem 5.29 below, the following lemma is crucial.

Lemma 5.28. Let f : D(z0, r) \ {z0} → C be holomorphic in D(z0, r) \ {z0}, and denote by f0 :
C \ {z0} → C the principal part of f at z0. Then, if γ : [a, b] → Cis a closed and piecewise C1-path
with z0 /∈ γ∗, we have ∫

γ
f0(z) dz = 2πiRes(f, z0)W (γ, z0).
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Proof. Since γ∗ is compact and z0 /∈ γ∗, there exist 0 < ε < R < +∞ so that γ∗ ⊂ D(z0, R) \
D(z0, ε) \ {z0}. By Remark 5.9, we can write

f0(z) =

∞∑
n=1

bn
(z − z0)n

, z ∈ C \ {z0};

with absolute–uniform convergence in the annulus {z ∈ C : ε ≤ |z − z0| ≤ R}, which contains γ∗.
Here {bn}n∈N ⊂ C, and b1 = Res(f, z0). Therefore∫

γ
f0(z) dz =

∞∑
n=1

bn

∫
γ

dz

(z − z0)n
= b1

∫
γ

dz

z − z0
= 2πi b1W (γ, z0).

In the second equality we used Theorem 4.15 to each z 7→ (z−z0)−n with n ≥ 2, as these functions
have primitives 1

1−n(z−z0)
1−n. The last equality is just the Definition 4.24 of winding number.

Theorem 5.29 (Cauchy Residues Theorem). Let f : Ω\{z1, . . . , zN} → C be a holomorphic function
in Ω except at N distinct points {z1, . . . , zN} ⊂ Ω, at which f has isolated singularities. Let
γ : [a, b] → Ω \ {z1, . . . , zN} be a closed and piecewise C1-path with W (γ, z) = 0 for all z /∈ Ω.
Then, we have ∫

γ
f(z) dz = 2πi

N∑
k=1

Res(f, zk)W (γ, zk). (5.3.3)

Proof. Since the singularity of f at each zk is isolated and {z1, . . . , zN} is finite, by Remark 5.9,
r > 0 so that we can write

f(z) = gk(z) + fk(z), for all z ∈ D(zk, r), k = 1, . . . , N ; (5.3.4)

where gk ∈ H(D(zk, r)) and the principal part fk of the Laurent Series of f at zk is holomorphic
in C \ {zk} for all k = 1, . . . , N. Because {z1, . . . , zN} is finite and γ∗ is a compact subset of
Ω \ {z1, . . . , zN}, we can assume (by taking a smaller r in (5.3.4) if necessary) that

D(zj , 2r) ∩D(zk, 2r) = ∅, if j, k ∈ {1, . . . , N}, j ̸= k; and γ∗ ⊂ Ω \
N⋃
k=1

D(zk, r). (5.3.5)

We define a function h : Ω → C in the following manner

h(z) =

gk(z)−
∑N

j=1, j ̸=k fj(z) if z ∈ D(zk, r), k ∈ {1, . . . , N}

f(z)−
∑N

j=1 fj(z) if z ∈ Ω \
⋃N

k=1D(zk, r/2).
(5.3.6)

By the first part of (5.3.5), we get that the first branch of definition of h is consistent. Also, if z ∈
Ω \

⋃N
k=1D(zk, r/2) and at the same time z belongs to D(zk, r) for some (unique) k ∈ {1, . . . , N},

then (5.3.4) implies that

f(z)−
N∑
j=1

fj(z) = gk(z) + fk(z)−
N∑
j=1

fj(z) = gk(z)−
N∑

j=1, j ̸=k

fj(z);

showing that h is well defined in Ω. Moreover, since fj ∈ H (C \ {zj}) and gk ∈ H(D(zk, r)) for all

j, k, it is clear that h is holomorphic in Ω. Furthermore, (5.3.5) says that γ∗ ⊂ Ω \
⋃N

k=1D(zk, r) ⊂
Ω \

⋃N
k=1D(zk, r/2), and so h = f −

∑N
j=1 fj in γ∗, according to (5.3.6). Applying Theorem 5.26

to h and Lemma 5.28 to f (and its principal part fj) at each zj gives

0 =

∫
γ
h(z) dz =

∫
γ
f(z) dz −

N∑
j=1

∫
γ
fj(z) dz =

∫
γ
f(z) dz −

N∑
j=1

2πiRes(f, zj)W (γ, zj);

which of course yields (5.3.3).
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Example 5.30. For f(z) = cot z = cos z
sin z , we evaluate the integrals∫

∂D(0,1)
f(z) dz,

∫
∂D(0,4)

f(z) dz,

using Theorem 5.29. The circles are traveled once and counterclockwise. The function f has an
isolated singularity at each zk := kπ, k ∈ Z. Defining g(z) = cos z and h(z) = sin z, we see that
g(zk) = (−1)k ̸= 0, and h(zk) = 0, h′(zk) = cos(zk) = (−1)k ̸= 0. By Proposition 5.19, f has a
pole of order 1 at zk with

Res(f, zk) =
g(zk)

h′(zk)
= 1, k ∈ Z.

For the first integral, note that only the singularity z0 = 0 is contained in the inside of ∂D(0, 1).
Hence, the Cauchy Residues Theorem 5.29 applied to ∂D(0, 1) gives∫

∂D(0,1)
f(z) dz = 2πiRes(f, 0)W (γ, 0) = 2πi.

For the latter integral, observe that the singularities that are contained in the inside of ∂D(0, 4)
are {−π, 0, π}. Theorem 5.29 tells us that∫

∂D(0,4)
f(z) dz = 2πi

(
Res(f,−π)W (γ,−π) + Res(f, 0)W (γ, 0) + Res(f, π)W (γ, π)

)
= 6πi.

5.3.4 Evaluation of Integrals via the Cauchy Residues Theorem

Theorem 5.31 (Evaluation of Trigonometric Integrals). Let R(u, v) be a rational function of two
variables such that the function [0, 2π] ∋ θ 7→ R(cos θ, sin θ) is bounded in [0, 2π]. Consider the
function

f(z) :=
1

iz
R

(
1

2

(
z +

1

z

)
,
1

2i

(
z − 1

z

))
,

and denote Poles(f) := {z ∈ C : f has a pole at z} and D = D(0, 1) the open unit disk. Then,∫ 2π

0
R(cos θ, sin θ) dθ = 2πi

∑
z∈D∩Poles(f)

Res(f, z).

Proof. Let γ(t) = eit, t ∈ [0, 2π]. Then∫
γ
f(z) dz =

∫ 2π

0
f(eiθ)ieiθ dθ =

∫ 2π

0

1

ieiθ
R

(
1

2

(
eiθ +

1

eiθ

)
,
1

2i

(
eiθ − 1

eiθ

))
ieiθ dθ

=

∫ 2π

0
R

(
eiθ + e−iθ

2
,
eiθ − e−iθ

2i

)
dθ =

∫ 2π

0
R(cos θ, sin θ) dθ.

On the other hand, if Ω = C, then γ∗ ⊂ Ω and W (γ, z) = 0 for all z /∈ Ω (vacuously). Because the
mapping [0, 2π] ∋ θ 7→ R(cos θ, sin θ) is bounded, if we denote R = P/Q, with P,Q polynomials
of two variables, then the possible isolated singularities of f are at z0 = 0 and at those z ∈ C for
which

Q

(
1

2

(
z + z−1

)
,
1

2i

(
z − z−1

))
= 0.

But there are only finitely many possible solutions in z ∈ C\{0} for this equation. Moreover, since
P,Q are polynomials, clearly the singularities of f are all poles; see Example 5.18. But none of these
poles are contained in γ∗ = ∂D(0, 1), because if θ ∈ [0, 2π], then f(eiθ) = −ie−iθR(cos θ, sin θ),
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which is continuous in θ ∈ [0, 2π]. In other words, none of the singularities of f are contained in
γ∗. By Theorem 5.29, we get that∫

γ
f(z) dz = 2πi

∑
z∈Poles(f)

Res(γ, z)W (γ, z) = 2πi
∑

z∈D∩Poles(f)

Res(f, z).

Example 5.32. Let us evaluate the integral∫ 2π

0

dθ

2− sin θ
,

via Theorem 5.31. Consider the rational function R(u, v) = 1
2−v and

f(z) =
1

iz
R

(
1

2

(
z +

1

z

)
,
1

2i

(
z − 1

z

))
=

1

iz

1

2− 1
2i

(
z − 1

z

) =
−2

z2 − 4iz + 1

Writing z2 − 4iz + 1 = (z − 2i)2 + 5 = (z − (2−
√
5)i)(z − (2 +

√
5)i), we see that f has isolated

singularities, which are poles of order 1, at the points (2 −
√
5)i and (2 +

√
5)i. But the latter

pole (2 +
√
5)i is not contained in D(0, 1), as |(2 +

√
5)i| = 2+

√
5 > 1. The first pole (2−

√
5)i is

contained in D(0, 1). By Theorem 5.31,∫ 2π

0

dθ

2− sin θ
= 2πiRes

(
f, (2−

√
5)i
)
.

To calculate Res
(
f, (2−

√
5)i
)
, we can decompose −2

z2−4iz+1
into partial fractions, and look at the

coefficient of the fraction 1
z−(2−

√
5)i
. Alternatively, we can write

f(z) =
−2

z2 − 4iz + 1
=
g(z)

h(z)
, g(z) = −2, h(z) = z2 − 4iz + 1,

and apply Proposition 5.19 to deduce

Res
(
f, (2−

√
5)i
)
=

g((2−
√
5)i))

h′((2−
√
5)i))

=
−2

2
(
(2−

√
5)i
)
− 4i

=
−2

−2
√
5i

=
1√
5i
.

Thus, ∫ 2π

0

dθ

2− sin θ
= 2πiRes

(
f, (2−

√
5)i
) 2πi√

5i
=

2π√
5
.

We now turn our attention to improper integrals of the type
∫ +∞
−∞ f(x) dx, where f : R → R

is continuous in R. In particular, the holomorphic extension f to an open set containing R has no
singularities in R. Recall that such improper integral (more precisely, its principal value) is defined
by the limit

pv

∫ +∞

−∞
f(x) dx := lim

R→+∞

∫ R

−R
f(x) dx.

We next establish some methods that are very helpful in a large number of those cases.

Theorem 5.33 (Integrals of Continuous Functions in R, ver. I). Denote H := {z ∈ Ω : Im(z) ≥ 0}
the upper half-plane and let Ω ⊂ C be open with H ⊂ Ω. Let f be a function with the following
conditions:

• f is holomorphic in Ω except at finitely many singularities z1, . . . , zN ∈ Ω.
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• zk /∈ R (that is, Im(zk) ̸= 0) for all k = 1, . . . , N.

• For the paths γR : [0, π] → C defined by γR(t) = Reit, t ∈ [0, π], R > 0, there holds that

lim
R→+∞

∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ = 0.

Then, we have

pv

∫ ∞

−∞
f(x) dx = 2πi

∑
{k : Im(zk)>0}

Res(f, zk).

Proof. Let R > 0 be large enough so that R > max{|z1|, . . . , |zN |}, and define the paths

LR := [−R,R], γR(t) = Reit, t ∈ [0, π], ΓR := LR ⋆ γR.

ΓR is a closed and piecewise C1-path with Γ∗
R ⊂ Ω (because γ∗R ⊂ H) and by the choice of R, it is

clear that zk /∈ Γ∗
R for all k = 1, . . . , N. Thus, by Theorem 5.29, we have∫

ΓR

f(z) dz = 2πi

N∑
k=1

Res(f, zk)W (ΓR, zk) = 2πi

N∑
k=1

Res(f, zk). (5.3.7)

The path-integral of f along ΓR is∫
ΓR

f(z) dz =

∫
LR

f(z) dz +

∫
γR

f(z) dz =

∫ R

−R
f(x) dx+

∫
γR

f(z) dz; (5.3.8)

where, by Proposition 4.11 and the third assumption of this theorem,∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ ≤ length(γR) sup
z∈γ∗

R

|f(z)| ≤ πR sup
z∈γ∗

R

M

|z|p
=

π

MRp−1
.

Therefore,

lim
R→+∞

∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ = 0.

Inserting this back into (5.3.8) and (5.3.7), and letting R→ ∞, we get

pv

∫ +∞

−∞
f(x) dx = lim

R→+∞

∫ R

−R
f(x) dx = lim

R→+∞

(∫
ΓR

f(z) dz −
∫
γR

f(z) dz

)

= lim
R→+∞

∫
ΓR

f(z) dz = lim
R→+∞

2πi
N∑
k=1

Res(f, zk) = 2πi
N∑
k=1

Res(f, zk).

Let us look at particular situations where the third condition in Theorem 5.33 is satisfied.

Corollary 5.34. Denote H := {z ∈ Ω : Im(z) ≥ 0} the upper half-plane and let Ω ⊂ C be open with
H ⊂ Ω. Let f be a function with the following conditions:

• f is holomorphic in Ω except at finitely many singularities z1, . . . , zN ∈ Ω.

• zk /∈ R (that is, Im(zk) ̸= 0) for all k = 1, . . . , N.

• There are constants M,R0 > 0, p > 1 such that |f(z)| ≤ M
|z|p for all z ∈ Ω with |z| > R0.

Then, we have

pv

∫ ∞

−∞
f(x) dx = 2πi

∑
{k : Im(zk)>0}

Res(f, zk).
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Proof. By Proposition 4.11 and the third assumption of this corollary,∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ ≤ length(γR) sup
z∈γ∗

R

|f(z)| ≤ πR sup
z∈γ∗

R

M

|z|p
=

π

MRp−1
.

Therefore,

lim
R→+∞

∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ = 0.

We then have all the assumptions of Theorem 5.33.

Remark 5.35. Observe that the third condition in Corollary 5.34 is fulfilled for example when f is
a rational function f = P/Q; with P,Q polynomials satisfying

deg(Q) ≥ deg(P ) + 2.

Let us see how to apply the above in a concrete example.

Example 5.36. We evaluate

pv

∫ +∞

−∞

x2

1 + x4
dx,

using Theorem 5.33 (actually Corollary 5.34 and Remark 5.35). Define f(z) = z2

1+z4
, which is

holomorphic in C except in the set〈
4
√
−1
〉
= {z1 := ei

π
4 , z2 := ei

3π
4 , z3 := ei

5π
4 , z4 := ei

7π
4 }.

Note that zk /∈ R for k = 1, 2, 3, 4, with Im(z1), Im(z2) > 0 and Im(z2), Im(z4) < 0. By Theorem
5.33, we have

pv

∫ +∞

−∞

x2

1 + x4
dx =

∫ +∞

−∞
f(x) dx = 2πi (Res(f, z1) + Res(f, z2)) .

To calculate Res(f, w) for w = z1, z2, we can decompose z2

1+z4
in partial fractions and look at the

coefficient of 1
z−w . But we can also apply directly Proposition 5.19 for g(z) = z2 and h(z) = 1+z4,

where

g(z1) = z21 ̸= 0, g(z2) = z22 ̸= 0, h(z1) = h(z2) = 0, h′(z1) = 4z31 ̸= 0, h′(z2) = 4z32 ̸= 0,

and then

Res(f, z1) =
g(z1)

h′(z1)
=

z21
4z31

=
1

4z1
, Res(f, z2) =

g(z2)

h′(z2)
=

z21
4z32

=
1

4z2
.

We may conclude

pv

∫ +∞

−∞

x2

1 + x4
dx = 2πi (Res(f, z1) + Res(f, z2)) =

πi

4

(
1

z1
+

1

z2

)
=
πi

2

(
e−

π
4
i + e−

3π
4
i
)
=
π

2

(
e

π
4
i + e−

π
4
i
)
=
π

2
2Re

(
e

π
4
i
)
=

π√
2
.

To evaluate integrals of mixed rational-trigonometric functions, it is convenient to use a second
version of Theorem 5.33. We first need the following estimate due to Jordan.

Lemma 5.37 (Jordan’s Lemma). Let r > 0 and γr : [0, π] → C the path γr(t) = reit, t ∈ [0, π].
Then, we have ∫

γr

|eiz||dz| < π.
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Proof. For each r > 0, we can write∫
γr

|eiz||dz| =
∫ π

0
eRe(ireit)|rieit| dt =

∫ π

0
re−r sin t dt.

But since sin(t) = sin(π − t), we have that
∫ π
π/2 re

−r sin t dt =
∫ π/2
0 re−r sin t dt, and so the last

integral above equals

2

∫ π/2

0
re−r sin t dt ≤ 2

∫ π/2

0
re−

2r
π
t dt = π

(
1− e−

2r
π

π
2

)
= π

(
1− e−r

)
< π.

We have used that sin t ≥ 2t/π for all t ∈ [0, π/2], that is, t 7→ sin t is concave in the interval
[0, π/2].

Theorem 5.38 (Integrals of Continuous Functions in R, ver. II). Denote H := {z ∈ Ω : Im(z) ≥ 0}
the upper half-plane and let Ω ⊂ C be open with H ⊂ Ω. Let f be a function with the following
conditions

• f is holomorphic in Ω except at finitely many singularities z1, . . . , zN ∈ Ω.

• zk /∈ R (that is, Im(zk) ̸= 0) for all k = 1, . . . , N.

• There are constants M,R0 > 0, p > 0 such that |f(z)| ≤ M
|z|p for all z ∈ Ω with |z| > R0.

Then, for all a > 0, if g(z) := f(z)eiaz, z ∈ Ω, we have

pv

∫ +∞

−∞
f(x)eiax dx = 2πi

∑
{k : Im(zk)>0}

Res(g, zk).

Proof. Let us verify the assumptions of Theorem 5.33 for g (instead of f). The first two bullet
conditions of Theorem 5.33 are immediate from the first two of the current theorem. Now, let
γR(t) := Reit, t ∈ [0, π], with R > R0, and use Lemma 5.37 to estimate∣∣∣∣∫

γR

g(z) dz

∣∣∣∣ ≤ ∫
γR

|f(z)||eiaz||dz| ≤ M

Rp

∫
γR

|eiaz||dz| = M

aRp

∫
γaR

|eiz||dz| ≤ πM

aRp
,

and the last term tends to 0 as R→ ∞. Thus, the third condition of Theorem 5.33 holds, and our
statement follows from that theorem.

Remark 5.39. Theorem 5.38 can be also employed when evaluating integrals of the type

pv

∫ +∞

−∞
f(x) cos(ax) dx, pv

∫ +∞

−∞
f(x) sin(ax) dx,

assuming that f(R) ⊂ R. Indeed, in this case, those integrals are respectively the real and
imaginary part of the integral

pv

∫ +∞

−∞
f(x)eiax dx.

Also notice that the third condition of Theorem 5.38 is fulfilled for example when f = P/Q, where
P,Q are polynomials satisfying

deg(Q) ≥ deg(P ) + 1;

compare to Remark 5.35.
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Example 5.40. Let us evaluate the integral

pv

∫ +∞

−∞

xeix

x2 + 1
dx.

Writing f(z) = z
z2+1

and g(z) = f(z)eiz, and, for example, Ω = C let us verify the assumptions
of Theorem 5.38. The singularities of f are ±i, which are not in R. Also, for |z| ≥ 1, we have the
bounds

|f(z)| = |z|
|1 + z2|

≤ |z|
2|z|2

=
1

2|z|
.

All the conditions of Theorem 5.38 are satisfied, and so

pv

∫ +∞

−∞

xeix

x2 + 1
dx = 2πiRes(g, i).

It only remains to find Res(g, i). But since zeiz does not vanish at i, i2 + 1 = 0 and 2i ̸= 0, by
Proposition 5.19, we have that

Res(g, i) =
iei·i

2i
=

1

2e
, and so

∫ +∞

−∞

xeix

x2 + 1
dx =

πi

e
.

The evaluation of improper integrals when the pertinent function is unbounded around a point
is a bit more delicate. Let us recall a definition from Calculus I.

Definition 5.41 (Principal Value of an Integral). Let f : R → C be a function that is unbounded on
intervals around real points x1 < x2 < · · · < xn. The principal value of

∫ +∞
−∞ f(x) dx by

pv

∫ +∞

−∞
f(x) dx := lim

ε→0+

(∫ x1−ε

−∞
f(x) dx+

∫ x2−ε

x1+ε
f(x) dx+ · · ·+

∫ xn−ε

xn−1+ε
f(x) dx+

∫ +∞

xn+ε
f(x) dx

)
.

Theorem 5.42 (Integrals with Real Singularities). Denote H := {z ∈ Ω : Im(z) ≥ 0} the upper
half-plane and let Ω ⊂ C be open with H ⊂ Ω. Let f be a function with the following conditions

• f is holomorphic in Ω except at a finite set of singularities S.

• If z ∈ R ∩ S (that is, Im(z) = 0), then f has a pole of order 1 at z;

• For the paths γR : [0, π] → C defined by γR(t) = Reit, t ∈ [0, π], R > 0, there holds that

lim
R→+∞

∣∣∣∣∫
γR

f(z) dz

∣∣∣∣ = 0.

Then, we have

pv

∫ ∞

−∞
f(x) dx = 2πi

∑
{z∈S : Im(z)>0}

Res(f, z) + πi
∑

{z∈S : z∈R}

Res(f, z).

Proof. The proof is almost the same as that of Theorem 5.33, except that we need to additionally
estimate some integrals along certain small semi-circles. Denote by S the set of all singularities of
f in Ω, and let {x1 < x2 < · · · < xn} be those that are contained in R. Since the singularity of f
at each xj is a pole of order 1, and there are only finitely-many, by (for example) Remark 5.11, we
can write

f(z) =
Res(f, xj)

z − xj
+ fj(z), z ∈ D(xj , δ) \ {xj}, j = 1, . . . , n; (5.3.9)
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where each fj is holomorphic in an open disk containing D(xj , δ). In particular, simply by conti-
nuity, there exists M > 0 so that

sup{|f(w)| : w ∈ D(xj , δ)} ≤M, for all j = 1, . . . , n. (5.3.10)

Let R > 0 be large enough to that R > max{1 + |z| : z ∈ S} and ε > 0 small enough so that

ε < δ, −R < x1 − ε, xn + ε < R, xj−1 + ε < xj − ε, j = 2, . . . , n.

Define the paths

γR(t) := Reit, t ∈ [0, π], σj,ε(t) = xj − εe−it, t ∈ [0, π], j = 1, . . . , n,

then

ηR,ε := [−R, x1 − ε] ⋆ σ1,ε ⋆ [x1 + ε, x2 − ε] ⋆ σ2,ε ⋆ · · · ⋆ [xn−1 + ε, xn − ε] ⋆ σn,ε ⋆ [xn + ε,R],

and finally ΓR,ε := ηR,ε ⋆ γR. We get that ΓR,ε is a closed and piecewise C1-path with Γ∗
R,ε ⊂ Ω,

and by the choice of R and ε > 0, it is clear that S ∩ Γ∗
R,ε = ∅. By Theorem 5.29, we have∫

ΓR,ε

f(z) dz = 2πi
∑
z∈S

Res(f, z)W (ΓR,ε, z) = 2πi
∑

{z∈S : Im(z)>0}

Res(f, z). (5.3.11)

Note that we used that W (ΓR,ε, xj) = 0 for all j = 1, . . . , n, as these singularities are in the outside
of ΓR,ε. But the path-integral of f along ΓR,ε is∫
ΓR,ε

f(z) dz =

∫
γR

f(z) dz +

∫
ηR,ε

f(z) dz

=

∫
γR

f(z) dz +

∫ x1−ε

−R
f(x) dx+

n∑
j=2

∫ xj−ε

xj−1+ε
f(x) dx+

∫ R

xn+ε
f(x) dx+

n∑
j=1

∫
σj,ε

f(z) dz.

If ε > 0 is fixed (but satisfying the original conditions), and we let R → +∞ in the above, the
third bullet point condition implies that

lim
R→+∞

∫
ΓR,ε

f(z) dz =

∫ x1−ε

−∞
f(x) dx+

n∑
j=2

∫ xj−ε

xj−1+ε
f(x) dx+

∫ +∞

xn+ε
f(x) dx+

n∑
j=1

∫
σj,ε

f(z) dz.

(5.3.12)
Now, let us find lim

ε→0+

∫
σj,ε

f(z) dz. Note first that∫
σj,ε

Res(f, xj)

z − xj
dz = Res(f, xj)

∫ π

0

εie−it

xj − εe−it − xj
dt = −πiRes(f, xj).

Then we can use (5.3.9) and (5.3.10) to obtain∣∣∣∣∣
∫
σj,ε

f(z) dz + πiRes(f, zj)

∣∣∣∣∣ =
∣∣∣∣∣
∫
σj,ε

fj(z) dz

∣∣∣∣∣ ≤ sup{|fj(w)| : w ∈ D(zj , ε)}length(σj,ε) ≤Mπε;

which tends to 0 as ε→ 0. Combining this together with (5.3.12) and (5.3.11) yields

lim
ε→0+

(∫ x1−ε

−∞
f(x) dx+

∫ x2−ε

x1+ε
f(x) dx+ · · ·+

∫ xn−ε

xn−1+ε
f(x) dx+

∫ +∞

xn+ε
f(x) dx

)

= lim
ε→0+

 lim
R→+∞

∫
ΓR,ε

f(z) dz −
n∑

j=1

∫
σj,ε

f(z) dz


= 2πi

∑
{z∈S : Im(z)>0}

Res(f, z) + πi
n∑

j=1

Res(f, xj).
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Remark 5.43. For example, we can use Theorem 5.42 in the particular case where f = P/Q with
P,Q polynomials satisfying

deg(Q) ≥ deg(P ) + 2.

And, as we did in Theorem 5.38, we can consider integrals of the form

pv

∫ +∞

−∞
f(x)eaix dx, a > 0;

with f possibly having poles of order 1 in the real line.

Let us see a concrete example.

Example 5.44. We want to evaluate

pv

∫ +∞

−∞

x

x3 + 1
dx,

via Theorem 5.42. To do so, define f(z) = z
z3+1

, where f is holomorphic in C except in

⟨ 3
√
−1 ⟩ = {e−iπ

3 , ei
π
3 ,−1}.

These singularities satisfy Im(e−iπ
3 ) < 0, −1 ∈ R, and Im(ei

π
3 ) > 0, so we only need to look at

z0 = −1 and z1 = ei
π
3 . At z0 = −1, the numerator and denominator have z0 ̸= 0, z30 + 1 = 0, and

3z20 ̸= 0. By Proposition 5.19, f has a pole of order 1 at z0 = −1, and

Res(f, z0) =
z0
3z20

= −1

3
.

For the same reasons, f has a pole of order 1 at z1 = ei
π
3 , with

Res(f, z1) =
z1
3z21

=
1

3ei
2π
3

.

Since deg(z3 + 1) = 2 + deg(z), we can apply Theorem 5.42 (see Remark 5.43), to conclude

pv

∫ ∞

−∞
f(x) dx = 2πiRes(f, ei

π
3 ) + πiRes(f,−1) =

πi

3

(
2 cos(2π3 )− 2i sin(2π3 )− 1

)
=

π√
3
.

5.4 Exercises

Exercise 5.1. Find the Laurent Series expansions of the following functions in the indicated annuli
(and center), and identify the corresponding Principal Part.

(a) z+1
z in z ∈ C \ {0}, at z0 = 0.

(b) z
z2+1

in {z ∈ C : 0 < |z − i| < 2}, at z0 = i.

(c) sin(1z ) in z ∈ C \ {0}, at z0 = 0.

(d) 1
z(z+1) in {z ∈ C : 0 < |z + 1| < 1}, at z0 = −1; and in {z ∈ C : |z| > 1}, and in

{z ∈ C : 0 < |z| < 1} and at z0 = 0.

(e) z
z+1 in C \ {−1}, at z0 = −1.

(f) ez

z2
in C \ {0}, at z0 = 0.

(g) 1
z(z−1)(z−2) in {z ∈ C : 0 < |z| < 1} and in {z ∈ C : 1 < |z| < 2}, both at z0 = 0.
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Exercise 5.2. Find the isolated singularities and classify them (into removable, poles, or essential)
for the following functions. In the case of poles, indicate the order of those.

a)
cos z

z2
b)
ez − 1

z2
c)
z + 1

z − 1
d)
ez

z
e)

sin z

z
f)

(ez − 1)2

z2
g)

1

z(z + 1)
h)
ez

z2

i)
cos(z − 1)

z2
j)

1

z2 − 1
k)

1

cos
(
1
z

) l)
ez(z − 3)

(z − 1)(z − 5)
m)

cos z

1− z
n)

z

(ez − 1)(ez − 2)
.

Exercise 5.3. Calculate the residues of the following functions at the indicated points z0 ∈ C :

a)
ez

2

z − 1
, z0 = 1 b)

ez

(z2 − 1)2
, z0 = 1 c)

(
cos z − 1

z

)2

, z0 = 0 d)
z2

z4 − 1
, z0 = i

e)
ez − 1

sin z
, z0 = 0 f)

1

ez − 1
, z0 = 0 g)

z + 2

z2 − 2z
, z0 = 0 h)

ez + 1

z4
, z0 = 0.

Exercise 5.4. Find the isolated singularities, classify them (including the order in the case of poles),
and calculate the residues at all those singularities.

a)
1

ez − 1
b)

1

z3(z + 4)
c)

1

z2 + 2z + 1
d)

1

z3 − 3
, e)

ez

z(1− z)3
.

Exercise 5.5. Let E be a set with no accumulation points, that is, E′ = ∅. Let f : C \ E → C be
holomorphic and bounded in C \ E. Prove that f is constant.

Suggestion: Riemann’s Criterion Theorem 5.12 is vital. If you are not too familiar with topo-
logical concepts, assume first that E is finite.

Exercise 5.6. Let f : D(z0, r) \ {z0} → C be holomorphic. Prove that f and f2 have the same type
of singularity (removable, pole, or essential) at z0. This amounts to show that:

• f has a removable singularity at z0 ⇐⇒ f2 has a removable singularity at z0.

• f has a pole at z0 ⇐⇒ f2 has a pole at z0.

• f has an essential singularity at z0 ⇐⇒ f2 has an essential singularity at z0.

Suggestion: Riemann’s Criterion Theorem 5.12 and Proposition 5.14 are very helpful.

Exercise 5.7. For every n ∈ N ∪ {0}, evaluate the integral∫
∂D(0,1)

zne1/z dz;

where ∂D(0, 1) is traveled once and counterclockwise.

Exercise 5.8. Prove that ∫
∂D(0,1)

ez+
1
z dz = 2πi

∞∑
n=0

1

n! · (n+ 1)!
.

Exercise 5.9. For the ellipse γ(t) = {a cos t+ ib sin t : t ∈ [0, 2π]}, a, b > 0, evaluate∫
γ

e−z2

z2
dz.

Exercise 5.10. Using Theorem 5.29, evaluate the following path-integrals, always travaled once and
with the counterclockwise orientation.

(a)
∫
γ

z2

e2πiz3−1
dz, where γ ≡ ∂D(0, r), n < r3 < n+ 1, n ∈ N.
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(b)
∫
γ

1
z4+1

dz, where γ is the ellipse x2 − xy + y2 + x+ y = 0.

(c)
∫
γ

cos( z
2
)

z2−4
dz, where γ is the ellipse x2/9 + y2/4 = 1.

(d)
∫
γ

z
z2+2z+5

dz, where γ ≡ ∂D(0, 1).

(e)
∫
γ

ez

(1−z)3
dz, where γ ≡ ∂D(1, 1/2).

(f)
∫
γ

ez−1
(sin z)3

dz, where γ ≡ ∂D(0, 4).

(g)
∫
γ

1
z(z−1)(z−2) dz, where γ ≡ ∂D(0, 3/2).

(h)
∫
γ

1+z
1−cos z dz, where γ ≡ ∂D(0, 7).

Exercise 5.11. Find a holomorphic function f in D(0, 1) so that

2πi =

∫
∂D(0,1/2)

f(z)

zn
dz, for all n ∈ N.

The circle ∂D(0, 1/2) is traveled once and counterclockwise.

Exercise 5.12. Evaluate the integral ∫ 2π

0

dθ

5 + 4 cos θ
.

Exercise 5.13. Find a closed formula (in terms of the parameter a) for the following the integral∫ 2π

0

dθ

a+ sin θ
,

when a > 1, and also when a < −1.

Exercise 5.14. Show that ∫ π

0

dθ

1 + sin2 θ
=

π√
2
.

Exercise 5.15. For a, b > 0, with a ̸= b, evaluate the integral

pv

∫ +∞

−∞

cosx

(x2 + a2)(x2 + b2)
dx.

Exercise 5.16. For a > 0, evaluate the integral

pv

∫ +∞

−∞

cosx

(x2 + a2)2
dx.

Exercise 5.17. Evaluate the integral

pv

∫ +∞

−∞

dx

x2 − 2x+ 4
.

Exercise 5.18. Prove the identity

pv

∫ +∞

−∞

dx

1 + x2n
=

π

n sin( π
2n)

, n ∈ N.

Exercise 5.19. Evaluate the integral

pv

∫ +∞

−∞

sinx

x2 − 2x+ 2
dx.
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Exercise 5.20. Evaluate the integral

pv

∫ +∞

−∞

x3 sinx

(x2 + 1)2
dx.

Exercise 5.21. Prove the identity

pv

∫ +∞

−∞

x sinx

x4 + 1
dx = πe

− 1√
2 sin

(
1√
2

)
.

Exercise 5.22. Evaluate the integral

pv

∫ +∞

−∞

eix

x3 − 2x2 + x− 2
dx,

and then

pv

∫ +∞

−∞

cosx

x3 − 2x2 + x− 2
dx,

Suggestion: Read carefully Theorem 5.42 and Remark 5.43.

Exercise 5.23. Evaluate the integral

pv

∫ +∞

−∞

sinx

x(x2 − 1)
dx.

Suggestion: Read carefully Theorem 5.42 and Remark 5.43.

Exercise 5.24. Evaluate the integral

pv

∫ +∞

−∞

eix

x(x− w0)2
dx,

where w0 ∈ C is so that Im(w0) > 0.

Exercise 5.25. Evaluate the integral ∫ 2π

0

e4iθ

2 + cos θ
dθ,

and then deduce the value of ∫ 2π

0

cos(4θ)

2 + cos θ
dθ.

Exercise 5.26. For each a > 1, evaluate the integral∫ π

0

dθ

(a+ cos θ)2
dθ.

Exercise 5.27. Prove the identity

pv

∫ +∞

−∞

(
sinx

x

)2

dx = π.

Exercise 5.28. Prove the identity

pv

∫ +∞

−∞

cosx

ex + e−x
dx =

π

eπ/2 + e−π/2
.

Exercise 5.29. Prove the identity

pv

∫ +∞

−∞

e−x

1 + e−2πx
dx =

1

2 sin(12)
.
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Chapter 6

Fourier Series and Differential Equations

This chapter serves as a brief introduction to elementary Fourier Analysis, which we will applied
to solve some special cases of differential equations. Our main reference is [3, Chapter 13].

6.1 Elements from Fourier Analysis

A trignometric polynomial is any function P : R → C of the form

P (x) =

N∑
n=−N

cne
inx, x ∈ R;

where {cn}Nn=−N ⊂ C and N ∈ N ∪ {0}. We can refer to the largest number M ∈ N ∪ {0} so
that one of the coefficients of eiMx, e−iMx are nonzero as the degree of P . Notice also that P is
2π-periodic:

P (x+ 2π) = P (x), for all x ∈ [0, 2π].

Moreover, by (1.5.1), one can also express P as

P (x) =

N∑
n=−N

cne
inx = c0+

N∑
n=1

an cos(nx)+

N∑
n=1

bn sin(nx), an := cn+c−n, bn := i(cn−c−n), n ∈ N.

Our of the main goals in Fourier Analysis is to approximate a sufficiently regular function f :
[0, 2π] → C by trigonometric polynomials. Those polynomials associated with f are the Fourier
sums of f, which we define now.

6.1.1 Fourier Coefficients and Sums. The Bessel’s Inequality

We will work from now on with Riemann-integrable functions h : [0, 2π) → C, which we assume to
be extended to all R by 2π-periodicity. This means that

h(x+ 2π) = h(x), for all x ∈ R.

Note that then this 2π-periodic function h is continuous in all of R if and only if h(0) = h(2π) and
h is continuous in [0, 2π). Moreover, it is not difficult to see that∫ 2π

0
h(t) dt =

∫ a+2π

a
h(t) dt, for all a ∈ R. (6.1.1)

Indeed, it suffices to find the unique k ∈ Z for which a ∈ [2(k − 1)π, 2kπ), split the integral
appropriately and use that h is 2π-periodic. That is, the integral of h is the same on each interval
of length 2π. This is very convenient, since sometimes it is easier to examine integrals over [−π, π]
rather than on [0, 2π]. Below is the key definition of this chapter.
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Definition 6.1 (Fourier Coefficients and Sums). Let f : [0, 2π] → C be a Riemann-integrable function
in [0, 2π], and let n ∈ Z. We define the nth-Fourier coefficient of f as

f̂(n) :=
1

2π

∫ 2π

0
f(t)e−int dt. (6.1.2)

Also, if N ∈ N ∪ {0}, the N th-Fourier sum of f is the function SN (f) : [0, 2π] → C given by

SN (f)(x) :=
N∑

n=−N

f̂(n)einx, x ∈ [0, 2π]. (6.1.3)

Finally, the Fourier series of f is the series of functions

S(f)(x) =
∑
n∈Z

f̂(n)einx :=
+∞∑

n=−∞
f̂(n)einx := lim

N→∞
SN (f)(x) = lim

N→∞

N∑
n=−N

f̂(n)einx, x ∈ [0, 2π].

However, we cannot claim whether or not this series converges for a general function f.

Remark 6.2. Let us make some immediate observations from Definition 6.1.

(1) Define, for each m ∈ Z, the function em : [0, 2π] → C by

em(x) := eimx, x ∈ [0, 2π].

Then we have

êm(n) = δmn =

{
1 if n = m

0 if n ̸= m
, for all n ∈ Z.

Indeed, this follows by just looking at the definition (6.1.2) of Fourier coefficient.

(2) If λ ∈ C, and f, g : [0, 2π] → C are Riemann-integrable, then

̂(λf + g)(n) = λf̂(n) + ĝ(n), for all n ∈ Z.

This means that the operation “taking Fourier coefficients” is a C-linear operation.

(3) Let P (x) =
∑M

n=−M cne
inx be a trigonometric polynomial, where M ∈ N∪{0}. Then, by the

linearity we have seen in (2), and the fact that êm(n) = δmn, we get that

P̂ (n) =
M∑

m=−M

cmδnm =

{
cn if |n| ≤M

0 if |n| > M.

In particular,

SN (P )(x) = P (x) for all N ≥M, x ∈ R, and S(P )(x) = P (x) for all x ∈ R.

(4) Writing down all the terms in the sum defining SN , we obtain

SN (t) =
N∑

n=−N

f̂(n)eint =
N∑

n=−N

1

2π

(∫ 2π

0
f(s)e−ins ds

)
eint =

N∑
n=−N

1

2π

∫ 2π

0
f(s)ein(t−s) ds.

(5) The 0th-Fourier coefficient of an integrable f : [0, 2π] → R is

f̂(0) =
1

2π

∫ 2π

0
f(t) dt;

that is, the averaged integral of f in [0, 2π].
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Example 6.3. Let us now find the Fourier sums of some concrete 2π-periodic functions.

(1) Let f(x) = x, x ∈ [0, 2π]. We could re-define f at 2π by setting f(2π) = 0(= f(0)), so that
we obtain a function that admits a 2π-periodic extension to all of R. But for the computation
of the Fourier coefficients, this will not make any difference. We begin by computing the Fourier
coefficients f̂(n) when n ∈ Z \ {0}. We can use Integration by Parts to obtain:∫ 2π

0
te−int dt =

[
t
e−int

−in

]t=2π

t=0

−
∫ 2π

0

e−int

−in
dt =

2πi

n
,

that is f̂(n) = i
n . Now, for n = 0, we have that

f̂(0) =
1

2π

∫ 2π

0
t dt = π.

To summarize,

f̂(n) =

{
π if n = 0,

i/n if n ∈ Z \ {0}.

The N th-Fourier sum of f is the trigonometric polynomial

SN (f)(x) =

N∑
n=−N

f̂(n)einx = π +

N∑
n=−N, n̸=0

ieinx

n
= π + 2i

N∑
n=1

sin(nx)

n
,

for all x ∈ [0, 2π]. The Fourier series of f would be

S(f)(x) = π +

+∞∑
n=−∞, n ̸=0

ieinx

n
.

We can already see that this series does not converge to f(0) = 0 at x = 0. For x ∈ (0, 2π), the
series converges, for example, by Picard’s Criterion 3.18, but we do not know whether it converges
to f(x). We will go back to this in Example 6.7 below.

(2) Let g(x) = x2− 2πx, x ∈ [0, 2π]. Since we know already the Fourier coefficients an sums of f as
in (1), we only need to examine x 7→ x2, since by Remark 6.2(2), we would obtain the information
about g by linearity. So, if h(x) = x2, note that for n ̸= 0,∫ 2π

0
t2e−int dt =

[
t2
e−int

−in

]t=2π

t=0

−
∫ 2π

0
2t
e−int

−in
dt.

Recycling computations from (1), we know that
∫ 2π
0 te−int dt = 2πi

n , and consequently∫ 2π

0
t2e−int dt =

4π2i

n
+

4π

n2
.

Therefore

ĝ(n) =
2πi

n
+

2

n2
− 2π

i

n
=

2

n2
.

And

ĝ(0) = ĥ(0)− 2πf̂(0) =
1

2π

∫ 2π

0
t2 dt− 2π2 = −2π2

3
.

The Fourier Series of g is

S(g)(x) = −2π2

3
+

+∞∑
n=−∞, n ̸=0

2

n2
einx = −2π2

3
+ 4

∞∑
n=1

cos(nx)

n2
.



144

(3) Let h(x) = cosx, x ∈ R. To calculate ĥ(n), we can of course look at the definition, but Remark
6.2(3) tells us that if h is written as a trigonometric polynomial, then the coefficients of the
polynomial are precisely the Fourier Coefficients. So, we write

h(x) = cosx =
eix + e−ix

2
=

1

2
e−ix +

1

2
eix, x ∈ R;

from which we get that

ĥ(n) =

{
1
2 if n = −1 or n = 1

0 if n ̸= −1, 1.

Therefore S0(h)(x) = 0 and SN (h)(x) = 1
2e

−ix + 1
2e

ix = h(x) for all N ∈ N. Then obviously
S(h)(x) = h(x) = cosx for all x ∈ R.

Theorem 6.4 (Bessel’s Inequality). Let f : [0, 2π] → C be a function so that f2 is Riemann-
integrable in [0, 2π]. Then, for every N ∈ N,

N∑
n=−N

∣∣∣f̂(n)∣∣∣2 ≤ 1

2π

∫ 2π

0
|f(t)|2 dt.

Consequently,
+∞∑

n=−∞

∣∣∣f̂(n)∣∣∣2 ≤ 1

2π

∫ 2π

0
|f(t)|2 dt.

Proof. For every N ∈ N, we can write∫ 2π

0
|f(t)− SN (t)|2 dt =

∫ 2π

0

(
f(t)−

N∑
n=−N

f̂(n)eint

)(
f(t)−

N∑
m=−N

f̂(m)e−imt

)
dt

=

∫ 2π

0
|f(t)|2 +

N∑
n=−N

N∑
m=−N

f̂(n)f̂(m)

∫ 2π

0
einte−imt dt

−
N∑

m=−N

f̂(m)

∫ 2π

0
f(t)e−imt dt−

N∑
n=−N

f̂(n)

∫ 2π

0
f(t)eint dt

=

∫ 2π

0
|f(t)|2 + 2π

N∑
n=−N

N∑
m=−N

f̂(n)f̂(m)δnm

−
N∑

m=−N

f̂(m)

∫ 2π

0
f(t)e−imt dt−

N∑
n=−N

f̂(n)

∫ 2π

0
f(t)e−int dt

=

∫ 2π

0
|f(t)|2 + 2π

N∑
n=−N

∣∣∣f̂(n)∣∣∣2 − 2π

N∑
m=−N

f̂(m)f̂(m)− 2π

N∑
n=−N

f̂(n)f̂(n)

=

∫ 2π

0
|f(t)|2 − 2π

N∑
n=−N

∣∣∣f̂(n)∣∣∣2 .
In the third equality, we used Remark 6.2(1). And in the fourth inequality, simply that

∫ 2π
0 h(t) dt =∫ 2π

0 h(t) dt for every Riemann-integrable h : [0, 2π] → C; see (4.1.4) in Definition 4.8. But the
conclusion from the above chain of equalities is that∫ 2π

0
|f(t)|2 − 2π

N∑
n=−N

∣∣∣f̂(n)∣∣∣2 = ∫ 2π

0
|f(t)− SN (t)|2 dt ≥ 0,

which yields our theorem.
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A consequence of Theorem 6.4 is the following corollary.

Corollary 6.5. Let f : [0, 2π] → C be a function so that f2 is Riemann-integrable in [0, 2π]. Then,

lim
|n|→∞

∣∣∣f̂(n)∣∣∣ = 0.

Proof. By Theorem 6.4, the series

∑
n∈Z

∣∣∣f̂(n)∣∣∣2 := lim
N→+∞

N∑
n=−N

∣∣∣f̂(n)∣∣∣2 ≤ 1

2π

∫ 2π

0
|f(t)|2 dt

converges, whence lim
|n|→∞

∣∣∣f̂(n)∣∣∣ = 0.

6.1.2 Convergence of Fourier Series for Lipschitz Functions

In the following theorem, we show that functions with a Lipschitz-type condition at a point have
Fourier Series convergent at that point. The proof we give here is due to Paul R. Chernoff [1].

Theorem 6.6. Let f : R → C a piecewise continuous and 2π-periodic function, and let x0 ∈ [0, 2π]
be a point so that there are ε > 0 and C > 0 with

|f(x)− f(x0)| ≤ C|x− x0|, for all x ∈ (x0 − ε, x0 + ε).

Then, we have that
S(f)(x0) := lim

N→+∞
SN (f)(x0) = f(x0).

In particular, if f : R → C is a piecewise continuous and 2π-periodic function, and f ′(x0) exists
at some x0 ∈ [0, 2π), then S(f)(x0) = x0.

Proof. We define a new function

h(x) =


f(x+ x0)− f(x0)

eix − 1
if x ∈ (0, 2π)

1 if x = 0;

where the value h(0) = 1 is playing no role. We can extend h to all of R with 2π-periodicity. Then
h is bounded on an interval around 0. Indeed, first notice that

lim
x→0

eix − 1

x
= i,

as the derivative of t 7→ eit at t = 0 is equal to i. Thus, there exists δ > 0 such that |eix − 1| ≥
1
2 |x||i| =

|x|
2 whenever |x| ≤ δ. Letting r = min{δ, ε}; where ε > 0 is the one from the assumption,

we have for those |x| < r that

|h(x)| = |f(x+ x0)− f(x0)|
|eix − 1|

≤ C|x|
|eix − 1|

≤ 2C.

Since h is bounded and has finitely many discontinuities at [0, 2π], we have that h is Riemann-
integral. The two functions

(0, 2π) ∋ x 7→ g1(x) := f(x+ x0)− f(x0), (0, 2π) ∋ x 7→ g2(x) := h(x)(eix − 1)

agree on (0, 2π), and so they have the same Fourier coefficients. For the first function, those
coefficients are, for n ∈ Z \ {0},

ĝ1(n) =
1

2π

∫ 2π

0
(f(t+ x0)− f(x0)) e

−int dt =
1

2π

∫ 2π

0
f(t)e−in(t−x0) dt = einx0 f̂(n),
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and ĝ1(0) = f̂(0)− f(x0) in the case n = 0. And for the second function g2, the coefficients are

ĝ2(n) =
1

2π

∫ 2π

0
eith(t)e−int dt− ĥ(n) =

1

2π

∫ 2π

0
h(t)e−i(n−1)t dt− ĥ(n) = ĥ(n− 1)− ĥ(n).

Thus we can write, for all N ∈ N, ,

SN (f)(x0)− f(x0) =

N∑
n=−N

f̂(n)einx0 − f(x0) =

N∑
n=−N

ĝ1(n) =

N∑
n=−N

ĝ2(n)

=
N∑

n=−N

(
ĥ(n− 1)− ĥ(n)

)
= ĥ(−N − 1)− ĥ(N).

Now h2 is integrable, because h is bounded and piecewise continuous (and so is h2). By Corollary

6.5, we know that lim
|N |→∞

∣∣∣ĥ(N)
∣∣∣ = 0. Thus, the previous chain of equalities says that

lim
N→∞

|SN (f)(x0)− f(x0)| = lim
N→∞

∣∣∣ĥ(−N − 1)− ĥ(N)
∣∣∣ = 0,

as desired.

We now apply Theorem 6.6 to find some interesting facts.

Example 6.7. Let us get back to the functions from Example 6.3.

(1) Let f(x) = x for x ∈ [0, 2π), and extend it to R by 2π-periodicity. As we saw in Example 6.3,
the Fourier Series S(f)(0) at x0 = 0 does not converge to f(0) = 0. However, if x ∈ (0, 2π),
the function f is differentiable at x, and, by Theorem 6.6, we get that S(f)(x) converges to
f(x). We conclude

x = f(x) = π +

N∑
n=−N, n̸=0

ieinx

n
, x ∈ (0, 2π).

(2) Let g(x) = x2 − 2πx, x ∈ [0, 2π]. This function satisfies the assumption of Theorem 6.6 at
x0 = 0, since

|g(x)− g(x0)| = |x2 − 2πx| = |x||x− 2π| ≤ 3π|x| = 3π|x− x0|, for all x ∈ (−π, π).

Thus the Fourier Series S(g) of g converges at x0 = 0 and S(g)(0) = g(0) = 0. But recall the
formula for S(f) we derived in Example 6.3(2):

0 = g(0) = S(g)(0) = −2π2

3
+ 4

∞∑
n=1

1

n2
.

Rearranging the terms, we get the identity:

∞∑
n=1

1

n2
=
π2

6
.

An easy consequence of Theorem 6.6 is the following Identity Principle for Lipschitz functions.
If E ⊂ R is a set, and h : E → C is a function, we say that h is Lipschitz in E if there exists a
constant L > 0 so that

|h(x)− h(y)| ≤ L|x− y|, for all x, y ∈ E.

Corollary 6.8. Let f, g : R → C two piecewise continuous and 2π-periodic functions that are
Lipschitz in (0, 2π), and so that f̂(n) = ĝ(n) for all n ∈ Z. Then f = g in (0, 2π).
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Proof. Both f and g satisfy the conditions of Theorem 6.6 for all x0 ∈ (0, 2π), and therefore,
S(f)(x) = f(x) and S(g)(x) = g(x) for all x ∈ (0, 2π). But since f and g have the same Fourier
coefficients, obviously S(f)(x) = S(g)(x), and so f(x) = g(x), for all x ∈ (0, 2π).

In connection with Theorem 6.6, we next examine the coefficients of derivatives functions.

Proposition 6.9. Let f be a 2π-periodic and continuous function in R, which is differentiable in
(0, 2π), with f ′ Riemann-integrable in [0, 2π]. Then,

f̂ ′(n) = inf̂(n) for all n ∈ Z.

Proof. If n = 0, note that the Fundamental Theorem of Calculus gives

f̂ ′(n) =
1

2π

∫ 2π

0
f ′(t) = f(2π)− f(0) = 0 = inf̂(n).

If n ∈ Z \ {0}, then Integration by Parts, using that f(0) = f(2π), we get∫ 2π

0
f ′(t)e−int dt =

[
f(t)e−int

]t=2π

t=0
−
∫ 2π

0
f(t)(−ine−int) dt = in

∫ 2π

0
f(t)e−int dt;

and therefore f̂ ′(n) = inf̂(n).

6.1.3 The Dirichlet and the Féjer Kernels

We now define two sequences of functions that are essential to understand the convergence of
Fourier Series.

Definition 6.10 (Dirichlet and Féjer Kernels). If N ∈ N ∪ {0}, define the function DN : R → C by

DN (x) =

N∑
n=−N

einx, x ∈ R.

The sequence of functions {DN}N∈N∪{0} is called the Dirichlet Kernel.

Also, if N ∈ N, and we define a new function KN : R → C by the formula

KN (x) :=
D0(x) +D1(x) + · · ·+DN−1(x)

N
=

1

N

N−1∑
n=0

Dn(x) =
1

N

N−1∑
n=0

n∑
k=−n

eikx, x ∈ R;

the sequence of functions {KN}N∈N is called the Féjer Kernel.

Remark 6.11. Let us make some observations regarding the kernels in Definition 6.10.

(1) Clearly DN is a trigonometric polynomial of degree N with DN (0) = 2N + 1 for all N ∈
N ∪ {0}. In addition, DN (x) = DN (−x) for all x ∈ R. Also, the Fourier coefficients are

D̂N (n) =

{
1 if |n| ≤ N

0 if |n| > N.

Let us now derive the following useful formula for DN :

DN (x) =
sin
(
(N + 1

2)x
)

sin(x2 )
, for all x ∈ (0, 2π). (6.1.4)
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Indeed, calculating the geometric sum that defines DN , we get that

DN (x) =
N∑

n=−N

einx =
ei(N+1)x − e−iNx

eix − 1
=
ei(N+ 1

2
)x − e−i(N+ 1

2
)x

eix/2 − e−ix/2
=

sin
(
(N + 1

2)x
)

sin(x2 )
.

Also, 1
2π

∫ 2π
0 DN (t) dt = 1, because∫ 2π

0
DN (t) dt =

N∑
n=−N

∫ 2π

0
e−int dt =

∫ 2π

0
dt = 2π.

(2) For every integrable function f : [0, 2π] → C,

SN (f)(x) =
1

2π

∫ 2π

0
DN (x− t)f(t) dt, x ∈ [0, 2π], N ∈ N ∪ {0}.

Indeed, it suffices to observe that∫ 2π

0
DN (x−t)f(t) dt =

∫ 2π

0

N∑
n=−N

ein(x−t)f(t) dt =
N∑

n=−N

einx
∫ 2π

0
e−intf(t) dt = 2π

N∑
n=−N

f̂(n)einx.

(3) Concerning the Féjer Kernel {KN}N∈N , we have that each KN is a trigonometric polynomial
of degree N − 1, with KN (0) = N . And again, KN (x) = KN (−x) for all x ∈ R. Also,

N ·KN (x) =
N−1∑
n=0

n∑
k=−n

eikx

= N + (N − 1)
(
eix + e−ix

)
+ (N − 2)

(
e2ix + e−2ix

)
+ · · ·+

(
eiNx + e−iNx

)
=

N∑
n=−N

(N − |n|)einx,

and consequently

KN (x) =
N∑

n=−N

(
1− |n|

N

)
einx, x ∈ R.

But since the Fourier coefficients of a trigonometric polynomial are precisely the coefficients
of that polynomial, we infer from the above that

K̂N (n) =

(
1− |n|

N

)+

:=

{
1− |n|

N if |n| ≤ N − 1

0 if |n| ≥ N.

We can derive an expression similar to (6.1.4) for KN . Indeed, we have

KN (x) =
1

N

(
sin
(
Nx
2

)
sin(x2 )

)2

, for all x ∈ (0, 2π). (6.1.5)

To see this, we sum all the geometric series:

N ·KN (x) =

N−1∑
n=0

n∑
k=−n

eikx =

N−1∑
n=0

ei(n+1)x − e−inx

eix − 1
=

N−1∑
n=0

ei(n+1)x − e−inx

eix − 1

=
1

eix − 1

(
ei(N+1)x − eit

eit − 1
− eix − e−i(N−1)x

eit − 1

)
=

(
ei

(N+1)
2

x − e−i (N−1)
2

x
)2

(eix − 1)2

=

(
ei

Nx
2 − e−iNx

2

)2
(
ei

x
2 − e−ix

2

)2 =

(
sin
(
Nx
2

)
sin(x2 )

)2

,
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from which (6.1.5) follows.
Finally, we mention that

1

2π

∫ 2π

0
KN (t) dt =

1

N

N−1∑
n=0

1

2π

∫ 2π

0
Dn(t) dt =

1

N

N−1∑
n=0

1 = 1.

6.1.4 Approximation by Trigonometric Polynomials

The Féjer Kernel {KN}N∈N from Definition 6.10 enables us to approximate continuous functions
by trigonometric polynomials. First we need to see the following essential property.

Lemma 6.12. For every δ ∈ (0, 1), the sequence of functions {KN}N∈N converges uniformly to 0 in
the set [−π, π] \ [−δ, δ].

Proof. Recall the each KN (x) = KN (−x) for all x ∈ R. Thus, the identity (6.1.5) for points of the
interval [−π, π] becomes

KN (x) =
1

N

(
sin
(
Nx
2

)
sin(x2 )

)2

, for all x ∈ (−π, π) \ {0}.

But then, if 0 < δ < 1, we can estimate this identity, for all δ ≤ |x| ≤ π :

KN (x) ≤ 1

N

1

sin2(x2 )
≤ 1

N

1

sin2( δ2)
,

and the last term goes to 0 as N → ∞. This proves the lemma.

Theorem 6.13. Let f : R → C a 2π-periodic function, integrable in [0, 2π], and so that f is
continuous at some x ∈ [0, 2π]. Then

lim
N→∞

1

2π

∫ 2π

0
f(t)KN (x− t) dt = f(x).

And if f is continuous at all points x ∈ [0, 2π], then the convergence is uniform in [0, 2π].

Proof. Let ε > 0. By the continuity of f at x and Lemma 6.12, we can find δ ∈ (0, 1) and N0 ∈ N
(depending on δ and ε) so that

|f(x− t)− f(x)| ≤ ε whenever |t| ≤ δ, and sup
δ<|t|<π

KN (t) ≤ ε, whenever N ≥ N0.

Using this estimates, we can write, for all N ≥ N0,

2π

∣∣∣∣∫ 2π

0
f(t)KN (x− t) dt− f(x)

∣∣∣∣ = ∣∣∣∣∫ 2π

0
f(t)KN (x− t) dt−

∫ 2π

0
f(x)KN (t) dt

∣∣∣∣
=

∣∣∣∣∫ 2π

0
(f(x− t)− f(x))KN (t) dt

∣∣∣∣ = ∣∣∣∣∫ π

−π
(f(x− t)− f(x))KN (t) dt

∣∣∣∣
≤
∫
|t|≤δ

|f(x− t)− f(x)|KN (t) dt+

∫
δ<|t|<π

|f(x− t)− f(x)|KN (t) dt

≤ ε

∫ π

−π
KN (t) dt+ ε

(
2π|f(x)|+

∫ π

−π
|f(x− t)|dt

)
≤
(
2π + 2π|f(x)|+

∫ π

−π
|f(t)| dt

)
ε.

The term between parentheses is a real number, and so we have proved the first part of the theorem.
Now, if f is continuous a every x ∈ [0, 2π], then f is actually uniformly continuous on [0, 2π].

Thus, in the proof above the parameter δ ∈ (0, 1) can be taken independent of x, and the final
bound with |f(x)| can be replaced with max{|f(x)| : x ∈ [0, 2π]}. The convergence is therefore
uniform in [0, 2π].
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If f is continuous in [0, 2π], then, for every N ∈ N,

PN (x) : =
1

2π

∫ 2π

0
f(t)KN (x− t) dt =

1

2π

∫ 2π

0
f(t)

N−1∑
n=−(N−1)

K̂N (n)ein(x−t) dt

=

N−1∑
n=−(N−1)

K̂N (n)einx
1

2π

∫ 2π

0
f(t)e−int dt =

N−1∑
n=−(N−1)

f̂(n)K̂N (n)einx.

Thus {PN}N∈N is a sequence of trigonometric polynomials which, according to Theorem 6.13,
approximates uniformly f in [0, 2π].

Moreover, we can make the identity principle (Corollary 6.8) valid for general continuous func-
tions.

Corollary 6.14. Let f, g : R → C be 2π-periodic and continuous functions with f̂(n) = ĝ(n) for all
n ∈ Z. Then f = g in R.

Proof. By Theorem 6.13 and the subsequent comment, we know that

f(x) = lim
N→∞

N−1∑
n=−(N−1)

f̂(n)K̂N (n)einx and g(x) = lim
N→∞

N−1∑
n=−(N−1)

ĝ(n)K̂N (n)einx,

for all x ∈ R. But the two limits are the same because f̂(n) = ĝ(n) for all n ∈ Z, and we can
conclude that f = g in R.

6.1.5 The Fourier Transform

In this section we consider integrable functions f : R → C and define the Fourier Transform f̂ of
f. By saying that f is integrable in R, we mean that∫ +∞

−∞
|f(x)|dx := lim

R→+∞

∫ R

−R
|f(x)| dx <∞.

Definition 6.15 (Fourier Transform). For every integrable function f : R → C, Fourier Trans-
form of f is the function f̂ : R → C given by

f̂(ξ) :=

∫
R
f(x)e−ixξ dx := lim

R→+∞

∫ R

−R
f(x)e−ixξ dx, ξ ∈ R.

Note that if f is integrable, then, for every ξ ∈ R :∣∣∣f̂(ξ)∣∣∣ = ∣∣∣∣ lim
R→+∞

∫ R

−R
f(x)e−ixξ dx

∣∣∣∣ ≤ lim
R→+∞

∫ R

−R
|f(x)||e−ixξ|dx = lim

R→+∞

∫ R

−R
|f(x)| <∞.

That is, for each ξ ∈ R, the function R ∋ x 7→ f(x)e−ixξ is integrable in R, and so f̂(ξ) ∈ C.

Let us look at a fundamental example: the Fourier Transform of the Gaussian Functions, which
we calculate with the help of Cauchy Theorem; see Corollary 4.23.

Theorem 6.16. For each a > 0, define ha : R → R by ha(x) = e−ax2
, x ∈ R. The Fourier transform

of ha is

ĥa(ξ) :=

√
π

a
e−

ξ2

4a , ξ ∈ R.

Therefore, if ga(x) :=
√

a
πe

−ax2
, we have that ĝa(ξ) = e−

ξ2

4a for all ξ ∈ R.
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Proof. For every a > 0, ha is integrable in R. Now, we fix ξ ∈ R and begin by writing

ĥa(ξ) =

∫ +∞

−∞
e−ax2

e−ixξ dx =

∫ +∞

−∞
e−a(x+i ξ

2a)
2

e−
ξ2

4a dx = e−
ξ2

4a

∫ +∞

−∞
e−a(x+i ξ

2a)
2

dx. (6.1.6)

Now we look at the last integral, that is, for every R > 0,
∫ R
−R e

−a(x+i ξ
2a)

2

dx. We define the path

ΓR := [−R,R] ⋆ [R,R+ iξ
2a ] ⋆ [R+ iξ

2a ,−R+ iξ
2a ] ⋆ [−R+ iξ

2a ,−R].

This is closed and piecewise C1-path, and the function f(z) = e−az2 , z ∈ C, is holomorphic in C.
For example, by the local Cauchy Theorem (Corollary 4.23), we get that

0 =

∫
ΓR

f(z) dz

=

∫ R

−R
e−ax2

dx+

∫ 1

0
e−a(R+ iξ

2a
t)

2 iξ

2a
dt+

∫ −R

R
e−a(x+ iξ

2a)
2

dx+

∫ 1

0
e−a(−R+ iξ

2a
(1−t))

2
(
− iξ

2a

)
dt

=

∫ R

−R
e−ax2

dx+

∫ 1

0
e−a(R+ iξ

2a
t)

2 iξ

2a
dt−

∫ R

−R
e−a(x+ iξ

2a)
2

dx−
∫ 1

0
e−a(R+ iξ

2a
(t−1))

2 iξ

2a
dt.

(6.1.7)

Now, we bound the second and the fourth integral, for which we observe first that if s ∈ (0, 1),
and R > 0, then

Re
((

R+ iξ
2as
)2 )

= Re
(
R2 − ξ2s2

4a2
+ ξRs

2a i
)
= R2 − ξ2s2

4a2
.

Thus, we estimate the second integral as follows (recall that |ew| = eRe(w) for all w ∈ C):∣∣∣∣∫ 1

0
e−a(R+ iξ

2a
t)

2 iξ

2a
dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣e−a(R+ iξ
2a

t)
2 iξ

2a

∣∣∣∣ dt = |ξ|
2a

∫ 1

0
e−aR2

e
ξ2t2

4a dt ≤ |ξ|
2a
e
ξ2

4a e−aR2
.

And notice that the last term goes to 0 as R → +∞ (the numbers ξ ∈ R and a > 0 are constants
in this argument). Similarly the fourth integral of (6.1.7) converges to 0, as R → ∞. We may
therefore conclude from (6.1.7) that

lim
R→+∞

∫ R

−R
e−a(x+ iξ

2a)
2

dx = lim
R→+∞

∫ R

−R
e−ax2

dx.

Inserting this into (6.1.6) gives

ĥa(ξ) = e−
ξ2

4a lim
R→+∞

∫ R

−R
e−a(x+i ξ

2a)
2

dx = e−
ξ2

4a lim
R→+∞

∫ R

−R
e−ax2

dx

= e−
ξ2

4a

∫ +∞

−∞
e−ax2

dx =
1√
a
e−

ξ2

4a

∫ +∞

−∞
e−x2

dx =

√
π

a
e−

ξ2

4a ;

where the last integral is calculated with standard Calculus II methods.

Now we prove a version of Corollary 6.9 for the Fourier Transform.

Proposition 6.17. Let f : R → C be integrable in R, and differentiable in R with lim
|x|→+∞

|f(x)| = 0

and f ′ : R → C integrable in R as well. Then

f̂ ′(ξ) = iξf̂(ξ), for all ξ ∈ R.
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Proof. For every ξ ∈ R and every R > 0, we apply integration by parts in the Riemann integral:∫ R

−R
f ′(x)e−ixξ dx =

[
e−ixξf(x)

]x=R

x=−R
+ iξ

∫ R

−R
f(x)e−ixξ dx. (6.1.8)

And observe that

lim
R→+∞

∣∣∣∣[e−ixξf(x)
]x=R

x=−R

∣∣∣∣ ≤ lim
R→+∞

(|f(R)|+ |f(−R)|) = 0,

by the assumption. Thus, taking limits as R→ +∞ in (6.1.8), we get that f̂ ′(ξ) = iξf̂(ξ).

Corollary 6.18. Let f : R → C be of class Cm(R), with each f (k) being integrable and satisfying
lim

|x|→+∞
|f (k)(x)| = 0 for all k = 0, . . . ,m. Then

f̂ (m)(ξ) = (iξ)mf̂(ξ), for all ξ ∈ R.

Proof. It follows from applying Proposition 6.17 m times.

Corollary 6.18 is useful to treat certain Differential Equations involving derivatives of second
order (or higher). For example, let us briefly look at the Heat Equation in the real line:

∂2u

∂x2
(x, t)− ∂u

∂t
(x, t) = 0, x ∈ R, t ∈ (0,+∞), and u(x, 0) = h(x), x ∈ R.

one can denote ft(x) := u(x, t), for each t > 0, and consider the Fourier Transforms f̂t of ft.
Assuming that u is sufficiently good so as to satisfy

∂̂ft
∂t

=
∂f̂t
∂t
,

and so that each ft satisfy the assumptions of Corollary 6.18 form = 2, the Heat Equation becomes:

(ix)2f̂t −
∂f̂t
∂t

= 0, that is, x2f̂t +
∂f̂t
∂t

= 0,

and also f̂0 = ĝ. This equation is now easier to solve, for example, we can multiply by the integrating
factor etx

2
in both sides, obtaining,

∂

∂t

(
etx

2
f̂t

)
(x, t) = 0.

This shows that then f̂t(x) = e−tx2
φ(x), for some differentiable function φ : R → R. Letting t = 0,

we get ĥ = φ, and so we have found out that

f̂t(x) = e−tx2
ĥ(x), (x, t) ∈ R× [0,+∞).

A Fourier Inversion procedure would lead us to the solution for ft in terms of the Fourier Inverses
of ĥ and e−tx2

. The first would be simply h, and the second one would be the application of
Theorem 6.16 to ga, with a = 1/4t, leading us to the function

1√
4πt

e−
x2

4t .

We will elaborate more on this function and the Heat Equation in Subsection 6.2.4.

Finally, in the same spirit as in Corollary 6.5 for the Fourier Series, we obtain the following for
the Fourier Transform.
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Corollary 6.19. Let f : R → C be integrable in R, and differentiable in R with lim
|x|→+∞

|f(x)| = 0

and f ′ : R → C integrable in R as well. Then

lim
|ξ|→+∞

|f̂(ξ)| = 0.

Proof. As we observed right after Definition 6.15, one always have that

|f̂ ′(ξ)| ≤
∫ +∞

−∞
|f ′(x)|dx := C, for all ξ ∈ R.

By Corollary 6.17 and this inequality, one has

lim
|ξ|→+∞

|f̂(ξ)| = lim
|ξ|→+∞

|f̂ ′(ξ)|
|ξ|

≤ lim
|ξ|→+∞

C

|ξ|
= 0.

6.2 Differential Equations

6.2.1 The Dirichlet Problem in the Disk. The Poisson Kernel

Throughout this section we will follow the notation for the unit disk and circle.

D := D(0, 1), T = ∂D(0, 1)

The Dirichlet Problem in the disk with boundary data a continuous function g : T → R consists
of finding a function u : D → R continuous in D and of class C2(D) so that{

∆u = 0 on D,
u = g on T.

(6.2.1)

Recall that the Laplacian D(x, y) ∋7→ ∆u(x, y) is defined by

∆u(x, y) :=
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y), (x, y) ∈ D.

Observe that any fuction u satisfying (6.2.1) must be harmonic in D, according to Definition 2.44.

If g : R → R is 2π-periodic and continuous, and the Fourier Series of g at θ

∑
n∈Z

ĝ(n)einθ = lim
N→+∞

SN (g)(θ) = lim
N→+∞

N∑
n=−N

ĝ(n)einθ

converges, then, a Theorem due to Abel (see Exercise 3.15) says that then

lim
r→1−

∑
n∈Z

ĝ(n)r|n|einθ := lim
r→1−

lim
N→+∞

N∑
n=−N

ĝ(n)r|n|einθ =
∑
n∈Z

ĝ(n)einθ.

In the same way each SN (g) can written in terms of certain integral formula involving DN and g
(see Remark 6.11(2)), it is natural to also try to write∑

n∈Z
ĝ(n)r|n|einθ, r ∈ [0, 1),

as integral formulas involving functions of the form
∑

n∈Z r
|n|einθ, r ∈ [0, 1), and g. Those functions

form the Poisson Kernel.
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Definition 6.20 (Poisson Kernel). For every r ∈ [0, 1) define the function Pr : R → [0,+∞) by the
formula

Pr(θ) :=
∑
n∈Z

r|n|einθ, θ ∈ R.

The family of functions {Pr}r∈[0,1) is called the Poisson Kernel.

Among other observations, in the following remark we confirm that the functions Pr(θ) take
only real nonnegative values.

Remark 6.21. For every r ∈ [0, 1) and θ ∈ R, we have

Pr(θ) :=
∑
n∈Z

r|n|einθ = 1 +

∞∑
n=1

rn
(
einθ + e−inθ

)
= 1 + 2

∞∑
n=1

rn cos(nθ),

and in particular Pr(θ) ∈ R. But on the other hand, for every z = reiθ ∈ D, we have

1 + z

1− z
= (1 + z)

∞∑
n=0

zn = 1 + 2
∞∑
n=1

zn = 1 + 2
∞∑
n=1

rneinθ,

and looking at these two formulas, we deduce that

Pr(θ) = 1 + 2
∞∑
n=1

rn cos(nθ) = Re

(
1 + reiθ

1− reiθ

)
= Re

(
1 + z

1− z

)
, z = reiθ ∈ D. (6.2.2)

Looking at the term of the second equality we find that

1 + reiθ

1− reiθ
=

(1 + reiθ)(1− re−iθ)

(1− reiθ)(1− re−iθ)
=

1− r2 + r
(
eiθ − e−iθ

)
1 + r2 − r (eiθ + e−iθ)

=
1− r2 + 2i sin θ

1− 2r cos θ + r2
.

But then this equality and (6.2.2) give

Pr(θ) = Re

(
1 + reiθ

1− reiθ

)
= Re

(
1− r2 + 2i sin θ

1− 2r cos θ + r2

)
=

1− r2

1− 2r cos θ + r2
, for all θ ∈ R. (6.2.3)

Since cos θ ≥ −1, we have that

Pr(θ) ≥
1− r2

1− 2r + r2
=

(1− r)(1 + r)

(1− r)2
=

1 + r

1− r
≥ 0.

This confirms that Pr takes values only on [0,+∞).

We continue make observations on the Poisson kernel.

Proposition 6.22. The Poisson kernel {Pr}r∈[0,1) has the following properties.

(i) Each function Pr : R → R is 2π-periodic with Pr(θ) = Pr(−θ) for all θ ∈ R.

(ii) 1
2π

∫ 2π
0 Pr(t) dt = 1 for all r ∈ [0, 1).

(iii) If 0 < δ < |θ| ≤ π, then Pr(θ) < Pr(δ) for all r ∈ [0, 1).

(iv) For every 0 < δ ≤ π, one has
lim
r→1−

sup
δ≤|θ|≤π

Pr(θ) = 0.

Proof.

(i) This follows immediately from the expression (6.2.3) for Pr.
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(ii) For every 0 ≤ r < 1, the series
∑

n∈Z r
|n|einθ converges uniformly on θ ∈ R, and so∫ 2π

0
Pr(t) dt =

∫ 2π

0

∑
n∈Z

r|n|eint dt =
∑
n∈Z

r|n|
∫ 2π

0
eint dt = r0

∫ 2π

0
dt = 2π.

(iii) If 0 < δ < |θ| ≤ π, then formula (6.2.3) gives

Pr(θ) =
1− r2

1− 2r cos θ + r2
<

1− r2

1− 2r cos δ + r2
= Pr(δ).

(iv) For every 0 < δ ≤ π, and r ∈ [0, 1), we can apply (iii) to obtain

lim
r→1−

sup
δ≤|θ|≤π

Pr(θ) ≤ lim
r→1−

Pr(δ) = lim
r→1−

1− r2

1− 2r cos δ + r2
= 0.

We are now ready to solve the Dirichlet Problem (6.2.1) in the disk.

Theorem 6.23 (Solution to Dirichlet’s Problem). Let g : T → R be a continuous function. Define
the function u : D → R in polar coordinates by the formula

u(reiθ) :=
1

2π

∫ 2π

0
Pr(θ − t)g(eit) dt, for all r ∈ [0, 1), θ ∈ R. (6.2.4)

and
u(eiθ) := g(eiθ), for all θ ∈ R.

Then u is continuous in D and harmonic in D, with u = g in T, that is, u is a solution to problem
(6.2.1).

Proof. We define the complex function F : D → C by the formula

F (z) :=
1

2πi

∫
T

w + z

w − z
· g(w)
w

dw, for all z ∈ D. (6.2.5)

The two-variable function T× D ∋ (w, z) 7→ φ(w, z) := w+z
w−z · g(w)

w is continuous and for all w ∈ T,
the function D ∋ z 7→ φ(w, z) is holomorphic in D, and T×D ∋ (w, z) 7→ ∂φ

∂z (w, z) is continuous in
T×D. By the Differentiation Under the Integral Sign Theorem 4.18, we get that F is holomorphic
in D. Since we know that F is then of class C∞(D) (see e.g. Theorem 4.32), we have that in
particular Re(F ) is C2(D), and, moreover, Re(F ) is harmonic in D by Proposition 2.45. Defining
u := Re(F ) : D → R, we then have that ∆u = 0 in D.
Now, if z ∈ D as z = reiθ, with r ∈ [0, 1), θ ∈ [0, 2π], and express u(z) via the complex path-integral:

u(z) = Re

(
1

2πi

∫
T

w + z

w − z
· g(w)
w

dw

)
= Re

(
1

2πi

∫ 2π

0

eit + reiθ

eit − reiθ
· g(e

it)

eit
· ieit dt

)

= Re

(
1

2π

∫ 2π

0

1 + rei(θ−t)

1− rei(θ−t)
· g(eit) dt

)
=

1

2π

∫ 2π

0
Re

(
1 + rei(θ−t)

1− rei(θ−t)

)
g(eit) dt.

But looking at formula (6.2.2), the above shows that

u(reiθ) =
1

2π

∫ 2π

0
Pr(θ − t)g(eit), for all r ∈ [0, 1), θ ∈ R. (6.2.6)

The next step consists in proving that

lim
r→1−

sup
θ∈R

∣∣∣u(reiθ)− g(eiθ)
∣∣∣ = 0. (6.2.7)
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To do so, first observe that the change of variable s = θ − t in the integral of (6.2.6) leads us to

u(reiθ) =
1

2π

∫ θ−2π

θ
Pr(−s)g(ei(θ−s)) ds =

1

2π

∫ π

−π
Pr(t)g(e

i(θ−t)) dt, for all r ∈ [0, 1), θ ∈ R;

(6.2.8)
where we used the symmetry of Pr(−t) = Pr(t) from Proposition 6.22, that the functions R ∋ t 7→
Pr(t), g(e

i(θ−t)) are 2π-periodic, and that then the integral is the same over any interval of length
2π; see formula (6.1.1).
Now, since g : T → C is continuous and T is compact, g is uniformly continuous; see Proposition
2.25. Thus, for every ε > 0, there exists 0 < δ < π so that

s, s′ ∈ R, |s− s′| ≤ δ =⇒ |g(eis)− g(eis
′
)| ≤ ε. (6.2.9)

And by Proposition 6.22(iv) there exists r0 ∈ (0, 1) so that

sup
δ≤|θ|≤π

Pr(θ) ≤ ε, for all r ∈ [r0, 1). (6.2.10)

For r ∈ [r0, 1), we use the expression (6.2.8) to write, for each θ ∈ R :∣∣∣u(reiθ)− g(eiθ)
∣∣∣ = ∣∣∣∣ 12π

∫ π

−π
Pr(t)g(e

i(θ−t)) dt− g(eiθ)

∣∣∣∣
=

∣∣∣∣ 12π
∫ π

−π
Pr(t)g(e

i(θ−t)) dt− 1

2π

∫ π

−π
Pr(t)g(e

iθ) dt

∣∣∣∣ = ∣∣∣∣ 12π
∫ π

−π
Pr(t)

(
g(ei(θ−t))− g(eiθ)

)
dt

∣∣∣∣
≤ 1

2π

∫
{|t|≤δ}

Pr(t)|g(ei(θ−t))− g(eiθ)|dt+ 1

2π

∫
{δ<|t|≤π}

Pr(t)|g(ei(θ−t))− g(eiθ)|dt

≤ 1

2π

∫
{|t|≤δ}

Pr(t)εdt+ 2max
w∈T

|g(w)| 1
2π

∫
{δ<|t|≤π}

ε dt ≤
(
1 + 2max

w∈T
|g(w)|

)
ε;

where in the second last inequality we used (6.2.9) for the first integral and (6.2.10) in the second
one. This shows (6.2.7).

It is now natural to complete the definition of u up to the boundary of D, by simply definining
u(eiθ) := g(eiθ) for all θ ∈ R. Since u is already defined in D; and of class C2(D), it only remains
to show that u is continuous at all points of T; where the key property will be (6.2.7). So, let us
fix θ0 ∈ [0, 2π) and let {zn}n ⊂ D a sequence converging to z0 := eiθ0 . We can assume that zn ∈ D
for all n ∈ N, as otherwise, we would have a subsequence {znk

}k contained in T converging to z0,
and then we know already that

lim
k→∞

u(znk
) = lim

k→∞
g(znk

) = g(z0) = u(z0),

because g is continuous. So, let zn = rne
iθn , where rn ∈ (0, 1) and lim

n→∞
rn = 1 and lim

n→∞
eiθn = eiθ0 .

We can write, using (6.2.7),

lim
n→∞

∣∣∣u(rneiθn)− u(eiθ0)
∣∣∣ ≤ lim

n→∞

∣∣∣u(rneiθn)− u(eiθn)
∣∣∣+ lim

n→∞

∣∣∣u(eiθn)− u(eiθ0)
∣∣∣

≤ lim
n→∞

sup
θ∈R

∣∣∣u(rneiθ)− u(eiθ)
∣∣∣+ lim

n→∞

∣∣∣g(eiθn)− g(eiθ0)
∣∣∣

= lim
n→∞

∣∣∣g(eiθn)− g(eiθ0)
∣∣∣ = 0.

With some extra work, one can check that formula (6.2.4) in Theorem 6.23 is the unique
solution to the Dirichlet Problem for a fixed continuous boundary data g.
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6.2.2 Fourier Series of Cosines and Sines. Even and Odd Functions

It is sometimes convenient to express the Fourier Series in terms of sines and cosines

a0 +
∞∑
n=0

an cos(nx) + bn sin(nx),

instead of the original
∑∞

n=0 f̂(n)e
inx from Definition 6.1.

Definition 6.24 (Cosine-Sine Fourier Series). Let f : R → R be a 2π-periodic function, Riemann-
integrable in [−π, π]. We define the coefficients

a0 :=
1

2π

∫ π

−π
f(t) dt, an :=

1

π

∫ π

−π
f(t) cos(nt) dt, bn :=

1

π

∫ π

−π
f(t) sin(nt) dt, n ∈ Z \ {0}.

(6.2.11)
The Fourier Series of Sines and Cosines of f is the formal series

a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) , ∈ R. (6.2.12)

Let us compare the original coefficients f̂(n) with the {an}n∈Z, {bn}n∈Z\{0}, as well as both
Fourier Series.

Remark 6.25. Let f : R → R be a 2π-periodic function, Riemann-integrable in [−π, π]. Let {an}n∈Z,
{bn}n∈Z\{0} be as in (6.2.11) and {f̂(n)}n∈Z as in 6.1.2. We have that

a−n = an, b−n = −bn, for all n ∈ Z \ {0}.

We have that

an − ibn
2

=
1

2π

(∫ π

−π
f(t) cos(nt) dt− i

∫ π

−π
f(t) sin(nt) dt

)
=

1

2π

∫ π

−π
f(t)e−int dt = f̂(n),

for all n ∈ Z \ {0}. In the last equality, we used the integral of 2π-periodic functions in R is the
same over any interval of length 2π; see (6.1.1). Now, the series in (6.2.12) can be written as

a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx))

= a0 +
∞∑
n=1

[
an

(
einx + e−inx

2

)
+ bn

(
einx − e−inx

2i

)]

= a0 +

∞∑
n=1

(
an − ibn

2
· einx + an + ibn

2
· e−inx

)

= a0 +
∞∑
n=1

(
f̂(n)einx + f̂(−n)e−inx

)
=

∞∑
n=0

f̂(n)einx,

for every x ∈ R.

Now, the Fourier Series of even (resp. odd) functions contain only cosines (resp. sines).

Proposition 6.26 (Fourier Series of Even or Odd Functions). Let f : R → R be a 2π-periodic
function, Riemann-integrable in [−π, π]. Let {an}n∈Z, {bn}n∈Z\{0} be as in (6.2.11). The following
holds.
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(i) If f is even, that is f(x) = f(−x) for all x ∈ R, then bn = 0 for all n ∈ Z \ {0},

a0 =
1

π

∫ π

0
f(t) dt, an =

2

π

∫ π

0
f(t) cos(nt) dt, for all n ∈ Z \ {0},

and the Fourier Series (6.2.12) becomes

a0 +
∞∑
n=1

an cos(nx), x ∈ R.

(ii) If f is odd, that is f(−x) = −f(−x) for all x ∈ R, then an = 0 for all n ∈ Z,

bn =
2

π

∫ π

0
f(t) sin(nt) dt, for all n ∈ Z \ {0},

and the Fourier Series (6.2.12) becomes

∞∑
n=1

an sin(nx), x ∈ R.

Proof.

(i) Since t 7→ cos(t) and t 7→ f(t) are even functions, we clearly have

an :=
1

π

∫ π

−π
f(t) cos(nt) dt =

2

π

∫ π

0
f(t) cos(nt) dt, n ∈ Z,

and

bn :=
1

π

∫ π

−π
f(t) sin(nt) dt =

1

π

(∫ 0

−π
f(t) sin(nt) dt+

∫ π

0
f(t) sin(nt) dt

)
= 0,

for all n ∈ Z \ {0}.
(ii) The proof is very similar to that of (i).

Remark 6.27. Regarding the convergence of the Cosine–Sine series we obtained in Proposition 6.26,
we observe the following. Let f : [0, π] → R be a continuous function, which is Riemann-integral
in [0, π]. Let us consider two possibilities.

(1) We are interested in expressing or approximating f by its Fourier Series of Cosines in [0, π].
Then we consider the even extension f : [−π, π] → R of f, that is f(x) := f(−x) for all
x ∈ [0, π]. Then f is continuous in [−π, π], and moreover we can consider the 2π-periodic
extension f : R → R of f , which is continuous in R as well. By Proposition 6.26, we get

S(f)(x) = a0 +
∞∑
n=1

an cos(nx), x ∈ R, where

a0 :=
1

π

∫ π

0
f(t) dt, an :=

2

π

∫ π

0
f(t) cos(nt) dt, n ∈ N.

Assume additionally that f satisfies the assumptions of Theorem 6.6. This is true for ex-
ample when f satisfies a Lipschitz condition in [0, π], or when f ′(x) exists for all x ∈ [0, π]
(understanding the one-side derivatives for x = 0 or x = π).

Then, by the extension via symmetry and 2π-periodicity of f , the same properties hold for
f : R → R on every interval of length 2π. Applying Theorem 6.6, we get that S(f)(x)
converges to f(x) for all x ∈ R, and in particular we have

f(x) = S(f)(x) = a0 +

∞∑
n=1

an cos(nx), for all x ∈ [0, π].
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(2) We are interested in expressing or approximating f by its Fourier Series of Sines in [0, π].
Here we need to be slightly more careful. We consider the odd extension f : [−π, π] → R of
f, that is f(x) := −f(−x) for all x ∈ [0, π]. Then f is continuous in [−π, π] \ {0}, but not
necessarily at x = 0.Moreover, the 2π-periodic extension f : R → R of f , which is continuous
in R \ {kπ : k ∈ Z}, which possible discontinuities at kπ, with k ∈ Z. By Proposition 6.26,
we get that

S(f)(x) =

∞∑
n=1

bn sin(nx), x ∈ R, bn :=
2

π

∫ π

0
f(t) sin(nt) dt, n ∈ N.

Assume additionally that f satisfies the assumptions of Theorem 6.6 in [0, π]. This is true for
example when f satisfies a Lipschitz condition in [0, π], or when f ′(x) exists for all x ∈ [0, π]
(understanding the one-side derivatives for x = 0 or x = π). Applying Theorem 6.6, we get
that S(f)(x) converges to f(x) for all x ∈ R \ {kπ : k ∈ Z}, and in particular we have

f(x) = S(f)(x) =

∞∑
n=1

bn sin(nx), for all x ∈ (0, π).

And assuming further that for x0 = 0 or x0 = π, one has f(x0) = 0, then, by the definition
of the extension of f to all of R, Theorem 6.6 applies at x0, whence

f(x0) = S(f)(x0) =

∞∑
n=1

bn sin(nx0).

6.2.3 The Heat Equation in [0, π]. Separated Variables and Superposition

Let f : [0, π] → R be continuous. The Heat Equation in the interval [0, π] with initial data f is

(HEI) ≡


∂2u

∂x2
(x, t) =

∂u

∂t
(x, t); if (x, t) ∈ (0, π)× (0,+∞)

u(0, t) = u(π, t) = 0 if t ∈ [0,+∞)

u(x, 0) = f(x) if x ∈ [0, π].

(6.2.13)

The solutions u : [0, π]× [0,+∞) → R we are interested in should be continuous in [0, π]× [0,+∞),
and so u(·, t) ∈ C2((0, π)) for all t > 0 and u(x, ·) ∈ C1((0,+∞)) for all x ∈ (0, π). Here we mean

x 7→ u(·, t)(x) := u(x, t), t 7→ u(x, ·)(t) := u(x, t).

We remark that the problem can be formulated in any interval [0, L], and with first equation
uxx = δut for some δ > 0, but this is equivalent to (6.2.13) after an appropriate rescalling.

Our first attempt to solve (6.2.13) is to begin with potential Solutions of Separated Variables.
This is a standard technique to find candidates for solutions to many Differential Equations, which
consists in defining

u(x, t) = α(x) · β(t), (x, t) ∈ (0, π)× (0,+∞), (6.2.14)

of separated variables, where α : [0, π] → R is of class C2((0, π)) and continuous in [0, π] and
α(0) = α(π), and β ∈ C1((0,+∞). We also assume that α and β are not identically zero in their
domain of the definition. Observe that the function u in (6.2.14) satisfies the first equation of
(6.2.13) if and only if

α′′(x)β(t) = α(x)β′(t), (x, t) ∈ (0, π)× (0,+∞).

This is satisfied when

α′′(x) = λα(x), and β′(t) = λβ(t) (x, t) ∈ (0, π)× (0,+∞), (6.2.15)
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for any constant λ ∈ R. The solutions on the first equation of (6.2.15) depend on the value of λ.
Let us examine what the outcome would be when λ ≥ 0. Then (6.2.15) has solutions for α :

α(x) = Ae
√
λx +Be−

√
λx, x ∈ [0, π],

for constants A,B ∈ R. But recall that we must have α(0) = α(π) = 0, and therefore

0 = α(0) = A+B =⇒ B = −A

0 = α(π) = Ae
√
λπ −Ae−

√
λπ =⇒ either A = 0 or λ = 0.

And both of the last clauses lead us to α ≡ 0 in [0, π], which we are discarding. Thus we are only
looking at the case λ > 0 in (6.2.15). In that case, there are constants A,B ∈ R for which

α(x) = A cos
(√

−λx
)
+B sin

(√
−λx

)
, x ∈ [0, π].

But using that α(0) = α(π) = 0, we obtain that

0 = α(0) = A =⇒ A = 0

0 = α(π) = B sin
(√

−λπ
)

=⇒
√
−λ ∈ N.

Therefore, we have that λ = −n2, n ∈ N. As concerns the solutions of (6.2.15) for β, we have that

β(t) = Ce−n2t, t ∈ (0,+∞).

Thus, for every n ∈ N and every constant An ∈ R we obtain a function un of the form

αn(x, t) = Ane
−n2t sin(nx), (x, t) ∈ (0, π)× (0,+∞), (6.2.16)

which satisfies the first two line equations of (6.2.13).

However, clearly αn of (6.2.16) does not necessarily satisfies the initial condition αn(x, 0) = f(x)
for all x ∈ [0, π]. To find a solution that satisfies simultaneously all the conditions of (6.2.13), we
note the following. The first two equation lines of (6.2.13) are satisfied for the finite sum

N∑
n=1

un(x, t), N ∈ N,

of the functions of (6.2.16). This sum of solutions is typically called Superposition of Solutions.
Therefore, the same holds for the infinite sum {un}∞n=1, provided the series converges. In other
words, under the suitable conditions in the sequence {An}n∈N, the series of functions

u(x, t) =

∞∑
n=1

Ane
−n2t sin(nx), (x, t) ∈ [0, π]× (0,+∞)

seems to solve the first two equations of (6.2.16). In order to for the series to have a chance to
converges to f(x), as t → 0+, and for every x ∈ [0, π], we can take {An}∞n=1 as the Fourier Sine
Coefficients {bn}∞n=1 of the function f, as in Remark 6.27. Assuming that the Fourier Series of f
converges to f in [0, π], and that the {bn}∞n=1 are summable:

∞∑
n=1

|bn| <∞,

the series will converge to f as t→ 0+. Let us make this more formal in the next theorem.
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Theorem 6.28. Let f : [0, π] → R be a function with f(0) = f(π) = 0 and so that the Fourier Sine
Coefficients

bn =
2

π

∫ π

0
f(t) sin(nt) dt, n ∈ N,

satisfy
∞∑
n=1

|bn| <∞, and f(x) =
∞∑
n=1

bn sin(nx) for all x ∈ [0, π].

Then the formula

u(x, t) :=

∞∑
n=1

bne
−n2t sin(nx), (x, t) ∈ [0, π]× (0,+∞) (6.2.17)

defines a continuous function in [0, π) × [0,+∞), with u(·, t) ∈ C2((0, π)) for all t > 0; u(x, ·) ∈
C1((0,+∞)) for all x ∈ (0, π), and u is a solution of the Heat Equation (6.2.13) in [0, π].

Proof. Observe that for each (x0, t0) ∈ (0, π)× (0,+∞), the series (6.2.17) converges uniformly in
points (x, t) ∈ (x0 − ε, x0 + ε)× (t0 − ε, t0 + ε) for 0 < ε < t0, since

∞∑
n=1

|bne−n2t sin(nx)| ≤
∞∑
n=1

|bn|e−n2(t0−ε) <∞;

and Weiertrass M -test (Theorem 3.9) applies. Furthermore, the series of derivatives with respect
to t also converge uniformly in the mentioned set, because

∞∑
n=1

|bn(−n2)e−n2t sin(nx)| ≤
∞∑
n=1

|bn|n2e−n2(t0−ε) <∞.

And the series of derivatives of order 2 with respect to x converges uniformly in the mentioned
set, by the exact same argument and estimate. We have shown that the series (6.2.17) and the
corresponding series of derivatives converge locally uniformly in (x0, t0) ∈ (0, π)×(0,+∞), implying
that u(·, t) ∈ C2((0, π)) for all t > 0; and u(x, ·) ∈ C1((0,+∞)) for all x ∈ (0, π). As we saw in the
previous discussion, formula (6.2.17) gives a solution for the first two equations of (6.2.13).

It only remains to show that
lim
t→0+

u(x, t) = f(x) (6.2.18)

uniformly on x ∈ [0, π]. To see this, we use the assumption that f coincides with its Fourier Series
of Sines in [0, π], and estimate

sup
x∈[0,π]

|u(x, t)− f(x)| = sup
x∈[0,π]

∣∣∣∣∣
∞∑
n=1

bne
−n2t sin(nx)−

∞∑
n=1

bn sin(nx)

∣∣∣∣∣ ≤
∞∑
n=1

|bn|
∣∣1− e−n2t

∣∣. (6.2.19)
Since

∑∞
n=1 |bn| <∞, given ε > 0 we can find N ∈ N so that

∞∑
n=N+1

2|bn| ≤
ε

2
.

Moreover, it is clear that

lim
t→0+

N∑
n=1

|bn|
∣∣1− e−n2t

∣∣ = 0,

and so there exists δ > 0 with the property that

N∑
n=1

|bn|
∣∣1− e−n2t

∣∣ ≤ ε

2
, for all 0 ≤ t ≤ δ.
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Therefore, if t ∈ [0, δ], one has that

∞∑
n=1

|bn|
∣∣1− e−n2t

∣∣ = N∑
n=1

|bn|
∣∣1− e−n2t

∣∣+ ∞∑
n=N+1

|bn|
∣∣1− e−n2t

∣∣
≤

N∑
n=1

|bn|
∣∣1− e−n2t

∣∣+ ∞∑
n=N+1

2|bn| ≤
ε

2
+
ε

2
= ε.

Thus, the limit of the last term of (6.2.19) equals 0, and therefore the claim (6.2.18) holds

6.2.4 The Heat Equation in R. The Heat Kernel

We now consider the Heat Equation in R with initial data a continuous function f : R → R :

(HER) ≡


∂2u

∂x2
(x, t) =

∂u

∂t
(x, t); if (x, t) ∈ R× (0,+∞)

u(x, 0) = f(x) if x ∈ R.
(6.2.20)

The solutions u : R× [0,+∞) → R we are interested in should be continuous in R× [0,+∞), and
so u(·, t) ∈ C2((0, π)) for all t > 0 and u(x, ·) ∈ C1((0,+∞)) for all x ∈ R. As we found out in the
discussion right after Corollary 6.18, the solution should somehow involve a Fourier Inverse in the
variable x, of the function

R× (0,+∞) ∋ (ξ, t) 7→ e−tξ2 .

If we are given a Fourier Transform ĥ of some integrable function h, the Fourier Inverse of ĥ is
formally defined by

F−1
(
ĥ
)
(x) :=

1

2π

∫ +∞

−∞
ĥ(ξ)eixξ dξ, x ∈ Rn.

It is not true in general that F−1
(
ĥ
)
= h. But looking at Theorem 6.16, and letting a = 1/(4t),

one has that the Fourier inverse of ξ 7→ e−tξ2 (meaning the function whose Fourier Transform is
that one) is the function

R ∋ x 7→ 1

4πt
e−

x2

4t .

These functions parametrized by t > 0, define the Heat Kernel, which is the basis for the solution
to the Heat Equation (6.2.20).

Definition 6.29 (The Heat Kernel). For each t > 0, define the function Ht : R → R by the formula

Ht(x) =
1

4πt
e−

x2

4t , for all x ∈ R.

The collection of all functions {Ht}t>0 is called the Heat Kernel in R.

And the following theorem due to Weierstrass solves problem (6.2.20) for most of the interesting
cases of f. The necessary tools to give a rigorous proof of the theorem are out of the scope of this
course.

Theorem 6.30. Let f : R → R be a continuous and bounded function in R. For each t > 0 define

f t(x) :=

∫ +∞

−∞
Ht(x− y)f(y) dy =

1

4πt

∫ +∞

−∞
e−

(x−y)2

4t f(y) dy, x ∈ R.

Then f t ∈ C∞(R) and lim
t→0+

f t = f uniformly on each bounded subset of R. If, in addition, f : R →
R is uniformly continuous, then the convergence is uniform in R.

Moreover, defining

u(x, t) := f t(x), for all for all (x, t) ∈ R× (0,+∞), and u(0, x) := f(x), for all x ∈ R,

we have that u is continuous in R × [0,+∞), with u(·, t) ∈ C∞(R) for all t > 0, u(x, ·) ∈
C1((0,+∞)) for all x ∈ R, and u solves the equation (6.2.20).
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6.2.5 The Wave Equation. D’Alembert’s Solution. Separation and Superposition

We consider now the Wave Equation in the interval [0, π] with initial data a continuous f : [0, π] →
R with f(0) = f(π) = 0. The equation reads as follows:

(WEI) ≡



∂2u

∂x2
(x, t) =

∂2u

∂t
(x, t); if (x, t) ∈ (0, π)× (0,+∞)

u(0, t) = u(π, t) = 0 if t ∈ [0,+∞)

∂u

∂t
(x, 0) = 0 if x ∈ [0, π]

u(x, 0) = f(x) if x ∈ [0, π].

(6.2.21)

As in the Heat Equation (6.2.13), the problem can be formulated in [0, L] for every L > 0 and
with uxx = δutt for some δ > 0, which after an appropriate rescalling, it is equivalent to (6.2.21).

If the function f has sufficient regularity, say C2 regularity of an even extension f : R → R to
all of R, a solution due to D’Alembert is

u(x, t) :=
f(x+ t) + f(x− t)

2
, (x, t) ∈ [0, π]× [0,+∞).

In this notes, we are finding potential solutions of separated variables (for at least the first three
equations of (6.2.21)), whose superposition would converge to D’Alembert’s solution under suitable
assumptions in f.

So, in the same spirit as for the Heat Equation in R, we write

u(x, t) = α(x)β(t), (x, t) ∈ [0, π]× [0,+∞)

for α continuous in [0, π], of class C2((0, π)), with α(0) = α(π) = 0; and β continuous in [0,+∞),
of class C1((0,+∞)), with β′(0) = 0. The first equation of (6.2.21) for u is equivalent to

α′′(x) = λα(x), x ∈ (0, π), β′′(t) = λβ(t), t ∈ (0,+∞),

for some constant λ ∈ R. We learnt from the separation of variables for the Heat Equation in [0, π]
(see the discussion after (6.2.13), and note that the current α satisfies the same as that α), that
λ = −n2 for n ∈ N, and α has the form

α(x) = C sin
(
nx), x ∈ [0, π],

for C ∈ R constant. And the solution of the differential equation β′′(t) = λβ(t) has the form

β(t) := A sin
(
nt) +B cos(nt), t > 0,

where A,B ∈ R are constants. Now, differentiating in t and using that β′(0) = 0, we get that

0 = β′(0) = An cos(n · 0)−Bn sin(n · 0) = A =⇒ A = 0.

Therefore β(t) = B cos(nt) for all t > 0. Thus, for each n ∈ N, and Dn ∈ R, the function

un(x, t) = Dn sin
(
nx) cos(nt), (x, t) ∈ [0, π]× [0,+∞), (6.2.22)

solves the first three equations of (6.2.21) and has the desired regularity. The formula for un in
(6.2.22) provides a solution of separated variables, but un can be rewritten as

un(x, t) = Dn

[
sin
(
n(x+ t)

)
+ sin

(
n(x− t)

)]
, (x, t) ∈ [0, π]× [0,+∞), (6.2.23)

if we use the well-known formula

sin θ cos γ =
sin(θ + γ) + sin(θ − γ)

2
.
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The superposition of these solutions {un}n∈N is the series of functions

u(x, t) =
∞∑
n=1

Dn sin
(
nx) cos(nt) =

∞∑
n=1

Dn·
sin
(
n(x+ t)

)
+ sin

(
n(x− t)

)
2

, (x, t) ∈ [0, π]×[0,+∞),

(6.2.24)
The series converges locally uniformly in (x, t) ∈ [0, π] × [0,+∞) if {Dn}n∈N are chosen so that∑∞

n=1 |Dn| <∞. However, unlike for the Heat Equation, further conditions in {Dn}n∈N are needed
if we want the series of derivatives (of order 1 and 2) to converge locally uniformly, namely, that

∞∑
n=1

n2|Dn| <∞.

On the other hand, if we want the fourth equation to be satisfied for u as in (6.2.24), then we
choose Dn := bn, where {bn}n∈N are the Fourier Sine Coefficients of f :

bn =
2

π

∫ π

0
f(t) sin(nt) dt, n ∈ N.

And if we know that f agrees with its Fourier Series at all points, then

u(x, t) =

∞∑
n=1

bn ·
sin
(
n(x+ t)

)
+ sin

(
n(x− t)

)
2

=
f(x+ t) + f(x− t)

2
, (x, t) ∈ [0, π]× [0,+∞),

which leads us back to D’Alembert’s solution.

6.3 Exercises

Exercise 6.1. For the following functions: consider their 2π-periodic extensions to all of R, and find
their Fourier Coefficients, their Fourier Sums, and their Fourier Series. Then, for all x ∈ [0, 2π),
study whether or not the Fourier Series Sf(x) converges to f(x).

(i) The function f : [0, 2π) → R defined by

f(x) =

{
1 if x ∈ [0, π]

−1 if x ∈ [π, 2π).

(ii) The function f(x) = |x− π| for all x ∈ [0, 2π].

(iii) The function f(x) = x+ sinx+ cosx, for all x ∈ [0, 2π).

Suggestion: To study the convergence, look at Theorem 6.6.

Exercise 6.2. Verify the following properties involving Fourier coefficients, for a 2π-periodic func-
tion f : R → C, Riemann-integrable in [0, 2π].

(i) If g : R → C is defined by g(x) = f(−x), x ∈ [0, 2π], then ĝ(n) = f̂(−n) for all n ∈ Z.

(ii) If h : R → C is defined by h(x) = f(x), x ∈ [0, 2π], then ĥ(n) = f̂(−n) for all n ∈ Z.

(iii) Deduce from (ii) that if f : R → R is real-valued, then f̂(n) = f̂(−n) for all n ∈ Z, and
therefore the Fourier Series S(f)(x) of f at x ∈ R (if converges), only takes real values.

(iv) If y ∈ R, and define fy : R → C by the formula fy(x) = f(x − y), x ∈ R. Then, f̂y(n) =

e−iynf̂(n) for all n ∈ Z.
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(v) If m ∈ Z, and define φm : R → C by the formula φm(x) = eimxf(x), x ∈ R. Then,
φ̂m(n) = f̂(n−m) for all n ∈ Z.

Suggestion: If you need it, use the identity (6.1.1).

Exercise 6.3. For the Dirichlet Kernel {DN}N∈N∪{0} from the Definition 6.10, prove the following.

(i) There exists a constant C > 0 so that∫ π

−π
|DN (x)| dx ≤ C logN, for all N ∈ N, N ≥ 2.

(ii) There exists a constant C ′ > 0 so that∫ π

−π
|DN (x)| dx ≥ C ′ logN, for all N ∈ N.

Exercise 6.4. Calculate the Fourier Transform of the following functions f : R → C :

(i) For a > 0,

f(x) =

{
1 if |x| ≤ a

0 if |x| > a.

(ii) For a > 0, f(x) = e−axX[0,+∞)(x), x ∈ R, where

X[0,+∞)(x) =

{
1 if x ≥ 0

0 if x < 0.

(iii) For a > 0, f(x) = e−a|x| for all x ∈ R.

(iv) For every k ∈ N, f(x) = xk

k! e
−axX[0,+∞)(x), for all x ∈ R.

Exercise 6.5. For a function f : [0, π] → R, denote the Fourier coefficients

a0 :=
1

π

∫ π

0
f(t) dt, an :=

2

π

∫ π

0
f(t) cos(nt) dt, bn :=

2

π

∫ π

0
f(t) sin(nt) dt, n ∈ N.

Taking into account Remark 6.27, solve the following tasks.

(i) Let f(x) = π
2 −

∣∣x− π
2

∣∣ , x ∈ [0, π].

(a) Compute bn for all n ∈ N. Write down the Fourier Series of Sines at each x ∈ [0, π].

(b) Show that f is Lipschitz in [0, π], and then deduce that the series from (a) converges to
f(x) for all x ∈ [0, π].

(c) Use (b) to deduce that
∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

(ii) Let f(x) = x2 − πx, x ∈ [0, π].

(a) Compute bn for all n ∈ N. Write down the Fourier Series of Sines at each x ∈ [0, π].

(b) Show that f is Lipschitz in [0, π], and then deduce that the series from (a) converges to
f(x) for all x ∈ [0, π].
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(c) Use (b), evaluating at x = π/2 to deduce that

∞∑
n=0

(−1)n

(2n+ 1)3
=
π3

32
.

(iii) Let f(x) = (x− π
2 )

2, x ∈ [0, π].

(a) Compute an for all n ∈ N ∪ {0}. Write down the Fourier Series of Cosines at each
x ∈ [0, π].

(b) Show that the the series from (a) converges to f(x) for all x ∈ [0, π].

(c) Use (b) to deduce that
∞∑
n=1

1

n2
=
π2

6
.

(iv) Let f(x) = x, x ∈ [0, π].

(a) Compute an for all n ∈ N ∪ {0}. Write down the Fourier Series of Cosines at each
x ∈ [0, π].

(b) Show that the the series from (a) converges to f(x) for all x ∈ [0, π].

(c) Use (b) to deduce that
∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

(v) Let f(x) = coshx := ex+e−x

2 , x ∈ [0, π].

(a) Compute an for all n ∈ N ∪ {0}. Write down the Fourier Series of Cosines at each
x ∈ [0, π].

(b) Show that the the series from (a) converges to f(x) for all x ∈ [0, π].

(c) Use (b) to deduce that
∞∑
n=1

1

1 + n2
=

π

2 tanhπ
− 1

2
.

(vi) Let f(x) = sinhx := ex−e−x

2 , x ∈ [0, π].

(a) Compute bn for all n ∈ N. Write down the Fourier Series of Sines at each x ∈ [0, π].

(b) Show that the the series from (a) converges to f(x) for all x ∈ [0, π).
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