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Chapter 1

The Complex Plane

Complex numbers appeared already in the 16th century, after Cardano’s progress on the resolution
of the generic cubic equation:

23 +ax® +br+c=0, zcR. (1.0.1)
With the substitution 2/ = x — g, this equation can be reduced to
23+ 3px +2¢ =0, (1.0.2)

for new parameters p, q € R. Cardano showed that if ¢* + p® > 0, the equation (1.0.2) has exactly
one real solution, given by the formula

ﬂfz‘\%/*q+ q* +p3 + f/*qfvcﬂﬂ??’- (1.0.3)

This formula is, a priori, not well-defined in the case where ¢? +p® < 0. Some years later, Bombelli
made the following observation: the cubic equation ([1.0.2)) with p = —5 and ¢ = —2, namely,

3 — 152 —4 =0,

has three different real solutions, despite the fact that ¢®> + p? < 0. It turns out that whenever
q® + p < 0, the equation (1.0.2]) has three distinct real solutions, whose values can be obtained
from Cardano’s formula (1.0.3)), if one makes the correct interpretation of the imaginary number

v/ ¢% + p?. Note that, even if we are able to manage \/¢? + p3 as a number, the usage of formula
(1.0.3)) still requires to understand the meaning of a 3rd root of these imaginary objects.

So, we need to understand complex numbers to find explicit solutions to equations like ,
even when these equations have three real solutions.

This is just an instance of the numerous problems in (real) analysis that can only be solved
with the usage of complex analysis. We will see a few of these applications in this course.

1.1 The Field of Complex Numbers

This section is devoted to the rigorous definition of complex numbers and their operations.

Definition 1.1. A complex number is an ordered pair z = (a,b) of real numbers a,b € R. We
define the addition 4+ between two complex numbers (a,b) and (c,d) by

(a,b) + (¢,d) := (a+ ¢, b+ d).

So, this operation coincides with the usual sum of vectors in R?. However, we additionally define
a product operation “’ between complexr numbers by

(a,b) - (¢,d) := (ac — bd, ad + bc).

This product is clearly commutative: (a,b) - (¢,d) = (¢,d) - (a,b).
We denote by C the set of all complex numbers equipped with the operations 4+’ and “’.



We next define the real and imaginary parts of a complex number, as its orthogonal projection
onto the z-axis and y-axis respectively.

Definition 1.2. Given a complex number z = (a,b) the real part of z is defined by Re(z) = a and
the tmaginary part of z is Im(z) = b. The pure imaginary numbers are those z with Re(z) = 0.

The real and imaginary parts of sums and products of complex numbers are:

Re(z + w) = Re(z) + Re(w), Im(z + w) = Im(2) + Im(w),
Re(zw) = Re(z) Re(w) — Im(2) Im(w), Im(zw) = Re(z) Im(w) + Im(z) Re(w).

Now we describe an easier way to express complex numbers and their operations.

Definition 1.3. We define the imaginary unit of C as the complex number i := (0,1). Note that
then
i2:=i-i=(0,1)-(0,1) = (—1,0).

Now, given z € C, z = (a,b), we can write z as z = a(1,0) + b(0, 1) for unique real numbers a,b.
Identifying a(1,0) with a and b(0,1) with bi, the linear or polynomic expression of z is then

z=a+ bi.

Using this notation, we can define the sum + : C x C — C and the product - : C x C — C between
complex numbers z = a+ bi, w = c+ di as:

z+w=(a+bi)+ (c+di)=(a+c)+ (b+d)i
z-w = (a+bi)- (c+di) = (ac — bd) + (ab + bc)i.

This definition for the addition and the product coincides with those in Definition[1.1].

It is worth noticing that, when regarded as vector spaces over R, the spaces R? and C are
identical. In particular a (affine R-)line L of C is simply

L={z=a+iyeC: Av+ By= D}, with A,B,D€R, (A4,B)# (0,0). (1.1.1)

Naturally, denoting by F-dim(V') the dimension of the vector/affine space V' over the field F, one
has R-dim(C) = 2 and {1,4} is an R-basis of C. Any line L C C as in satisfies R-dim(L) = 1.
But of course, if C is thought as a vector space over the field C of scalars (this is verified in Theorem
, then C-dim(C) = 1, and any non-zero complex number provides a C-basis of C.

Theorem 1.4. The set C with the operations 4’ and “’ is a field.

Proof. The operations + : C x C — C and - : C x C — C are commutative, as we noted in
Definition We next verify the rest of the axioms of a field, namely, for all z,w,£ € C:

(i) 24+ (w+&) = (z+&) +w;
(ii) z- (w-&) = (z-w) - &
(iii) z+ 0 = z, where 0 denotes 0 + 07 (Definition or (0,0) (Definition [L.1]);

V) z-(w+§) =z-w+ z-&
+(=2) =0

(vii) If z # 0, there exists z~! € C with z- 27! = 1.

)
)
)
(iv) z-1 =z, where 1 denotes 1 + 0: (Deﬁnition or (1,0) (Definition ;
)
(vi) 2
)



Properties purely concerning the addition (i), (iii), (vi) are immediate, since the sum in C is
identical to adding the components of the vectors in R2. Properties (ii) and (v) are tedious but
straightforward: if z = 21 4+ iz, w = w1 + twe and & = & + i€, where 21, 20, w1, wo, &1, & € RE
Then

z-(w-§) = (21 +iz2) - (i€ — w2&2) + i(w1&2 + waéy))
z1(w1€1 — w2&2) — z2(w182 + wakr) + i (21 (w12 + w2l1) + zo(w1é1 — w282)) .

And

(z-w) - & = ((nrw1 — zow2) + i(z1wa + z2wn)) (&1 + i&2)
= (z1w1 — 2ow2)&1 — (z1w2 + 2ow1)é2 + i((z1w1 — 2ow2)&a + (z1w2 + 22w )&1),

confirming that z - (w- &) = (z - w) - £. Also,

2(w+ &) = (21 +iz2) (w1 + & +i(we + &2)) = z1(w1 + &1) — z2(w2 + &§2) + (21 (w2 + &2) + 22(w1 + &1)),
2w + 2§ = zyw1 — ws + i(z1wa + 2owi) + 2161 — 2262 + (2182 + 2261),
which proves (v).

Property (iv) is immediate to check: if z = a + ib, then z-1 = (a 4+ ib)(1 +i0) = a + ib.
Finally, to prove (vii), let z = a + ib, with (a,b) # (0,0), and observe that the number

P L (=0)
Coa? 402 A+

satisfies z - 271 = 1. O

Let us gather some information that we learnt from the proof Theorem

e The identity element for the sum is, obviously, the number 0 =0+ - 0.

e If 2z = a+ib € C, the inverse with respect to the sum operation is —z := —a+(—b)i = —a—1b.
Aslo, in the sequel, by z — w (for any two z,w € C) we understand z + (—w).

e The identity element for the product is, obviously, the number 1 =144 - 0.
o If z=a+ibe C\ {0}, the inverse with respect to the product operation is the number

a—1b
a? + b2’

We will denote the inverse of z by =1 or % or 1/z. In the sequel, for z,w € C with w # 0,

£ = z/w will denote z - w™?.

Also, we will often denote products of numbers z,w € C by zw, instead of z - w.

We finish this section by defining the integer powers of a complex number in the natural way.

Definition 1.5. Let z € C and n € N. The nth power of z is a compler number z" defined by

n times

n —N—
Z =Z-" 2.

Forn =0, we define 2" := 1. And forn € Z, n <0, and z # 0, we define 2" = (z71)™" = L.

Z*TL

We will usually use the letters 2z’s, w’s, £’s to denote complex numbers. This is an exception, convenient for the
proof.



For example, let us determine the powers of i. Using that 2 = —1 and that i~! = 1/i = —i,
we can easily deduce that

2'477, — 1’ i4n+1

=i, i =_1, " =_i forall neZ. (1.1.2)
By of the conmutativity of the product, we have the Newton’s binomial formula, and the
ciclotomic formula for complex numbers:

(z4+w)" = Z <Z> ZFumF 2z weC, neN, (1.1.3)
k=0
n—1
2" —w" = (z —w) Zzn_l_kwk, z,weC,neN. (1.1.4)
k=0

The proofs are identical to those of the corresponding identities for real numbers.

1.2 The Conjugate and the Modulus

Definition 1.6. Let z = a +ib € C. The complex conjugate of z is the complex number
Z:=a—1b.
Also, the modulus of z is the (nonnegative) real number given by

|2| := Va? + b2

It is immediate from the definition of z that

Re(z) = z‘f Im(z) = Zz_f (1.2.1)

The conjugate Z of a complex number z = a + ib is the reflection (a, —b) of the point (a,b)
about the z-axis (the real axis).

Also, if z = a + bi, the modulus |z| of z coincides with the modulus in R? of the vector (a,b).
Therefore, |z| represents the distance from z (as a point in the plane) to the origin. And, since
i? = —1, we have 2z = (a + ib)(a — ib) = a® + b? = |z|. That is,

1 _
2| =V2z, |2°=23 2z 'l=Z>== %, (the last one for z # 0). (1.2.2)
z |z

We now collect some elementary properties of the conjugate and the modulus. The compatibility

of these operations with the product is particularly useful.
Proposition 1.7. Let z,w € C. The following properties are satisfied.

(i) If Im(z) = 0, then |z| coincides with the absolute value of Re(z) = z.

(i1) |z| =0 if and only if z = 0.

(iii) Z =z and |z| = |Z|.

() z+w=7%+w.

(v) Z-w =Z-w and |z - w| = |z||w].

(vi) If w # 0, then

—
SERS
~—
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gl |
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(vii) max{| Re(2)|, |Im(2)|} < |z|.
(viii) (The Triangle Inequality) |z + w| < |z| 4 |w|.

Proof. Properties (i)—(iv) are immediate from the definition of the modulus and conjugates. Writ-
ing z = a + bi, w = ¢+ di, the first equality in (v) follows from

z-w = (ac — bd) + i(ad + bec) = (ac — bd) — i(ad + bc) = (a — ib)(c —id) = Z - w.

For the second indentity, we use the definition of modulus, (1.2.2)), and that z=w =% - w :
|z w]? = (2w)(Z0) = 2wz W = (22)(ww) = |z|*|w|?.

= |z|, and

ISy,
o

=)

o
I
=3

To verify (vi), denote & = z/w, so that éw = z. By (v) this implies £ w =
dividing (resp.) by w and |w|, we deduce the identities.
Property (vii) is an immediate consequence of the definition of modulus given in Definition
As concerns (viii), observe that, thanks to (1.2.2)),
lz+w?=Cz+w)(ztw) =(z+w) (Z+0) =22 +wd+ 20 + zw = |2]* + |w|* + 2Re(2).

The last equality follows from 2w = Zw (thanks to property (v)). Using properties (vii), (v), and
(iii) (in that order):
|Re(zw)| < [zw] = |z][w].

Combining the previous chain of equalities and this inequality, we conclude

|2+ wf? = |21 + [w]* + 2Re(2w) < |2 + [w]* + 2|z Jw] = (|2] + w])*.

1.3 Lines and Circles in the Complex Plane

As we observed in Section lines L of C (1-dimensional affine subspaces of C, as a vector space
over R) have the following general description:

L={x+iyeC: Az+ By=D}, with A,B,D€eR, (A, B)#(0,0). (1.3.1)

There is an alternate way to represent the equation of a line using complex conjugates. Indeed, if

z=uwa+1y € L, with L as in (1.3.1]), then (L.2.1)) gives

2% )~ 2 ° 9 T SETSA

A:L’+By:ARe(z)+BIm(z):A<Z—;z> +B<

taking £ = %. This shows that any line L in the complex plane can be described as:
L={2€C: & +&z=D}, with £€C\{0}, DeR. (1.3.2)
Observing that £z 4+ £z = 2Re(£z), we can also express this as

L={ze€C: Re(z)=D}, with £€C\ {0}, DeR. (1.3.3)

On the other hand, we can use the modulus to describe circles in the plane: the circle centered
at zo = xg + tyo and with radius r» > 0 is the set of all z = x + iy € C determined by the equation

|z — 2| =7, or, equivalently, (z —z0)*>+ (y — o) = r°. (1.3.4)
But also note that (1.2.2)) yields

|2 = 20” = (2 = 20)(z = 20) = (2 — 20)(z = 7)) = |2I” + [20]* — 707 — 207 = |2* + [¢]* + €2 + €7,
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after the substitution & = —Z. This shows that
|z =20 == |2 + &z + &2 =17 — |
Therefore, an alternate description of circles .S of C is given by
S={2€C: |2P+¢&+E& =D}, with £€C, KR, K > —|¢ (1.3.5)

Then S is the circle with center —¢ and radius /K + |£|2. Note that also £z + £z = 2 Re(£2), from
which we can give another formulation using only real parts.

1.4 Polar Coordinates representation. The Argument

Given a complex number z € C\ {0}, the number ﬁ has modulus equal to 1, and so it is contained
the unit circle of R?. Identifying ﬁ with a vector (z,y), we thus have 22 + y?> = 1, and so
(x,y) = (cosf,sinf) for some angle § € R. Let us formalize this.

Theorem 1.8. For any z € C\ {0}, there exists a unique o € (—m, 7| so that
z=|z|](cosa +isina). (1.4.1)

Proof. Assuming we have proven the existence, let us verify the uniqueness of a. If o, 8 € (—m, 7]

satisfy (1.4.1), then

z = |z| (cosa+isina) = |z| (cos f + isin f);

whereby cos @ = cos  and sin « = sin . Because |a — 3| < 27, this yields a = .

To prove the existence of a € (—m, 7| such that holds, we write z/|z| = x + iy, where
22 +y? = 1 due to the fact that |z/|z|| = 1. Also recall that the arctan : R — (—m/2,7/2) is
defined to be a continuous bijection between R and (—m/2,7/2). We distinguish some cases.

Case 1: z > 0. Then it suffices to define o := arctan (£) € (—7/2,7/2), where clearly z = cosa,
y = sina.

Case 2: x < 0,y > 0. In this case 8 := arctan (%) € (—m/2,0] is not the desired angle, as cos f = —x
and sin § = —y. But instead we can take a := f+7 € (7/2, 7], from which cosa = z and sina = y.

Case 3: < 0, y < 0. Here again 8 := arctan (%) € (0,7/2) gives cos f = —z and sin § = —y. So,
we take a:= f — 7 € (—7,—7/2) and cosa = z, sina = y.

Case 4: z =0 and y > 0. We define @ = /2, and obviously cosa = z, sina = y.
Case 5: z =0 and y < 0. We define a = —7/2, and we get cosa = x, sina = y. ]
Observe that if z € C\ {0} and « is as in , then also
z = |z| (cos(a + 2k7) + isin(a + 2km)) ,

for all k € Z. This is due to the 27-periodicity of the functions R 5 6 + cos(#), R 3 6 > sin(6).
Theorem [I.§] and this small observation lead us to the following fundamental definition.

Definition 1.9. Given z € C\ {0}, the argument of z is the set of real numbers
arg(z) ={a € R : z=|z|(cosa+isina)}.

And the principal argument of z is the unique real number Arg(z) € (—m, 7] Narg(z).
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By virtue of Theorem[1.8 Arg(z) is well-defined, and, rephrasing the previous definition, Arg(z)
is the element of arg(z) contained in the interval (—m,7]. Moreover, from the proof of Theorem
we learnt how to explicitly define Arg(z), for z # 0, in terms of Re(z) and Im(z) :

arctan (£) if >0,
arctan (£) + 7 if 2<0,y>0,
Arg(z) = Arg(z +iy) = qarctan () — 7 if >0,y <0, (1.4.2)
3 if x=0,y>0,
-3 if x=0,y<0.

Here arctan : R — (—7/2,7/2) is the usual tan™! bijection. In particular,

{Arg(z) € [0, 7] if Im(z) >0, (1.4.3)

Arg(z) € (—m,0) if Im(z) <O0.
For example,
) T . 3 . -3 ) -7
Arg(1+1) = T Arg(—1+1i) = i Arg(—1—1i) = 0 Arg(l—1i) = e

In the following lemma we show that it is enough to find one value of the argument of z to
obtain all of arg(z).

Lemma 1.10. If z € C\ {0}, and o € arg(z), then
arg(z) = {a+ 27k : k € Z}.
In particular, arg(z) = {Arg(z) + 27k : k € Z}.
Proof. 1f 6 € arg(z), then
|z| (cos@ + isinf) = z = |z| (cosa + isin ),

and so cosf = cosa and sinf = sin«, implying 6 = « + 27k for some k € Z. Conversely, any
number of the form « + 27k, k € Z, belongs to arg(z) by the observation subsequent to Theorem

L8 O

Slightly abusing of terminology, Lemma can be rewritten as arg(z) = Arg(z) + 27Z.

1.5 De Moivre’s Formula and the Exponential Form

In the previous section, we saw how to express the (non-zero) complex numbers through the
bijection
(0,00) X (=, 7| 3 (r,0) — r(cosa+isina) € C\ {0},

whose inverse is the map C\ {0} 2 z — (|z|,Arg(z)) € (0,00) x (—m,w|. This polar coordinate
representation turns out to be instrumental in computing products, powers, and roots of any
complex number. One of the key ingredients is the following theorem due to De Moivre.

Theorem 1.11 (De Moivre). The following statements hold.

(i) Let a, 3 € R. Then

(cosa + isina) (cos B+ isin ) = cos(a + ) + isin(a + 3).
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(ii) Let n € Z and 6 € R. Then

(cosf + isinf)" = cos(nh) + isin(nh).
(i1i) Let z € C\ {0}, and n € Z, with z = |z|(cosa + isin ), for a € R, then
2" = |z|" (cos(nf) + isin(nd)) .
Proof. To prove part (i) we note that the product equals
(cosacos f — sinasin B) + i (cos asin B + sin a cos B) = cos(a + ) + isin(a + ),
after employing the well-known trigonometric formulae for the sum of two angles:
cos(a+ ) = cosacos 8 —sinasin 3, sin(a + ) = cosasin 5 + sin a cos f5.

Let us now prove part (ii), so fix # € R. The identity is true in the case n = 0, since cos(nf) = 1
and sin(n#) = 0. Let us verify the assertion for all n € N by induction on n. The case n = 1 is
trivial. Assume now that (cos@ + isin)" = cos(nf) + i sin(nf), and for the n + 1 power we write

(cos 0 + isin 0)" T = (cos 0 + isin ) (cos 0 + isin 0)™ = (cos O + isin §) (cos(nd) + isin(nh))
= cos(0 + nB) + isin(6 4+ nd) = cos((n + 1)8) + isin((n + 1)0),

where we used statement (i) in the second last equality. So, (ii) holds for all n € NU{0}. Now, for
n < 0, we use the result for the positive power —n to get

(cosf +isinf)" = L = 1
~ (cosf+isinf) " cos(—nb) — isin(—nb)
_ cos(—nb) —i sm( 0)

= o (nf) 1 s (nf) = cos(nf) + isin(nd).

Finally, part (iii) is immediate from (ii). O

Among other applications, Theorem [I.11] permits to describe the argument of the product of
complex numbers.

Corollary 1.12. Let z,w € C\ {0}. Then

arg(zw) = arg(z) + arg(w) :=={a+ 8 : a € arg(z), 5 € arg(w)}.

Proof. For any two angles a € arg(z) and § € arg(w), we have z = |z|(cosa + isina) and
w = |w|(cos B + isin B). The product zw is then

zw = |z](cos a + isina)|w|(cos B + isin B) = |zw| (cos(a + B) + isin(a+ B));

where we have invoked Theorem [1.11{i). According to Definition this shows a + § € arg(zw).
Therefore, by Lemma [1.10

arg(zw) = {(a+B) +2kr : k€ Z} ={a+2kr : k€ Z} + {8 +2kn : k € Z} = arg(z) + arg(w).
O

In the proof of Corollary we saw the ideology behind the multiplication of complex numbers
z,w € C\ {0} : if a € arg(z), € arg(z), then

2w = |z||w| (cos(a + B) + isin(a + B)).

Roughly speaking: to multiply complex numbers, we multiply the moduli and sum the arguments.

Corollary does not hold if we replace the argument arg with the principal argument Arg.
For instance, if 2 = w = —i, then Arg(z) = Arg(w) = —7 but Arg(zw) = Arg(-1) = 7, so
Arg(zw) # Arg(z) + Arg(w).
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Notation 1.13 (Exponential form of complex numbers). For every § € R, we define
e ;= cosf + isiné. (1.5.1)

At the moment, this notation is simply a shorthand for the complex trigonometric formula, and,
a priori, not related to the Euler number e. However, in Section [2:4] we will define the complex
exponential function C > z — €7, which agrees with the previous formula in the pure imaginary
numbers and with the real exponential R 5 x — €* in the real numbers.

De Moivre’s Theorem [1.11|in this exponential form reads as

eloeih = eilath) (eie)n =™ «,8,0eR, nel. (1.5.2)

Moreover, it is immediate that

, , , - , 1 ,
Re(e?) = cosf, Im(e”) =sinf, || =1, e =", = e (1.5.3)

Now, for any z € C\ {0}, we learnt from Theorem[L.8|and Definition[L.9|that z = |z|(cos a+isina),
for any « € arg(z). Thus z can be written as follows, called the exponential form of z,

z = |z]e™.

1.6 Roots of Complex Numbers

Definition 1.14 (nth root). Let w € C and n € N. The nth root of w is the set consisting of all
solutions of the equation 2™ = w, that is,

(Yw):={zeC: " =w}.
In the case n = 2, we typically use the simpler notation (\/w) instead of (Jw).
Let us give a precise description of these nth roots.

Theorem 1.15 (nth roots of complex numbers). Let w € C\ {0}, and n € N. Then ({/w) contains
precisely n (distinct) elements. Moreover, for any « € arg(w), we have

<{L/@>—{W<cos<atl%j>+isin<m>> :j—O,l,...,n—l}.

n

Proof. Fix some a € arg(w). A complex number z € C\ {0} satisfies the equation 2" = w (i.e.

belongs to ({/w)) if and only if
|2|™ (cos(Arg(z)) + isin(Arg(2)))" = |w| (cosa + isina).
By Theorem this is equivalent to
|z|™ (cos(n Arg(2)) + isin(n Arg(z))) = |w| (cosa + isina) .
But this is in turn equivalent to the three equations
|z|" = |w|, cos(nArg(z)) =cosa, sin(nArg(z))=sina,

that is,
|z| = V|w|, nArg(z) —a € 2nZ.

Therefore z € ({/w) if and only if z = z; := ¥/|w] (cos (@) + ¢sin (%ZW)) , with j € Z.
But the Euclidean division says that j = nm; +r;, for m;,r; € Z with 0 <r; <n—1, and the 27-
periodicity then implies z; = 2., from which ({/w) = {20, 21,...,2,-1}. Andif k,j € {0,...,n—1}
are distinct, then |(a + 2k7m)/n — (a + 2j7)/n| < 27, leading to 2z # z;.

O
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In exponential form, Theorem [I.15| can be summarized as
<v" rei9> = {rl/"eiefﬂ :j=0,1,...,n—1}, forall r>0,0€eR.

Definition 1.16 (Principal nth root). Let w € C\ {0} and n € N. The principal nth root of w is
defined by
T, w) - A A
Vw = Y/ |w| R Y wl <cos <rg(w)> + isin (rg(w))) .
n n

And when w = 0 and n € N, we simply define ¥/0 := 0. As in Definition in the case n = 2
we may denote Jw by J/w.

Observe that Vw is a (complex) number, but the nth root {{/w) of w in Definition is a
set. For nonnegative real numbers this principal nth root coincides with the usual nth root real
function: [0,400) 3 = +— 21/™_ However, unlike for real numbers, the principal root of a product
is not necessarily the product of the principal roots, as shown by the example z = w = —1, n = 2:

1=+(-1) - (-1)#vV-1-vV/=1=i-i=—1.
Nonetheless, still certain product formula holds if we consider the sets nth roots.

Proposition 1.17. Let n € N, w,z € C. Then
() = (w0 s we (¥5) v e (Vo)) = (¥5) - (Va).
Proof. If £ € (/z) - (Yw), then £ = & - &2, with & € ({/z) and & € ({Yw) . By definition of the

set nth root, we have &' = z and &5 = w, implying that " = zw, and so £ € ({/zw) .
Conversely, let & € ({/zw) . By Theorem we can write

E= Y/ |zw\ei(9+n2ﬂj), for some 0 € arg(zw), j € {0,...,n—1}.

But Corollary tells us that 0 = 0; + 0 with 6; € arg(z) and 6, € arg(w). Hence,

([ 01+02427j 0 ([ Oo+27j
e = Tl (R = et e (),
D (27
where clearly {/[z[e’n € ({/z) and \w|el< " ) € (Yw) by virtue of Theorem [1.15 O

Theorem gave all the solutions z € C to equations of the form 2" = w, or equivalently all
the zeros of the polynomial function C 5 z — 2™ — w. A polynomial in C is a function P : C — C
of the form

P(z)=ap+arz+---+anz", ag,...,a, €C,neN,

and the zeros or roots of P is the set P~1(0) := {z € C : P(z) = 0}. This is a problem we will
take up later in Section 4.4.4] where we will show that C is algebraically closed, meaning that every
nonconstant polynomial has at least one root in C. We will actually show that a polynomial of
degree n hast exactly n roots in C, counted with multiplicity.

1.7 The Extended Complex Plane

It is sometimes useful to add to C an external point or point at infinity (for C), denoted by oo.

Definition 1.18 (Extended Complex Plane). If oo denotes a point at infinity for C, we define the
extended complex plane by Cy := CU {o0}.
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So far C is nothing but C along with an element (denoted by oo) such that oo ¢ C. However,
it turns out that when C is equipped with an appropriate distance, we get a topological metric
space that is homeomorphic (a bijection whose inverse and itself are continuous) to the unit sphere
of R3 :

S*={(X,V,X)eR®: X2+ V?+2%2=1}.

The way to establish this relation between C,, and S? is via the stereographic projection.

Definition 1.19 (The Stereographic Projection). Denote by N = (0,0,1) € R3, the north pole. The
Stereographic Projection onto C is the mapping I : S> — Co given by

1n(p) = {the unique point z € Ly pNC  if P € S?\ {N} (17.1)

| if P=N.
Here Ly p denotes the affine line in R3 passing through N and P.

The mapping II : S? — C, in (I.7.1)) is obviously well-defined, and we next determine the
explicit formula for those points z € Ly p N C in terms of P.

Proposition 1.20. The mapping I1 : S> — Co. defined in (1.7.1)) satisfies

(X,Y,7) =

X+iY (X Y
1-Z 1-2'1-Z

> forall (X,Y,Z) € S*\ {N}. (1.7.2)

Moreover, I1 : S — Cy is a bijection whose inverse 1171 : Coo — S? is given by

1

|Zpﬁ(2Re(z),21m(z),],2\2—1) if ze C

I 1(2) = (1.7.3)

N =(0,0,1) if z=o0.
Proof. 1f P := (X,Y,Z) € S?\ {IN}, the line in R? generated by P and N is the set
Lyp={(0,0,1)+ ANX,Y,Z—-1) : A€ R}

Identifying C ~ R?, this line intersects C if and only if A\(Z — 1) = 1, from which we must have
A= ﬁ The corresponding point in Ly p N R? is therefore (%, %) This proves ((1.7.2)).

To prove that IT : S — C4 is a bijection whose inverse satisfies , given z € C we find
a unique P € S?\ {(0,0,1)} such that II(P) = 2. Regarding z = (Re(z),Im(z),0) as point of R3,
the point P = (X,Y, Z) must belong to the intersection of S?\ {(0,0,1)} with the line that passes
through N and z :

{(0,0,1) + A(Re(z),Im(z2),—1) : A € R};
The desired A € R must satisfy
MRe(2)? + M Im(2)* 4+ (1 - \)? =1,

or equivalently \2 (!z|2 + 1) = 2\. The value A = 0 corresponds to the point (0,0,1) of the line,

which we are not interested in. So the unique admissible solution to the equation is A\ = |Z|22 1

and the point P satisfies

1 2
P= TP (2Re(z),2Im(2), |2]* — 1)
Thus we get a bijection II : S\ {N} — C, which obviously extends to S? — C, since II(N) = oc.
Moreover (|1.7.3]) holds for all z € C. O

By Proposition the stereographic projection II defines a bijection between S? and C.. In
fact, we can use II to define a distance function in Co,, and so a topology in Co.
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Definition 1.21 (Spherical Metric). The spherical or chordal metric in C is the function
p:Cox x Coxo — [0,400) given by

p(z,w) = M7 (2) = H(w)] = V(X = X2+ (Y =Y+ (Z - Z')?, (1.7.4)
whenever z,w € Coo, I71(2) = (X,Y,2) € 2, I (w) = (X', Y, Z') € S,
Note that p(z,w) < diam(S?) = 2 for all z,w € Cs. Let us express p(z,w) solely in terms of
z,w € Ceo.
Proposition 1.22. The sperical metric p : Coo X Coo — [0, +00) is a distance function and

( 2|z — w|
NSV
2 (1.7.5)

T if z€e C,w=o00
VIR

0 if z=w= 0.

if z,weC

p(z,w)

Proof. The fact that p is a distance is a consequence of and the fact that || - || is a norm
in R3; and the only (perhaps) non-trivial property to verify is that p(z,w) =0 = z = w. But
this is also very easy because p(z,w) = 0 implies that II71(z) = II7!(w), where II"! is injective
by Proposition [1.20, and hence z = w.

To check formula , we start with points z,w € C, for which II"1(2) = (X,Y, Z) and
O Y(w) = (X',Y', Z"), with X2+ Y2+ 7% = (X")2 4+ (Y')2 4+ (Z')? = 1. Using first these identities,
then formula , and making some computations (recall ) we get:

plz,w)?* =2-2(XX'+YY' + 22
2

=2 E P 4 1) LReE Rew) +4m(@) ImGw) + (121 = 1wl - 1)
=2 ey (D)~ (= D =)+ (6 - (ol - 1)
(R 1>2<|wy2+ gy (26 +7w) + ([=* = Dl - 1)]

R 1)2(|w|2 1) (1212 + 1) (Jw|* + 1) = (|2]* = D(Jw|* — 1) — 2 (2@ + Zw)]

2 4]z — w|?

= 222 + |w|?) — 2 (2w + Zw)| =
Iz + D(Jw)2+ 1) [2(12)* + wl*) ( )]
Thus we have (T.7.5) in the case z,w € C. Now, if z € C and w = oo, then II"!(w) = N = (0,0, 1),
and 771(2) = (X,Y,Z) with X2+ Y2+ Z%? =1 and Z = (]2]* = 1)/(]2|* + 1) by (1.7.3). So by
definition of p(z,w) :

(I21* + D(jw +1)°

2(|z]2 = 1) 4
2 2 2 2

=X Y Z—-—1)"=2-27=2-— =

p(z,w) +Y°+( ) FEES| EEESk

and get conclude ([1.7.5)) also in this case.
O

Definition 1.23 (Riemann Sphere). We define the Riemann sphere as the set Coo equipped with
the spherical metric p : Coo — R in (1.7.4)).

The sterographic projection defined an homeomorphism between (Coo, p) and (S, | - ||); where
p is the spherical metric (Definition |1.21]) and || - || is the Euclidean norm. This is the reason why
Cwo is called (the Riemann) sphere. In particular (C, p) is a compact space.
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1.8 Exercises

Exercise 1.1. Find the modulus, the arguments, the principal arguments, and the exponential forms
of the following numbers.

(a) z=+3+i.

(b) 2= 7.

(c) 2= (—V3+1i)

(d) The Tth roots of z = —/3 — i.

Exercise 1.2. Express the following numbers in the form a + ib, with a,b € R.

(a) 2= 575

i 2
(b) 2= ((11t2i));>, .
(¢) All the 3rd roots of z =1+ 1.
(d) All the 2nd roots of z = T+

Exercise 1.3. Describe all the elements of the following sets.
(a) A={z€C : |z> = 2%}.
(b)) B={z€C: 22=7}.
(c) C={z€C:z=(2)}.
(d) D={z€C: 2?=(2)%}.
(e) E={2€C:z=1}.
(f) F={z€C:

Exercise 1.4. Find all the solutions z € C of the following equations.

=
Il
|
N
—

(a) 2 +iz+1=0.
(b) 2% +2iz—1=0.
(¢) 2 =35 =

(d) 24 +22+1=0.
(e) z* +81=0.

(f) 1+2)°=(1-2)
(9) 2% +1=1iV3.

Exercise 1.5. Show that C does not admit a total order relatz'mﬂ >~ satisfying the following rules
(for all z1,z9, 23 € C):

® 2 > 29 —> 21+ 23> 22+ 23.

e 23>0, 21 = 20 = 2123 > 2923.

2This means that for all z,w, & € C we have (i) 2z = 2; (ii) z = w and w > z implies w = 2; (iii) z = w and w > &
implies z > &; (iv) either z > w or w > z.
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Hint: Assume that such an order relation exists. Then either 0 = i or i = 0. Arrive at a
contradiction in both cases.

Exercise 1.6. Prove the following statements, for z,w € C:
(a) |z +w| = |z| +|w| if and only if either w =0 or z/w € R with z/w > 0.

(b) |z —w| > ||2] = |w]

, with equality if and only if either w =0 or z/w € R with z/w > 0.
(c) |z 4+ w| = |z —w| if and only if either w =0 or z/w is pure imaginary.

(e) The Parallelogram Law: |z +w|* 4 |z — w]* = 2 (][> + |w]?) .

(1) [Re(2)] + [1m(2)] < Vel

Exercise 1.7. For each w € C, n € N, find M(w) := max{[z" +w| : z € C, |2] < 1} and a
corresponding maxrimizer.

Hint: Find a trivial upper bound for M (w) with the triangle inequality, and then consider when
this triangle inequality becomes equality; Ezercise[1.6

Exercise 1.8. Find sup{Re(iz?) : z € C, |2| < 2}.

Exercise 1.9. Prove Lagrange’s Identity: for complex numbers z1,...,2n, Wi,...,Wn :
n 2 n n
2 2 Z — ——2
Z ZEWE| = Z |Zk| Z |wk] — |zkwj — ZjWg|" -
k=1 k=1 k=1 1<k<j<n

Deduce the Cauchy-Schwarz inequality:

n

E REWE

k=1

() ()

Exercise 1.10. Show that if z € C\ {1}, then

Hint: Argue by induction on n.

1 _ N
ldzd2 4 gt "%
1—2
Deduce that if z € C\ {1} is an n-root of 1, then 1+ z + 22 +--- + 2" 1 = 0.
Exercise 1.11. Denote by wo, ..., wn—1 all the nth roots of 1, for n > 2. Show that
(a) HZ;(%(Z —wyg) = 2" —1 for all z € C.
(b) SpZywy, = 0.
() TIZ) wp = (~1)7.

if 1<j<n-1
if j=n.

n— j 0,
(4) YiZowi = {n

Hint: In (a), you can first prove that if zg is a oot of a polynomial P with deg(P) = n, then
P(z) = (z — 20)Q(2), z € C, for some polynomial Q with deg(Q) < n — 1. By induction, you can
decompose the polynomial z" — 1. But, please do not use the Fundamental Theorem of Algebra.

Exercise 1.12. Use De Moivre’s formula in combination with Newton’s binomial formula to express
sin(50) and cos(50) as a polynomial expression of sin() and cos(@), for 6 € R.
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Exercise 1.13. Prove that for n > 2,

k=1 k=1
Exercise 1.14. Prove that
n nf
o SIn(E) e
e = B e
sin(3
k=1 2
Use this formula to deduce
in(2) cos(("EDY)
(CL) ZZ:I COS(kQ) = =2 Sicr?(sg) :
(b) Zk sm(k;&) sin( 29)Sin((n§1)9)
1 .

Hint: Use Exercise to find a formula for the sum in terms of exponentials.

Exercise 1.15. Show that, for n > 2,

Hint: Describe the nonzero roots {zy}i of the polynomial (1 — z)™ — 1 in terms of the nth roots
of unity, and find the modulus of z,. Then, Ezercise|1.11|(a) can be helpful.

Exercise 1.16. Prove that if z € C\ {0}, then the points 0, z, and 1/Z are align in the plane.

Exercise 1.17. Prove that if = € C\ {1} with |z| = 1, then z + 1 is a real number (meaning that
Im(z+ 1) =0), and that 12 is pure imaginary (meaning that Re <1+z> —0).

Exercise 1.18. Let z1, 29,23 € C be three distinct points. Show that the following statements are
equivalent.

22 — 21 21 — 23

(a) =

zZ3 — 21 22—Z3‘

(b) z% + z% + 232, = 2129 + 2123 + 2923.
(¢) {z1, 22,23} are the vertices of an equilateral triangle.

Hint: The equivalence (a) <= (b) is a computation. To prove that (c) is equivalent to the
others ((a) or (b), choose your favorite), prove it first in the case z3 = 0.

Exercise 1.19. Let w € C with |w| < 1 and z € C so that wz # 1. Show that

zZ—Ww

1 —wz

‘Sl(z) |z] < 1.

Exercise 1.20. Let z,w € C so that wz # 1. Show that

(a) If |z| <1 and |w| < 1, then

< 1.
1 —-wz
(b) If |z| =1 or |w| =1, then
z—w
—| = 1.
1-wz
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Exercise 1.21. Consider the function f : C\ {0} — C given by f(z) = 1/z. Prove that:
(a) If L line of C so that 0 € L, then f(L\ {0}) = L'\ {0} for a line L' C C.
(b) If L is line of C so that 0 ¢ L, then f(L) =S\ {0} for a circle S of C with 0 € S.
Suggestion: In (b), the formulas for circles and lines from Section can help you.

Exercise 1.22. Let I1 : S — Co be the stereographic projection, N = (0,0,1) the north pole, and
oo the point at infinity for C. Prove that:

(a) If S C S? is a circle with N € S, then I1(S) = L U {oco}; where L is a line of C.
(b) If S C S? is a circle with N ¢ S, then I1(S) is a circle of C.

Clarification: By a circle S C S? we mean the intersection of S* with a plane of R3 that is not
tangent to S? (if that plane is tangent, S is merely a singleton, and I1(S) is a singleton too, which
is a trivial circle of C.)

Hint: In (b), first explain why we can write S = {(X,Y,Z) € §?* : AgX + BoY + CoZ = Dy},
for (Ao, By, Co) € S?, Dy € (—1,1), and Dy # Co. Write the equation of a general circle S’ of C as
in ([.3.5)), and determine the parameters & and K (in terms of Ay, By, Co, Do) so that I1(S") C S.
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Chapter 2

Complex Functions

2.1 Topology, convergence, and continuity in C.

There is a natural way to define a distance between two points z, w € C, using the modulus function
|-|: C—[0,+00). That is,
d(z,w) = |z —w|.

In particular, the function d : C x C — [0, +00) satisfies the axioms of a metric:
e d(z,w)=0if and only if z = w.
e d(z,w) =d(w,z) for all z,w € C.
o d(z,w) <d(z,€) +d(&w), for all z,w,& € C. This is a consequence of Proposition [1.7](viii).

Thus (C,|-|) is a metric space, whose distance coincides with the Euclidean distance in the
plane R2.

2.1.1 Open and Closed disks and sets

We next define the corresponding metric balls, which we call disks in the complex setting.

Definition 2.1 (Open and closed disks). Given z € C and r > 0, the open disk centered at z
with radius r is
D(z,r) ={weC: |w—z| <r}

The corresponding closed disk centered at z with radius r is
D(z,r) :={weC : jw—z <7}
Then the circle centered at z with radius r is the set
S(z,r) :=D(z,7)\ D(z2,7r) ={w e C : |w—z| =7}
We use the disks to define the fundamental class of sets.

Definition 2.2 (Open and closed sets). A subset U of C is open if for every z € U there exists
r >0 so that D(z,r) C U. Also, we say that a set F C C is closed if C\ F is open.

Trivial examples of open sets are U = () and U = C. These two sets are also closed according
to Definition But the main non-trivial examples of open and closed are precisely the open and
closed disks.

Proposition 2.3. For every z € C and v > 0, the set D(z,r) is open and the set D(z,r) is closed.
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Proof. To check that D(z,r) is open, take w € D(z,r) and let us prove that D(w,e) C D(z,r), if
0 <e<r—|w-—z| (notice that |w — z| < r, as w € D(z,r)). Indeed, if £ € D(w,¢), the triangle
inequality gives

E—2| <|{—w|+|w—z|<et+|w—2z|<r—|w—2|+|w—2=r

showing that £ € D(z,r).

Now, to verify that D(z,r) is closed, we need to check that U := C\ D(z,r) is open. Thus, let
we U, and 0 < ¢ < |w — z| — r. The open disk D(w,¢) is contained in U, because if £ € D(w,¢),
then

€=zl >w—z—|§E—w|>|lw—zl—e>|w—2z]—(lw—2]—r) =71,

implying ¢ € C\ D(z,7) = U. O

Arbitrary unions of open sets are open, and finite intersection of open sets are open as well.
The same holds for closed sets swapping union and intersection.

Proposition 2.4. Let {U;}icz be a family of open subsets of C, and let {F}} e be a family of closed
subsets of C. The following holds.

(1) U,z Ui is an open set.

(ii) If T is finite, then also (), U; is open.
(iti) (Njeq Fj is a closed set.

(i) If J is finite, then also Ujej F; is closed.
Proof.

(i) This is immediate from the definition of open sets.

(ii) If Z = {i1,...,in} and z € ();c7 Ui, then there are radii 71, ..., 7, that make each disk D(z,r;)
be contained in U;. If r = min{ry,...,r,}, the disk D(z,r) is contained in all the U; simultaneously.
(iii) Write
C\ (N E=JC\F;
JjeJ JET
where each C\ Fj is open, since F} is closed. By (i), we derive that C \ ﬂjej F; is open, ergo
Njes Fj is closed.

(iv) Using (ii), the proof follows from taking the pertinent complements on C, as we did in (iii). O

Proposition shows that, for example, singletons {z}, z € C, are closed sets, as they can be
written as {z} = (.., D(2,¢). Consequenly, aslo by Proposition D(z,e) \ {w} is an open set
for any z,w € C, ¢ > 0, as it is the intersection of the two open sets D(z,¢) and C\ {w}. Also,
we can use Proposition to deduce that each circle 9D(z, ) is closed, as the intersection of the
closed sets D(z,7) and C \ D(z,r).

2.1.2 The interior, the closure, and the boundary
We continue defining more key topological concepts.

Definition 2.5 (Interior, Accumulation, Closure, Boundary). Let A C C be a subset, and z € C.

e We say that z is an interior point of A if there exists v > 0 so that D(z,r) C A. We define
the interior of A, denoted by int(A), and the set consisiting of all interior points of A.

o We say that z is an accumulation point of A if, for everye > 0, we have AN(D(z,¢e) \ {z}) #
(). The set of all accumulation points of A will be denoted by A’.
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o We define the closure of A as the set

A= ﬂ{FC(C : AC Fand F is closed}.

We can also refer to A as the smallest closed set containing A.

o The boundary of A is the set
0A = A\ int(A).

To get acquainted with some of these concepts, we propose showing that:
e The closure D(z,r) of an open disk D(z,r) is precisely the corresponding closed disk D(z, ).

e The interior int(D(z,7)) of a closed disk D(z,r) is precisely the corresponding open disk
D(z,r).

e The boundaries D(z,r) and dD(z,r) are both equal to the corresponding circle S(z,r).

Let us collect some basic remarks and properties concerning the elements from Definition [2.5
Some of them will offer alternate definitions for the concepts of interior, closure, and boundary.

Proposition 2.6. Let A, B,C C C be arbitrary subsets. The following statements are true.
(i) A is open if and only if int(A) = A. Also, if B C C, then int(B) C int(C).
(i) The interior int(A) of A is an open set contained in A satisfying
int(A) = U{U CC:UcCAandU is open} = U{D(z,r) : D(z,7) C A, z € C, r > 0}.
In particular, if U is an open set containing A, then U C int(A).
(iii) If B C C, then B' C C' and B C C.
(iv) A" is always a closed set.

(v) The closure A of A is a closed superset of A satisfying A = AU A’. Consequently, the closure
admits the following description:

A={2€C : D(z,e)NA#0D for every e > 0}. (2.1.1)

Also, we have the following characterizations of “closedness”:

A is closed <— A=A — A C A.

(vi) C\ A= C\ int(A) and int(C\ A) =C\ A.
(vii) The boundary DA of A is a closed subset of A, and 0A = ANC\ A.

Proof.

(i) If A is open, for every z € A there is 7 > 0 so that D(z,r) C A, which means that z € int(A),
according to Definition The implication “A = int(A) == A is open” is obvious. It is also
immediate that B C C = int(B) C int(C).

(ii) If D(z,r) is an open disk contained in A, then, by (i) and Proposition we have
D(z,r) = int(D(z,r)) C int(A).

Thus the union of the disks is contained in int(A). And if z € int(A), then D(z,r) C A for some
r > 0, and thus we deduce int(A) = |J{D(z,r) : D(z,r) C A, z € C, r > 0}. In particular, this
shows that int(A) is open, e.g. by Proposition Using again that the open disks are open and
that int(A) is open, we deduce the middle identity of (ii).
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(iii) This is immediate from Definition

(iv) Let z € C\ A’. There exists £ > 0 so that (D(z,e) \ {z}) N A = 0. Let us show that D(z,¢) C
C\ A’, which will imply that C\ A’ is open. Indeed, since we already know that z € C\ A’, it
suffices to show D(z,¢)\{z} € C\ A". But D(z,¢)\{z} is an open set (see the comment subsequent
to Proposition [2.4), so for any w € D(z,¢) \ {z} we can find § > 0 with D(w,§) C D(z,¢) \ {z}.
Because (D(z,¢) \ {z}) N A =0, we have D(w, ) N A = ) as well, showing that w € C\ A’.

(v) Ais closed as intersection of closed sets; see Proposition Let us verify the identity A = AUA’.
Let z ¢ AUA'. Then there exists, by definition of A, a radius € > 0 so that (D(z,¢)\{z})NA = 0.
But also z ¢ A, so we actually have D(z,e) N A = (), implying A C C\ D(z,¢), where C\ D(z,¢)
is closed and does not contain z. Hence z ¢ A, and this shows that A C AU A’. For the reverse
inclusion, assume z ¢ A, which implies the existence of F' C C closed with A C F and z ¢ F. The
complement of F' is open, so there exists € > 0 with D(z,e) N F = (). Since A C F, this clearly
shows that z ¢ A’.

The expression for A is immediate from the identity A = AU A’.

We now prove the equivalences. If A is closed, then A = A, by the definition of closure.

Now, if A = A, and we use the already proven identity A = AU A’, we get A’ C A.

Finally, if A C A and z € C\ A, then z also do not belong to A’, and there is ¢ > 0 with
(D(z,e)\ {z}) N A = (). But since z ¢ A, this yields D(z,) N A =0, and so D(z,e) C C\ A. We
have shown that C\ A is open, ergo, A is closed.

(vi) It suffices to apply the formula from (ii) for interiors and that U is open iff C \ U is closed.
(vii) This follows from the definition of boundary (Definition and (vi).

2.1.3 Convergence of Sequences. The Bolzano-Weierstrass Theorem

Definition 2.7 (Convergence of sequences). Let {zy}neny C C be a sequence, and zy € C. We say
that {zn}neny converges to zy, and denote it by zg = limy, o0 2, if for every e > 0 there exists
no € N such that z, € D(zy,¢) for all n > ng. We will often denote the property zp = limy, o0 2n
simply by z, — 2g.

The limits of sequences satisfy the following basic properties.

Proposition 2.8. Let {z, }nen, {wn}nen be sequences in C, and zp,wy € C. The following holds.

(i) limy, 00 2n, = 20 if and only if Re(zo) = lim, o Re(z,) and Im(zp) = limy, o0 Im(zy,);
understanding these limits as convergence of real numbers.

Consequently, lim,_,o 2, = 2o if and only if lim,_o0 Z, = Zp.
Also, if imy, 00 2, = 20, then lim, o |2n| = |20]-
Assume from now on that limy,_, 2, = zo and lim,, . w, = wg. Then:
(1) limy, o0 (2n + wy) = 20 + wo.
(11) limy,—s o0 2nwn = ZoWo.
(v) If wo # 0, then limy, o0 25, /Wy = 20/ wo.
Proof.
(i) For the first equivalence, use Proposition and the definition of modulus to deduce:
|zn — 20| <& = max{|Re(z,) — Re(z0)|, | Im(z,) — Im(20)|} < & = |2, — 20| < V2e.

By Definition 2.7, the above shows that z, — zo if and only if both Re(z,) — Re(z0) and Im(z,) —
Im(zp).
The rest of (i) follows from what we have already proven for the real and imaginary parts.
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(ii) This is very easy.

(iii) Using that Re(uv) = Re(u) Re(v) — Im(u) Im(v), Im(uv) = Re(u) Im(v) + Im(u) Re(v), for all
u,v € C, together with (i), the proof of (iii) is straightforward.

(iv) Thanks to (iii), it is enough to show that 1/w, — 1/wp, or equivalently, w,, /|w,|* — wg/|wol?.
But this is easily seen, because, by virtue of (i), w, — w, implies both |w,|?> = |we|? and @, — .
0

We can use sequences to give useful criteria for closures and accumulation points of sets.
Proposition 2.9. Let A C C be a set, and zg € C a point. The following properties are true.
(i) zo € A’ if and only if there is a sequence {zp}nen C A\ {20} so that lim,, z, = 2.

(ii) zo € A if and only if there is a sequence {zp}nen C A so that lim,, z, = 2.

Consequently, A is closed if and only if for every {z, }nen C A convergent to zp € C, one has
zp € A.

Proof.

(i) If zp € A’, then (D(z0,1/n) \ {20}) N A # 0 for each n € N. Taking 2, as any point z, €
D(z0,1/n) \ {20} N A, one has lim,,_,o 25, = 20 (as 0 < |z, — 20| < 1/n), and {2z }neny C A.

For the reverse implication, let {z,}nen € A\ {20} with lim,, z, = 2¢, and let € > 0. Since
Zn — 20, we have z, € D(zp,¢) for some n (actually for all n from certain ng on). Thus, the
intersection D(zp,¢) \ {20} N A is nonempty.

(ii) Using the description (2.1.1)) for closure points, the proof is almost identical to that of (i). [

Definition 2.10. Given two sets A, B C C we say that B is dense in A if A C B.
In particular, B is dense in C if B = C.

According to Proposition if B is dense in A, then for every z € A we can find a sequence
{zn}n C B so that z, — z.

Definition 2.11. We say that a sequence {z, tnen C C is bounded if sup{|z,| : n € N} < oo, that
is, there exists M > 0 so that |z,| < M for all n € N.
More generally, we say that a set A C C is bounded if sup{|z| : z € A} < 0.

As in the real line R, bounded sequences in C admit convergent subsequences.

Theorem 2.12 (Bolzano-Weierstrass in C). If {z, }nen C C is a bounded sequence, then there exists
a subsequence {zn, tren of {Zn}tnen convergent to some zy € C.

Proof. Recall that max{|Re(zy)|, | Im(zy)|} < |zn|, e.g., by Proposition Thus, both {Re(zp) }nen
and {Im(z,)},en are bounded sequences of real numbers. By Bolzano-Weierstrass theorem in R,
there is a subsequence {Re(zy,)}ren of {Re(zn)}nen convergent to some zp € R. Now, the sub-
sequence {Im(zy, )}reny of {Im(2y)}nen is also bounded, and thus, again by Bolzano-Weierstras,
there is a subsequence {Im(znkj)}jeN of {Im(zy,)}ren convergent to some yg € R. The subse-
quence {Re(anj)}jeN converges to zp (because it is a subsequence of {Re(zy,)}ren). Defining
2o := xo + 1yo and applying Proposition [2.8(i), the sequence {z,, = Re(z,, )+ ilm(z,, )}ien
converges to zg. ) { K ( k]) ( K & O
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2.1.4 Compactness. The Heine-Borel Theorem

We now turn out attention to a special (and crucial) class of sets: the compact sets. Althought
the formal definition seems a bit abstract, in metric spaces (and specially in C) there are several
alternate characterizations that are easier to use in practice.

Definition 2.13. Let K C C. We say that K is a compact set if given any collection {U;}icr of
open subsets of C so that K C |J;c7z Ui, there exists a finite family of indices F C I so that
K C Uier Ui

Compactness can be rephrased in the following manner: a set K is compact if from any open
covering of K one can find a finite sub-covering of K.

Definition [2.13]is the formal definition of compactness that is given in the setting of topological
spaces, a class of spaces that is much more general (and leading to beautiful and more abstract
phenomena) than the class of metric spaces.

In metric spaces, compactness is equivalent to sequential compactness. Moreover, in (C, |- |),
compact sets are simply the bounded and closed sets.

Theorem 2.14 (Heine-Borel theorem in C). Let K C C be a subset. The following statements are
equivalent.

(i) K is compact.
(1) K is closed and bounded.
(111) Every sequence {zi}ren C K has a subsequence {zp, }ren convergent to some zp € K.

Proof. We will assume throughout the proof that K # ().

(1) = (i7) : Assume that K is compact. To check that K is bounded, take a point z € K and
consider the trivial covering of K given by the collection {D(z, )} en. By the compactness of K,
there exists a finite collection of those disks, say D(z,j1),...,D(z,jn) so that K C Ufil D(z,ji).
Then obviously, K is contained in D(z, R), with R := max{j1,...,jn}, showing that K is bounded.

To verify that K is closed, let z € C\ K, and notice, for every w € K, one has D(z,7,) N
D(w,ry) = 0 for 7, := |z — w|/2 (by virtue of the triangle inequality for the modulus). Ob-
viously, K C {U,cx D(w, zw) and so the compactness of K gives a finite set F' of K so that
K C Uyper D(w, zy). Now, define the set

U:= U D(z,1y).

weF

By Proposition U is open (as a finite intersection of open sets). And it is clear that z € U and
UN (Uyper D(w, 20)) = 0. So, also U N K = (), and therefore z € U C C\ K; which shows that
C\ K is open.

(19) = (4i7) : This follows by combining Theorem and Proposition

(191) = (i) : Let {U;}iez a collection open sets whose union contains K.

We claim that there exists ¢ > 0 so that, for every z € K, the disk D(z, ¢) is entirely contained in
one U;_, i, € Z. Indeed, otherwise we can find, for each n € N, a point z, € K with D(z,,1/n) ¢ U;
for all i € Z. By the assumption, {2y}, has a subsequent {z,, }; convergent to some zy € K. Note
that zp must be contained in some Uj,, (because the union of the U;’s cover K) and in fact
D(zp,0) C U, for some § > 0, as U, is open. But it is clear that, for k large enough, the disk
D(zp,,1/ny) is contained in C D(zp, ), and so is contained in Uj,, a contradiction. So, our claim
is proven.

Next, we can find a finite set 7 C T such that K C (J,.r D(z,¢). Indeed, suppose, for the
sake of contradiction, that such a finite set does not exist. Then we can find points z1 € K, 29 €
K\D(z,€), ... ,2n € K\U?:_ll D(zj,¢), thus forming a sequence {zy, }nen so that d(zp, zm) > € for
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all n, m with n # m. This is a contradiction because {z, },cn must have a convergent subsequence.
So, there exists the desired finite set.

Using the previous claims, we have that K C (J,.r D(z,€) C U,cr Ui., showing that K is
contained in the union of finitely many U;’s. O

Alternatively, compact sets in metric spaces can also be characterized as complete and totally
bounded sets, but we will not cover that criteria in these notes.

We also include the following intersection property for nested compact subsets.

Lemma 2.15. Let {K,,}n>1 be a sequence of nonempty compact subsets of C such that K, 41 C K,
for alln € N, and so that lim diam(K,) = 0. Then there exists a unique point zy € C with
n—oo

00
20 € ﬂ K,.
n=0

Proof. Let z, € K, for every n € N. Given ¢ > 0 there is ng € N so that diam(K,,) < ¢ for all
n > ng. Thus, if m > n > ng, then K,,, C K,,, and so

|2, — 2m| < diam(K,) < e.

This shows that {z,}, is a Cauchy sequence, and so it converges to a point wy € C, by Exercise
Also note that for every n € N, we have that {z,,}m>n C K, and since K, is closed (by
Theorem we get that zop € K, as well. Thus zg € (),—, K. To show that zy is the unique
such point, suppose that wy € [\~ K» as well. Then

lwo — 20| < diam(K,,), forall neN.

Because le diam(K,,) = 0, we deduce that wy = 2. O

2.1.5 Limits and Continuity of functions

Our next objective is studying the continuity of functions with complex source and range. We first
define the limits of functions.

Definition 2.16 (Limits of functions). Let A C C, f : A — C a function, and z9 € A. We say that
w € C is the limit of f as z converges to zy, denoted by lim f(z) = w, if for every e > 0 there
Z—20

exists 6 > 0 so that
z€ A\ {20}, [z — 20| <0 = |f(2) —w| <e.

This is equivalent to saying that f ((D(z0,0) \ {z0}) N A) C D(w,¢).
Also, we will say that li_)m f(2) = +oo if for every M > 0 there exists § > 0 so that
Z—20

z€ A\{z0}, |z — 20| <0 = |f(2)| > M.
In practice, it is often easier to use the following sequential characterization of limits.
Proposition 2.17. Let AC C, f: A — C a function, zo € A, and w € C. The following holds.
(i) Zlirglof(z) = w if and only if for every sequence {zn}n C A\ {20} with lim, o 2, = 20, one
has limy, 00 f(2) = w.
(i1) zan;Of(z) = 400 if and only if for every sequence {zy}, C A\ {20} with lim, o 25, = 20, one

has limy, 00 | f(2n)| = +00
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Z—20 Z—20

(i1i) The limit li_)m f(2) ezists if and only if the two limits lim Re(f)(z) and lim Im(f)(z) exist.
2—20

Moreover, in such case,

lim f(z) = lim Re(f)(z) 4+ i lim Im(f)(2).

Z—rZ20 Z—rZ20 Z—r20

Here we are denoting the real-valued functions Re(f) : A — R, Re(f)(z) = Re(f(2)) and
Im(f): A— R, Im(f)(2) = Im(f(2)), for all z € A.
Proof.
(i) Assume le f(2) =w, and let {2}, C A\ {20} with 2, — 2. For every ¢ > 0, let § > 0 be so
z—20

that 0 < |z — 29| < d, z € A implies | f(z) — w| < . Since z, — zp, we can find ng € N (depending
on 0) so that 0 < |z, — 20| < 6, whenever n > ng. Therefore, |f(z,) — w| < € for all n > ny.

Conversely, assume the statement for sequences holds, and suppose, for the sake of contradiction
that lim f(z) # w. This means that there is € > 0 so that for no choice of § one has f((D(zo,9) \
Z—r20

{z0}) N A) C D(w,e). Thus, for each n, we can find some z, € (D(z9,1/n) \ {20}) N A and
|f(zn) — w| > e. Clearly lim, o 2, = 20 and, by the assumption, we have lim, ,« f(z,) = w, a
contradiction.

(ii) The proof is very similar to that of (i).

(iii) This is immediate from statement (i) and Proposition
O

Definition 2.18 (Continuous functions). Let A C C, f: A — C and zp € A. We say that [ is
continuous at zq if for every e > 0 there exists 6 > 0 so that

z€A, |z—2| <6 = |f(2) — f(20)| <e.
This is equivalent to f((D(z0,9) N A) C D(f(20),e). In other words, f is continuous as zqy if

lim _ f(z) = f(20)-

z—2z0,2€A
And if f: A — C is continuous at every z € A, we say that f is continuous in A.

Remark 2.19. A function f : A — C, with A C C, is continuous at zy € A if and only if the
functions Re(f) : A — R and Im(f) : A — R are continuous at zo. This is a simple consequence of

Proposition [2.17](iii).
We have several ways to characterize continuity of functions.
Proposition 2.20. Let ACC, f: A— C and 2y € A. The following statements are equivalent.
(i) lim, o0 f(2n) = f(20) for each sequence {zp}neny C A with lim, o0 2, = 20.
(ii) f is continuous at zp.
Concerning continuity of f in all of A, the following statements are equivalent:
(i)’ f is continuous in A.
(i)’ For every open U C C, we have f~*(U) =V N A for some V C C open.
(i4i)” For every closed F C C, we have f~1(F) = EN A for some E C C closed.

Proof. The first equivalences (i) <= (ii) are immediate from from Proposition Let us
verify the equivalences between (i)', (i)’ and (iii)’.
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(i) = (ii)": If z € f~Y(U), then f(z) € U and since U is open, we can find €, > 0 so that
D(f(z),e,) C U. Due to the continuity of f on z, there exists §, > 0 so that f(A N D(z,0,)) C
D(f(2),e.). Therefore AN D(z,d,) C f~1(U), which shows that

fFioy= |y (AnD(z6.)=An U (2,6.)

zef~1(U) zef~H(U)

Defining V := Uzef—l(U) D(z,4,), we prove the assertion.

(i1) == (iii)": Because C\ F is open, we can write A\ f~1(F) = f~{(C\ F) = ANV for
some open set V' C C. Thus

JNE) = A\ (ANV) = AN (C\ V),

where C\ V is closed.

(14i1)) = (i)’: Suppose, for the sake of contradiction, that there is zyp € A so that f is not
continuous at zp. Then, by the (already prove) equivalence (i) = (i), we can find a sequence
{zn}n C A converging to zo and so that f(z,) / f(20). After possibly passing to a subsequence,
this means that there is € > 0 so that |f(z,) — f(20)| > € for each n € N. Now, by (iii)’, we have
that f~1(C\ D(f(20),¢€)) = E N A for some closed set E C C. Clearly f(z,) € C\ D(f(20),¢), so
{zn}n C f7HC\ D(f(20),¢)), implying that {z,}, C E. But E is closed and 2, — 29, s0 29 € E,
according to Proposition Therefore, 29 € EN A and hence 29 € f~1(C\ D(f(20),€)), which is
of course a contradiction.

O

Proposition for A C C an open set implies that f is continuous on A iff f=%(V) is an
open subset of A. For A arbitrary, the sets of the form ANV with V' C C open (resp. ANE
with E C C closed) are called open relative to A (resp. closed relative to A). One has to be very
carefully when studying the continuity of a function over a set, as it strongly depends on the set of
definiton of the function. For instance, the function f : C — C given by f(z) = 1 when Re(z) # 0
and f(z) = 0 when Re(z) = 0 is continuous on the open set C\ {Re(z) = 0}, but is not continuous
at any point of the set A = {z € C : Re(z) = 0}. However, the restriction of f to A, gives a new
function f, : A — C that is identically 0 on A, and thus continuous on all of A.

Let us now see expected properties concerning operations with limits and continuity.

Proposition 2.21. Let A C C, z0 € A, f : A — C, g : C — C so that the limits lim f(z) and

Z—20

lim g(z) ewxist. Then

Z—r20

(i) There exists Zl m (f(z) +g(2)) = lim f(z) + lim g(2).

i
— 20 Z—20 Z—20

(i) There exists lim (f(z)-g(z)) = lim f(z) - lim g(2)

Z—r 20 Z—rZ20 Z—rZ20

(111) If lim g(z) # 0 and there exists r > 0 so that g(z) # 0 for every z € D(zg,r) N A, then there
Z—20

erists lim f(2)
im f(z

lim /(z) = 2% .

% g(z) ~ lim g(2)

Z—20

If we further have zg € A, and f, g continuous at zy, and another function h : g(A) — C continuous
at g(20), then

(i)” [+ g is continuous at zp.

(i1)’ f - g is continuous at zp.
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(i1i)’ ho g is continuous at zp.
()’ If g(z0) # 0, then f/g is continuous at z.

Proof. The part concerning the limits is immediate from Propositions 2.8 and 2.17]

For the second part, (i)’ and (ii)’ follow from statements (i) and (ii). Statement (iv)’ also is
a consequence of (iii), because g(zp) actually implies that g(z) # 0 for all z € D(zp,7) N A and
some r > 0, due to the continuity of g at zg. Finally, to prove (iii)’ we can imitate the proof of the
corresponding result for functions R — R. O

Example 2.22. Using Remark and one can easily verify that the following functions are
continuous in the indicated sets:

e The function f: C — C given by f(z) = Z is continuous in C.
e The functions f,g: C — C given by f(z) = |z| and g(z) = |2|? are continuous in C.
e Any polynomial P: C — C, P(z) =ap+ a1z + - -+ + a,2" is continuous in C.

e The principal argument Arg : C\ {0} — C is continuous in C \ (—o0,0]; see Definition
However, it is not continuous at any point z € (—o0, 0].

e For n > 2, the principal nth root {/-: C\{0} — C is continuous in C\ (—00, 0); see Definition
However, it is not continuous at any point z € (—00,0).

Only the principal argument and the nth root cases are non-trivial, but bearing in mind the explicit
formula and the continuity of arctan : R — (—7/2,7/2), we easily get the continuity of
Arg in C\ (—00,0]. To see that Arg is discontinuous at every a € (—o0,0], consider sequences
Zn = a + % and w, = a + %, for all n € N. Of course z,,w, — a, but formula (1.4.2)) says that
lim Arg(z,) =7 and lim Arg(w,) = —m, showing that lim Arg(z) does not even exist.

n—oo n—oo z—a

Arg(z)

Now, recall that {/z := /|z]e’"»  for all z € C\ {0} and {/0 := 0, according to Definition
The continuity of Arg in C\ {0} gives the continuity of z — {/z in C\ (—o0, 0]. Also, because
| v/z| = {/|z|, clearly liH(l) | ¥/z| = 0, showing that also z — {/z is continuous at zy = 0. Now, for

2=

every a € (—00,0), consider the sequence

2y 1= —ae(_”+%)i, k € N.
We have that klim 2k = —ae” ™ = a. However, Arg(a) = —7 and Arg(z;) = —7 + %, which implies
— 00
,ﬁ+%

Va= Yale'n, vz = Y|zl — Vale™'n £ ]ale'n.
This shows that z — {/z is discontinuous at a.

Definition 2.23 (Uniform continuity). Let A C C, and f : A — C. We say that f is uniformly
continuous on A if for every e > 0 there exists 6 > 0 so that

zyzweE€ A, |z—w|l <0 = |f(z) — f(w)] <e.
Equivalently, f(D(z,0) N A) C D(f(z),¢e) for every z € A.

Note the crucial difference with the mere continuity (Definition [2.18)), where the number 6 > 0
depends on the point z € A. We can characterize uniform continuity via sequences.

Proposition 2.24. Let A C C, and f: A — C. The following statements are equivalent.

(i) f is uniformly continuous on A.
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(it) For every couple of sequences {zn}n,{wn}n C A one has

lim |z, —wy,| =0 = lm|f(z,) — f(w,)| = 0.

Proof.

(i) = (i1): Assume that lim, |z, — w,| = 0 and let £ > 0, and let § > 0 the number associated
with ¢ as in Definition If np € N is such that |z, — w,| < 6 whenever n > ng, then
|f(zn) — f(wy)| < e for n > ng as well.

(1d) = (4): If f is not uniformly continuous on A, then there exists ¢ > 0 and points z,,w, € A
with |z, —wy| < 1/n and yet |f(z,) — f(w,)| > € for all n € N. This contradicts (i). O

Proposition 2.25. Let K C C be a compact set, and f : K — C a continuous function. Then,
(i) f(K) is compact.
(it) There exist sup{|f(z)| : z € K} and inf{|f(z)| : z € K} and are attained in K.

(iii) f is uniformly continuous on K.

Proof. To prove (i), we can use the original Deﬁnition of compactness. Let {U;};c7 a collection
of open subsets of C so that f(K) C |J;ez Ui- Then K C ;7 f~Y(U;), and, since f is continuous
in K, we can use Proposition to obtain open sets V; C C so that f~1(U;) = V; N K, for all
1 € Z, and hence
KclJr'w)clJxnw) clJv.
icT icT i€

Because K is compact, there exists F C T finite for which K C | J;c z Vi. This implies

KclJwnv)=Jr'w)

1eF 1eF

We conclude that f(K) C U,;cx Ui

Onto property (ii), we have that f(K) is bounded, and so the supremum exists. The infimum
exists in any case due to the bound |f(z)| > 0. Denote by S and I the supremum and infimum
respectively. Then S is attained on K because for any sequence (zx)r C K with limg, | f(zx)| = S one
can find a subsequent {z,, }; convergent to zy € K; thanks to Theorem By the continuity of
|f| : C — R (given by z — |f(z)|) one has that S = limy |f(2p,)| = |f(20)|- An identical argument
shows that [ is attained in K.

Let us now prove (iii). Suppose, seeking a contradiction, that f is not uniformly continuous. By
Proposition [2.24] there exists € > 0 and sequences {zy }n, {wy}, C K such that |z, —wy| — 0, and
| f(2n) = f(wy)| > € for all n € N. Because K is compact, by Theorem [2.14] we can find subsequences
{#zn,, }&, {wn, }r convergent to z € K and w € K respectively. But the fact that |z,, —wp,| — 0
implies that z = w. By the continuity of f in K and Proposition we have that f(z,,) = f(2)
and f(wy,) — f(z). Therefore |f(zp,) — f(wn, )| — 0, contradicting that |f(z,, ) — f(wn, )| > € for
all k. O

2.1.6 Connected Sets and Domains
Definition 2.26 (Connected sets, Domains, and Path Connected sets). Let A C C be a subset.

o We say that a couple of open sets U,V C C is a separation of A if

1. UNVNA=0.
2. ANU#AD#ANV.
3. AcCcUUV.
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o We say that A is connected if there exists no separation of A.
o We say that A is a domain if A is open and connected.

o We say that A is path-connected if for any two points z,w € w there exists a continuous
mapping 7 : la,b] — A, with a < b, a,b € R, so that y(a) = z and y(b) = w.

The definition of connectedness for a set A looks a bit technical but it essentially says that A
cannot be decomposed as a non-trivial and disjoint union of two opens relative to A. Conditions
UNnvV =0, ANU # 0 # ANV merely express the non-triviality of the separations. Path-
connectedness is a bit more intuitive: roughly speaking it says that any two points in A can be
joined by a continuous path within the set A. Here is another perspective to connectedness.

Proposition 2.27. If A C C, the following statements are equivalent.
(i) A is connected.

(ii) Every set E with ) # E C A that can be written as E =UNA=FNA, for some U C C
open and F C C closed, must satisfy £ = A.

Proof. Let us begin with (i) = (ii). Assume that A is connected, and for the sake of contradic-
tion, that E' is a set as in (¢7) and still £ C A. Putting V := C\ F, we have

0 £A\E=(C\F)NA=VnA.

The set V, being the complement of a closed set, is open. It is immediately checked that {U,V'}
form a separation of A, a contradiction.

To show (i1) = (i), assume (i7) and suppose, seeking a contradiction, that A has a separation
{U,V}. If we define E := U N A and F = C\ V, the properties of the separation UNV N A =)
and A C UUYV show that E = FN A as well. Because UN A # 0 # V N A, we have that E # ()
and A\ E # (), contradiction (ii). O

Proposition [2.27] is often through which we show that a function f on a domain () satisfies
certain pointwise property, say P, at all points of Q. If f satisfies P at some 2y € §2, we define

E :={z€Q : f satisfies property P at the point z}.

Since 29 € E, and Q2 C C is already open (and connected), if we manage to prove that E is open,
and that E = FNQ for some closed set F' C C, Proposition [2.27]tells us that then E = Q, implying
that f satisfies property P at all z € Q.

Let us implement this idea to obtain a useful property involving locally constant functions.

Proposition 2.28. Let Q C C be a domain, and f : Q — C continuous such that f is locally constant,
meaning that for every z € Q there ezists € > 0 with D(z,e) C Q and f constant on D(z,e). Then
f s constant in €.

In particular, if Q@ C C is a domain, f : Q@ — C is continuous, and f(Q) = 0, then f is
constant.

Proof. Fix a point zg € €0, and define the set

E={ze€Q: f(z) = f(20)}

Obviously zp € E C Q. Given z € E, there is ¢ > 0 with D(z,¢) C Q and f(w) = f(2) = f(20)
for all w € D(z,e). This shows that D(z,e) C F, and so E is open. Also, since f is continuous,
FY({f(20)}) can be written as f~1({f(20)}) = F N Q for a closed subset F C C, by virtue of
Proposition And then clearly E = f~1({f(20)}) = F N Q. By Proposition and the
connectedness of ), we get that F = (Q, showing that f is constant in €.
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For the second part, if f(2)" = (), then for every z € Q we can find £ > 0 so that f(2) N
(D(f(2),e) \ {f(2)}) = 0; see the Definition of accumulation point. By the continuity of f,
there exists 6 > 0 so that

f(D(2,8)) € D(f(2),¢);

which, by the previous observation, leads us to f(D(z,9)) \ {f(2)} = 0. Thus f is constant on
D(z,9). By the first part of the present proposition, we conclude that f is constant in €.
O

All path-connected sets are connected. However, there of connected sets in C that are not path-
connected. A prototypical example is the graph of the function (0, 1] 2  + sin(1/x) together with
the origin, that is,

A = {(z,sin(1/x)) : z € (0,1]} U{(0,0)}.

However, for open sets, the notions of connectedness and path-connectedness are identical.
Proposition 2.29. Let A C C and f: A — C be continuous. The following hold.
(i) If A is connected (resp. path-connected), then f(A) is connected (resp. path-connected).
(ii) If A is path-connected, then A is connected.
(i1i) If A is a domain, that is, open and connected, then A is path-connected.

Proof.

(i) We begin with the statement concerning connectedness. Suppose that f(A) is not connected.
Then f(A) admits a separation into open sets U,V C C as in Deﬁnition By Proposition m
Y U)=W1NAand f~1(V) = Wan A for open sets Wy, Wy C C. It is straightforward to check
that Wy, W5 provide a separation of A, implying that A is not connected.

Now, if A is path-connected, and u,v € f(A) are two points, let z,w € A with f(z) = u and
f(w) = v. Let 7 : [a,b] - A a continuous function with vy(a) = z and v(b) = w. The mapping
g:= fov:la,b] — f(A) defines a continuous function with g(a) = u, g(b) = v.

(ii) Assume that A has a separation U, V. In particular we can find points z € UNA and w € UNV.
By the path-connectedness of A, there is 7 : [a,b] — A continuous with v(a) = z and ~(b) = w.
From Proposition v~ YU) = I'NJa,b] and v~ (V) = J N [a,b] for open sets I,J C R. This
contradicts that [a,b] is a connected set of R.

(iii) Fix a point zp € A, and define
A, :={z € A : there exists v : [a,b] = A continuous with v(a) = 29, 7(b) = z}.

Clearly, zg € A,, because we can take v as the path constantly equal to zp. We now show that A,
is open. Indeed, given z € A, let 71 be joining 2y and z as in the definition of A,,. Because A
is open, D(z,e) C A for some € > 0. Now, let w € D(z,¢), and let v : [b,0+ 1] — D(z,¢) be the
path defined by v2(t) = (1+b—t)z + (t — b)w, for t € [b,b+ 1]. Note that 2 is just the segment
line that joins z and w, and clearly v2(t) € D(z,¢) for all t € [b,b+ 1]. Concatenating v; and 2,
we obtain a new path v : [a,b + 1] — A that is continuous and joins zp and w. This shows that
D(z,e) C A,,, and hence A, is open.

Now we show that A\ A, is open too. Indeed, if z € A\ A,, then D(z,e) C A for some € > 0
because A is open. If there exists w € D(z,¢) N A, then there is a continuous path v in A joining
w to zp. But again the concatenation of v with the segment that joins w to z (this segment is
contained in D(z,¢) and so in A), we obtain a continuous path in A joining z to zp, a contradiction
because z ¢ A,,. We have shown that D(z,e) C A\ A,,, whence A\ A, is open.

Defining F' = A\ A;,, we have that F' C C is closed and A,; = F' N A. Since A is connected,
Proposition we obtain A,, = A, which shows that any z € A can be joined to zp by a
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continuous path in A. Now, if z,w € A, let v1,7% : [¢,d] — A continuous with v1(a) = zp,
71(b) = z, 72(a) = 2zp and y2(b) = w. The path 47 : [a,b] — A defined by 41(t) = v1(b+ a — t)
is continuous and satisfies 71(a) = z, y1(b) = z9. We thus concatenate ;7 and 75 to obtain a new
continuous path +v on A joining z and w. O

Example 2.30. A very special case of path-connected sets are the convex sets. We say that A C C
is convex if for any two points z,w € A, the segment joining z,w, i.e., {(1 —t)z +tw : t € [0,1]},
is entirely contained in A.

2.2 Complex differentiability

In Section [2.1.5] we learnt that continuity of functions in C is essentially the same as continuity of
functions in R? — R2. For instance, we showed in Proposition that f: C — C is continuous
at a point zp € C iff Re(f) : C — R and Im(f) : C — R are continuous at 2. In coordinates, it is
the same as saying that f = (f1, f2) : R? — R? is continuous at (zg,0) € R? iff f; : R> — R and
f2 : R?2 = R are continuous at (zq, o).

This section is devoted to the complex version of differentiability. We remind that a function
g : 2 — R™ defined on an open set Q@ C R" is said to be differentiable at (xg,yo) € Q provided
there exists a linear map Dg(xg,yo) : R™ — R™, called the differential of g at (x0,y0), such that

lim llg(x,y) — g(x0,y0) — Dg(xo,yo)(x — 0,y — o)l _
(@.y)—(z0,y0) (x — 0,y — o)l

0, (2.2.1)

where we denote by ||-|| the Euclidean norm both in R™ and R™. In the case m = 1, the differential
Dg(xq,yo) is identified with a vector Vg(xo,yo), called the gradient of g at (zo, yo)-

So, if f: Q Cc R? — R? is differentiable at (zg,%0), and we write f in components f(z,y) =
(f1(z,y), f2(x,y)), the differential has associated matrix

(y;(xo,yo) %‘Z(wo,yo)
P P! 7

%(on’?JO) aﬁy(%ﬂ@)

where %, %—J;l, %, %—];2 are the partial derivatives of f at (xg,yo), namely,

df1 o filwo +tyo) — fi(zo,%0)  Ofa .. filwo, o +t) — fi(zo,y0)
O (z0,%0) = %g% ‘ ) a—y(azo,yo) = ]gg% ;

(2.2.2)
dfa o falwo +ty0) — fa(zo,90)  Ofe o falwo,yo +t) — fa(zo,90)
%(ZEOJJO) = lim " ; Biy(l”o,yo) = lim r :

(2.2.3)

We remind that the existence of these partial derivatives does not guarantee the differentiability
(and not even the continuity) of f at (zg, o).

It is easy to see that the differentiability of f at (zg,yp) is equivalent to both fi, fo : @ — R
being differentiable (in the sense of ) at the same point. However, unlike for continuity, the
complex differentiability of f : Q C C — C at 29 = xg+1yp is strictly stronger than saying that both
Re(f) : @ — C, Im(f) : © — R should be real-differentiable at (xg,yo). Complex differentiability
additionally implies that the differential D f(z¢, yo) must have associated matrix of the form

)

We will take care of this in the forthcoming subsection.
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2.2.1 Differentiable and Holomorphic functions

The definition of derivative for a complex function is the natural complex version of real functions.

Definition 2.31 (Complex differentiability). Let Q@ C C an open set, f : Q@ — C a function, and
20 € Q. We say that f is (complex) differentiable at zy if the following limit exists (meaning
belonging to C):
o 1)~ ()
Z—20 zZ — 20
In such case, we denote this limit by f'(20), and call it the derivative of [ at zp.
And if f is differentiable at every point of ), we then say that f is holomorphic in €.

We denote by H(S2) the collection of all holomorphic functions in ).

For functions f : 2 — C, by differentiability we will always understand complex differentiability
in the sense of Definition 2311

Example 2.32. Naturally, the function f : C — C given f(z) = z is holomorphic in C, and f'(z) =1
for all z € C. A constant function f(z) = w, for all z € C, is also holomorphic with f'(z) = 0 for
each z € C.
The function f : C\{0} — C given by f(z) = 1/z is holomorphic in C\ {0}, with f'(z) = —1/22
for all z # 0. Indeed, if z # 0,
f'(z) = lim fw) = fz) = lim Yw=1/z = lim -1_-

wW—rz w — z w—z w —z w—z W2 ,22 ’

Functions that are not differentiable at any point of C are for example z +— Z, z — Re(z),
z +— Im(z). The reason is that for any z € C, for any w € C\ {0}, one has

w—Zz w—z

w—2z w-—2z2

whose limit as w — z does not exist, because for w = z 4+ ¢ with ¢ € R, the above fraction is
identically 1, while for w = z + it, with ¢ € R, the fraction equals —1. For the same reason,
z — Re(z), z — Im(z) are nowhere differentiable C. Notice that these three functions are of class
C>*(R%,R?) and even R-linear.

Remark 2.33. If f : Q — C is differentiable at zy € €0, then f is continuous at zg. In fact, f is
Lipschitz at zp, meaning that there exist M > 0 and r > 0 so that |f(z) — f(z0)| < M|z — z| for
all z € D(zg,7).

Proof. Indeed, taking ¢ = 1 in Definition we find some r > 0 so that D(zp,7) C 2, and, if
z € D(z0,7) \ {20}, then
f(z) = f(20)

Z— 20

— fl(z20)| < 1.
The triangle inequality gives, for all z € D(z,7) :
£(2) = f(z0)] < (L+1f'(20)]) [z — 20| = M|z — 2];
where M = 1+ |f'(z0)|. In particular, this implies that f is continuous at zg. O
Proposition 2.34. If Q) C C s open and f,g: Q0 — C are differentiable at zy € §2, then:
(i) f+ g is differentiable at zo, and (f + g)'(20) = f'(20) + ¢'(20)-

(ii) fg is differentiable at zo, and (fg)'(z0) = f'(20)9(20) + f(20)'(20)-
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(111) If g(z0) # 0, then f/g (defined on a disk D(zg,r) C ) is differentiable at zy, with
<f>/ (o) = £/C0)9(0) = 9/ Go) (o)

g 9(20)?

(iv) (The Chain Rule). If U C C is open with g(z0) € U, g : Q@ — U, and h : U — C s
differentiable at zy, then hog:§ — C is differentiable at zg and

(hog)'(20) = W' (9(20))d (20)-
Proof. We can reproduce the arguments of the proofs of the corresponding results for real functions
of one variable.
(i) This is very easy, using simply the definition of complex differentiability.
(ii) It suffices to write

10~ o) _ ) (L) | g ()=,

zZ— 20 Z— 20 Z— 20

and bearing in mind that lim ¢g(z) = g(z0) (Remark [2.33), the previous expression converges to
Z—20

f'(20)9(20) + g'(20) f'(20) as z = z.

(iii) By (ii), it is enough to prove it for f(z) =1 for all z € Q. Now, denote h = 1/g, which is well
defined on a disk D(zg,r) because g(zp) # 0 and g is continuous at zg. Then 1 = hg on D(zp,7),
and differentiating at 2o using (ii), we get 0 = h/(20)g(20) + h(20)g’(z0). Therefore

1\’ —h(z0)g' —q'
g 9(20) 9(20)
(iv) Given € > 0, the differentiability of g at zg gives 6 > 0 so that D(zp,0) C  and

9(2) — g(20) — ¢'(20) (2 — 20)| £

< , forall z € D(2,6 20} 2.2.4
=l 21+ W (gCo))) Codni o (224)

Also, by Remark we can find M > 0 and r > 0 (depending only on g and zg) for which
lg(2) — g(20)| < M|z — 29| for all z € D(zp,r) C Q. (2.2.5)

And the differentiability of h at g(zo) gives some 7 > 0 such that
€

[A(w) =h(9(20)) = h'(9(20)) (w=g(20))| < 577 lw=9(20)| forall w € D(g(z0),m)\{g(z0)}. (2:2:6)

So, define 6* := min{d,r, {-} and let z € D(z9,6*). We simultaneously have (2.2.4), (2.2.5) and
(2.2.6) with w = g(z) (as, by (2.2.6)), |g(2) — g(20)| < M|z — 20| < n). Therefore, we can use all

these estimates to conclude
[h(g(2)) — 9(h(20)) — h'(9(20))g' (20) (= — 20)|

|z — 2o
_ [n(g(2)) — (h(z0)) ~ Wl(0))(2) ~ gD [1(g(z0)) (9(2) — glz0) ~ g (o) — )|
- |z — 20| |z — 20|
e 19 =gl | £ € & _
S e P Gy S22 T

O]

For example, a consequence of Proposition is that every function of the form f(z) = 2",
with n € N, is holomorphic in C, with f’(z) = nz"~!. This, in combination with the Chain Rule,
shows that for n € Z, n < 0, the function f(z) = 2" is holomorphic in C \ {0} with derivative
f'(z) = nz""L.

Also, every polynomial P : C — C, P(z) = ag + -+ + ap2™, n € N, is holomorphic in C.
Moreoer, all rational functions f = P/Q with P,Q polynomials, are holomorphic in the open set

{z€eC: Q(z) #0}.
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2.2.2 The Cauchy-Riemann Equations and some consequences

The following theorem characterizes complex differentiability of a function and is a key component
in complex analysis.

Theorem 2.35 (The Cauchy-Riemann Equations). Let Q C C an open set, f: Q — C a function,
and zo = xg + iyg € Q. Denote u = Re(f) : @ = R and v = Im(f) : Q@ — R. Then, [ is
differentiable at zy if and only if

(a) both uw and v are differentiable at (xq,yo) and

(b) the partial derivatives of u,v satisfy the Cauchy—Riemann equations:

ou ov
%(xﬂvy(ﬁ = @(x07y0)
= 2.2.
T ) = — 2 (w0, w0) o
dy To,Yo) = Ox Zo,Yo)-
Moreover, in such case we have
ou Ov ov Ou
f(z0) = %(fﬁo,yo) + Z%(iﬂo,yo) = 87/(%’%) - Za*y(l‘o,yo) (2.2.8)

Proof. We will prove it by following a chain of equivalences. Looking at Definition f being
differentiable at zj is equivalent to the existence of L € C (which will be f’(zp)) so that

i 1) = f(20) = L(z = 20) _ 0. or, equivalently, lim f(z) = f(20) = L(z — =)

Z—20 Z— 20 Z—20 ‘Z - ZO’

=0.

(2.2.9)
By Proposition that the limit in (2.2.9) equals 0 is equivalent to saying that the limit of
the real and imaginary parts exist and equal 0 as well. Let us find the real and imaginary parts.
Writing z = = + iy, and using that f = u + v, the numerator is

u(z,y) + w(x,y) — u(zo, yo) — iv(zo,yo) — (Re(L) + i Im(L)) ((z — x0) +i(y — vo)),
whose real and imaginary parts are respectively
u(z,y) — u(wo, yo) — (Re(L)(z — zo) — Im(L)(y — o)) ,
v(z,y) — v(zo,y0) — (Im(L)(x — z0) + Re(L)(y — vo)) -

Hence, after writing |z — zo| = |[(z,y) — (0, y0)]|, (2.2.9) is equivalent to the existence of L € C so
that

w(@,y) — w(wo, yo) — (Re(L)(x — xo) — Im(L)(y — yo))

lim =0, and
(@,9)—(z0,90) I (x,y) — (w0, yo)ll

i U@:y) —o(zo, yo) — (Im(L)(z — 20) + Re(L)(y — y0)) _ 0. for some L € C.
(@,9)— (z0,90) (@, y) — (w0, yo) |l

The vectors (Re(L), —Im(L)) and (Im(L),Re(L)) define linear mappings from R? to R2. So, the
two last equations are equivalent to saying that “there exists some L € C for which

1. u: Q — R is differentiable at (xo,yo) and

ou ou

Vu(zo,yo) = <ax($0,y0)a 81/(950,90)) = (Re(L), —Im(L)). (2.2.10)

2. v: Q — R is differentiable at (zq,yo) and

Vu(zo,yo) = <g;}(xg,yo), gZ(CEo,yo)) = (Im(L),Re(L)).” (2.2.11)
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But this is obviously the same as saying that u,v : Q — R are differentiable at (z¢,yp) and

0 0 0 0
872(1:07y0) - 8*2@0,?/0% a*Z@O;ZUO) = _aiz(xOﬂyO)'

We have shown the equivalence of the assertion. Now, observe that if any of the previous equiv-

alent conditions are satisfied, then L = f/(zp) in our notation, and from (2.2.10))-(2.2.11]), we get
Re(f'(20)) = g—g(:co,yo) = %Z(mo,yo) and Im(f"(z0)) = g—;(xojyg) = —%(SUQ,yo). We derive

ou Ov ov ou
f/(Zo) = %(fﬂo,yo) + Z%(fﬁo,yo) = a*y(%,yo) - l@@m?/o)-

O]

For instance, the Cauchy-Riemann equations offer another argument to justify why
f(z) = Z is not differentiable at any z € C. Indeed, writing f(x + iy) = = — iy, we have that
u(z,y) := Re(f)(z,y) = v and v(z, y) := Im(f)(z,y) = —y. Sou,v : R? — R are real-differentiable.
However,

ou ou ov ov

%(m,y)z L, %($,y):0, %(x,y)zo, aiy(xvy)zil'

So clearly %(x,y) + g—Z(x,y), and Theorem ﬁ says that f is mot differentiable at any z =
x +1iy € C.

It is important to notice that the real and imaginary parts Re(f) and Im(f) of a function
f:Q — C may have partial derivatives that satisfy the Cauchy—Riemann equations at a point zg,
and yet f is not even continuous at zg. It is therefore really necessary the hypothesis in Theorem
that the functions Re(f) : € — R, Im(f) : € — R are real differentiable at zp. We will
illustrate this by means of Exercise using the complex exponential function.

Corollary 2.36. Let 2 C C be open, and f : Q@ — C a function so that the partial derivatives
%, g—;, %, % exist at every point of 0, where u = Re(f) and v =Im(f). If %, %, %, g—; Q=R
are continuous at some zy € §, and satisfy the Cauchy-Riemann equations (2.2.7)) at zg, then f is

differentiable at zg.

Proof. Since the partial derivatives of v and v exist in all of Q and are continuous at zg = xg + iy,
then u,v : Q — R are differentiable at (z¢,y0). Together with the assumption that the partial
derivatives of w and v satisfy the Cauchy-Riemann equations , Theorem says that f is
differentiable at zg. O

Corollary 2.37. Let Q C C be open and connected, and f € H(Q) with f'(z) = 0 for all z € Q.
Then f is constant.

Proof. For each z = x + iy € U, formulas (2.2.8)) and (2.2.7) imply

DD ) = LM 1) = 2 ) = ST

(z,y) = 0.

Thus V Re(f) and V Im(f) are null on Q. From differential calculus in R?, the connectedness of (2
leads to Re(f),Im(f) being constant in €2, and thus f is constant in Q as well. O

Remark 2.38. Let Q@ C C an open set, f :  — C a function (complex) differentiable at zy =
zo + iyo € Q. As as R%-mapping f : @ — R2, by Theorem is (real) differentiable at (g, o)
with differential map D f(zo,y0) : R> — R? determined by the matrix

P o) D)) (2D gy 2D
= g v L (2.2.12)
oTm() o1m() o1 ) ORe(f)

T(mo,yo) 3y (%0, v0) o (%0,%0) 97 (%0, o)
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In particular, D f(xg,yo) is given by an antisymmetric matrix. Moreover, computing the determi-
nant and looking at formula (2.2.8)) we conclude

2 2
| (z0)|” = <8lzeaff) (xo,yo)) + (818ma§f) (1‘07,@0)) = det(D f(wo,0))- (2.2.13)

2.2.3 The Inverse Function Theorem for Holomorphic maps

The identity (2.2.8) will help us to prove an inverse function theorem for holomorphic functions.

Theorem 2.39 (Inverse Function Theorem). Let 2 C C an open set, f: Q — C holomorphic in Q
with f': Q — C contmuousﬂ and zy € Q so that f'(z9) # 0. Then there exists an open set U C
with zo € U such that V := f(U) is open, the restriction of fi, : U — f(U) is a bijection, and its
inverse f~1:V — U is holomorphic in V, with

forall weV. (2.2.14)

Proof. Since f : Q — C is holomorphic and f’ is continuous, by Theorem [2.35| and (2.2.8)) we have
that f : Q@ C R? — R? (regarded as a function R? — R?) is real differentiable, with its partial
derivatives continuous in Q. Thus, f is of class C(£2, R?). Write zg = zg +iyo. By and the
assumption f’(z9) # 0, we have that det(Df(zo,y0)) # 0, meaning that D f(zo,yo) is invertible.
By the Inverse Function Theorem in R™, there exists an open subset U of {2 containing zg, with
f(U) open and f|, : U — f(U) is a bijection whose inverse f~! : f(U) — U is also of class
CH(f(U),R?). Moreover, Df(x,y) is invertible for every (x,y) € U and the differential of f~! at
w € f(U) satisfies

-1

D(f™H)(w) = (Df(fH(w))) (2.2.15)

Let us check that f~!: f(U) — C is holomorphic in f(U) and prove (2.2.14)). Let w € f(U) and

z € U with f(2) = w. By (2.2.15)), Df(z) is invertible, and by (2.2.13) we get f’(z) # 0. Thus,

considering the limit of the inverse, given € > 0 there exists 6 > so that 0 < |u — z| < 6, u € U,

implies
U— 2z B 1

flw) = f(z)  f'(2)

Now, by the continuity of f~! on f(U), there exists > 0 so that |£ —w| < 7, £ € f(U), implies
If71(€) — f~H(w)| < 6. We can thus apply (2.2.16) with f~1(¢) in place of u to obtain

’f‘l(ﬁ) —ftw) 1
§—w f'(2)

<e. (2.2.16)

<e.

O]

The argument we used in the proof of Theorem to calculate the derivative of an inverse
function will be reproduced when establishing the definition of holomorphic roots, logarithmic and
power functions; see Subsection [2.4.3

2.3 Conformal and Harmonic maps

There are two fundamental classes of real mappings that are closely related to holomorphic func-
tions: the conformal mappings, and the harmonic functions.

We begin by study the conformal maps, for which we first need to understand the differentiation
of curves in the complex plane.

We will see later that holomorphic functions are of class C°°, and so the assumption that f’ is continuous can
be done away with.
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Definition 2.40. If a,b € R with a < b, we say that a curve 7 : (a,b) — C is differentiable at
to € (a,b) if its real and imaginary parts Re(y),Im(v) : (a,b) — R are differentiable at to. And in
this case, we define

7' (to) = Re(7)'(to) + i Im(v)'(to) = (Re(7)'(to), Im(v)'(to)) -

Similarly, we say that v is of class C*((a,b)), provided Re(v),Im(v) : (a,b) — R are of class
Ct ((a,b)).

We remind that if @ C R™ is open, a function h : Q — R™ is of class C*(Q) if h has partial
derivatives up to order k at every point of 2, and those partial derivatives are continuous in Q.

Lemma 2.41. Let Q@ C C be open, f : Q — C differentiable at zy € Q and v : (—e,e) — Q is
differentiable at 0 with v(0) = z9. Then f o~y : (—e,e) — C is differentiable at zy = x¢ + iyo, with

(f 07)'(0) = f'(20) - 7'(0) = D f (20, y0)7'(0);
where the first product is between complex numbers, and the second as a matriz and a vector.

Proof. If zo = xo + iyp, by Theorem f:Q c R? — R? is real differentiable at (xo, o).
Regarding v : (—&,e) — Q as a real-valued curve, we can apply the Chain Rule for differentiable
real-valued maps to deduce that f o~y is differentiable at 0 with

(f ©7)'(0) = Df(7(0))7'(0) = Df(x0,40)7'(0)-

But the Cauchy-Riemann equations (2.2.7)) for f at zp imply that

28D (9, 90) ~ 2520 (z9,90) ) (Re(1)'(0)

) (o, y0) 2B (25, 90) | \Im(y)(0)

Df(z0)7'(0) =

Re(7)'(0) 28l (20, o) — Tm(7)/(0) 220 (4, o)

Re(7)'(0) 222U (20, o) + Tm()(0) 2R (2, ).

Recall that f'(z9) = 8%7‘?(:130, Yo) + i2 (f) (xo,y0) by -, and so the components of the last
vector are respectively the real and i 1mag1nary part of the complex product f'(zp) - 7/(0). O

We define conformal maps as those real differentiable maps that preserves angles and orienti-
ation.

Definition 2.42 (Conformal Map). Let Q C R? be open, zo € Q, and f : Q — R? real-differentiable
at zg. We say that [ is orientation-preserving at zo if det(Df(z)) > 0.

Also, we say that f is angle-preserving at zo if for any two C' curves v1,7v9 : (—¢,¢) — Q
with 71(0) = 72(0) = 20 and 1(0) # 0 # 75(0), one has that (f o 71)'(0) # 0 # (f ©72)'(0) and

((f ©7)'(0), (f 272)'(0)) _ (71(0),75(0))
|(f o) O)I(f 0 72) ()] 17 (0l (0)]”

Here (u,v) denotes the dot product between u,v € R2, namely, if u = (u1,u) and v = (v1,va),
then (u,v) = u1v1 + ugva.

Finally, we say that f is conformal at zy if f is both angle-preserving and orientation-
preserving. And if f is conformal at each zy € ), we then say that f is conformal in (.
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Note that if u,v € R? are non-zero vectors, we can write

(u,v)

lull[[o]

cosf =

where 6 € [0, 7] is the angle between u and v, and |lu||,||v|| are the Euclidean norms of u and
v. The angle-preserving along with orientation-preserving can alternatively be described using
the argument Arg : C\ {0} — (—m,n]. Namely, if f,, zp are as in Definition then f is
both angle and orientation-preserving if for any two curves =1,y2 as in Definition [2.42] one has

(fom)'(0) # 0 # (f 072)'(0) and
ag (0 )0)- o7V @) = Arg (4400)- 750)).

We next show that conformal mappings are precisely the holomorphic functions with non-zero
derivatives.

Theorem 2.43. Let Q2 C C be open, zo € Q, and f : Q — R? a function. Then, the following are
equivalent.

(i) f is (complex) differentiable at zo with f'(zp) # 0.
(ii) f is conformal at z.

Proof.

(i) = (i1). Then f is real-differentiable with D f(z) having associated matrix of the form (Z _ab> ,

for a,b € R, and f’(29) = a + bi. Since f'(z9) # 0, we have that a or b are non-zero, and so
det(Df(20)) = a® +b*> > 0. Thus f is orientation-preserving at zo. To check that f is angle-
preserving, let v; and 72 be as in Definition Since f’(z9) # 0, Lemma implies that
also

(f ©73)'(0) = f'(20)7;(0) # 0,

a
b
denotes the identity map. Thus, using Lemma we get

((f 071)'(0), (f 0 72)'(0)) = (A -~1(0), A 75(0)) = (A 41(0))"(A-5(0))
= (41(0))" A" A75(0) = (a® + b*)(71(0),75(0)) = | £'(20)*(31 (0), 75(0));
where we used formula in the last identity. And again using Lemma we have that
(f 07;)'(0) = f'(20)7;(0), from which we deduce

((f 071)'(0), (f 272)'(0)) _ 1" (20)*(1(0),7%5(0)) _
[(f o) O)[(f o 72)(O) | (z0) Pl (0)[72(0)]

for j = 1,2. Now, if A := is the matrix above, then clearly A'A = (a2 + b?)I, where [

—~

(71(0),75(0))
Iy |

(0)[]72(0)

—~

(i19) = (4). Assume, without loss of generality, that zp = 0. Let (Z ;) be the matrix associated

with D f(0), which has positive determinant, as f is orientation-preserving. Define, for each 6 € R,
the curve vy(t) = t(cos6,sinf) = te’, for all t € R. Clearly v,(0) # 0, and, employing the Chain
Rule for real-differentiable functions, we get

(f ©76)'(0) = D f(0)75(0) # 0,
for all 8 € R. Now, since f is angle-preserving, we have

(Df(0)7(0), Df(0)75(0)) _ (16(0),75(0))
1DF0)5% 0D 0)3(0)]  [6(0)lvg(0)]”
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which means that

{(a,b),(acosf + csinf,bcosd + dsinf))
Va2 +b2y/(acos + csinf)2 + (bcos O + dsin )2

= cos 6.

Computing the terms above, we get that
(a* + b*) cos 0 + (ac + bd) sin ) =

= cos v/ a? + 1)2\/(a2 +b2) cos? 0 + (c2 + d?)sin? 0 + 2sinf cos O(ac + bd),  (2.3.1)

for all # € R. Letting = 7/2 in (2.3.1) implies ac + bd = 0. So, for all § € R, (2.3.1)) becomes

(a? +b*) cosf = cos O/ a2 + b2\/(a2 +b2) cos? 0 + (c2 + d?) sin? 6. (2.3.2)

Now we take 6 = /4 in (2.3.2) and use that cos? 6 = sin?§ = 3 to derive:

1 1
a2+b2:§(a2+b2)+§(02+d2), and so a® +b® = c* +d°.

We have deduced the relations a® + b?> = ¢? + d? and ac + bd = 0. But note that this implies
a® + 2aci — 2 = d? — 2bdi — b?, which in turn yields

(a+ci)* = (d — bi)>

Thus (a + ¢i +d — ib)(a + ci — d + ib) = 0, so we get that either a = d and ¢ = —b, or a = —d

and b = c. But the latter gives the matrix , whose determinant is —a? — b > 0, a

a
b —a
contradiction. Therefore, we must have a = d and ¢ = —b, and so the partial derivatives of f at zg
satisfy the Cauchy-Riemann equations; see . By Theorem f is complex differentiable
at zg. Moreover, in our notation, and by virtue of , we deduce

f'(z0) = a+ib #0,
as a® + b2 = det(Df(z9)) > 0. O

Now we consider the class of harmonic functions. We begin by defining those that are real-
valued, essentially as those functions that satisfy the Laplace Equation.

Definition 2.44 (Real Harmonic Function). Let © C R? be open and u : 0 — R a function of class
C?(2). We say that u is harmonic if u satisfies the Laplace Equation:

u P

Au = — =
YT a2 + Oy?

on €. (2.3.3)

By saying that u € C%() we of course mean that u has partial derivatives up to order two,
and are continuous in €.

For example, the function f : R? — R? defined by f(z,y) = 22 — y? is harmonic, but g : R? —
R?, g(x,y) = 22 4+ y? is not.

It turns out that the Cauchy Riemann-Equations imply that the real and imaginary parts of
holomorphic functions are harmonic.

Proposition 2.45. Let Q C C be open and f : Q@ — C holomorphic such that Re(f),Im(f) : Q — R?
are of class C*(Q) E| Then Re(f) and Im(f) are harmonic in Q.

2We will see in Chapter [4| that this assumption is redundant, as holomorphic maps are of class C°°.
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Proof. By the Schwarz’s theorem on the mixed partial derivatives, one has, at every (z,y) € Q,

But applying the Cauchy-Riemman equations ([2.2.7)) to the partial derivatives between brackets,
we get

02 Re(f) 0 (ORe(f) 0 [ORe(f) _ 0?Re(f)
W(x,y)*a} ( o ) (95719)*—% <8y) (ﬂ?vy)*—aiyg(%y)-
Thus Re(f) satisfies (2.3.3). Similarly, we get that Im(f) is harmonic. O

Proposition [2.45| motives the following definition.

Definition 2.46. Let 2 C C be open and let u :  — R be a harmonic function. We say that
v: Q — R? is a harmonic conjugate of u if the function u + iv is holomorphic in .

If 2 is open and connected, the harmonic conjugates are unique up to an additive constant; see
Exercise [2.20] It is possible to show that on domains € that are simply connected, every harmonic
function has a harmonic conjugate.

One can also define harmonicity for complex-valued functions, as those functions whose real
and imaginary parts are (real) harmonic.

Definition 2.47 (Complex Harmonic Function). Let Q@ C C be open and f : Q — C a function of
class C%()). We say that f is harmonic if both Re(f),Im(f) : Q@ — R are harmonic in Q; in the

sense of Definition [2.7)
Looking at Proposition and Definition we deduce that, for f : Q@ — C with Q c C
open and f € C?(Q), then

f is holomorphic = f is harmonic.

The converse is clearly not true, for instance, the function f(z) = Re(z), z € C, defines a harmonic
function that is not (complex) differentiable at any point.

2.4 Elementary functions

This section is devoted to defining the complex analogous of elementary real functions such as
exponentials, trigonometric functions, logarithms and power functions, and examine some of their
properties. In particular, we see how these functions are holomorphic in appropriate domains,
using either the Cauchy-Riemann equations , or some of the ideas from the Inverse Function
Theorem [2.39

2.4.1 The Complex Exponential Function

Let us now get back to formula ((1.5.1)) in Section where we defined an exponential function in
the axis iR by setting e’ = cos + isinf for all § € R, and examined some of its properties; see
(1.5.2) and (|1.5.3). We extend this function to the whole complex plane, in a very natural way.

Definition 2.48 (Complex exponential function). We define the complex exponential function
C > z+— €% by the formula

Coz=x+4iy—e”:=e ¥ =% (cosy +isiny).

In other words, e* = eRe(2)gtIm(z)
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This function coincides with the real exponential x — e* when z € R. Also, note that
le*| = eRe) 2 eC. (2.4.1)
More fundamental properties are collected in the following theorem.
Theorem 2.49. The complex exponential function has the following properties.

(i) z v+ €® is holomorphic in C with derivative equal to €* for all z € C.
(ii) e*T% = e*e® for all z,w € C.
(iii) € # 0 and (e*)~' = e~* for all z € C.
(iv) For each n € Z and z € C, we have (e*)" = e"?.

(v) The mapping z — e*, C — C\ {0} is surjective. Moreover, for each w € C\{0}, the solutions
z € C of the equation € = w are

log |w| + i arg(w) := {log |w| + 6 : 0 € arg(w)} = {log |w| + i (Arg(w) + 2k7) : k € Z}

(vi) e = e" if and only if z — w = 2kmi for some k € Z. In particular, e = 1 if and only if
z = 2kmi for some k € Z.

(vii) For each a € R, define S, := {2z € C : Im(z) € (a — 7,a + «|}. The mapping z — €* is a
bijection S, — C\ {0}.

Proof.

(i) The real and imaginary parts of the exponential function are respectively R? > (z,y) — u(z,y) =
e®cosy and R? 3 (z,y) — v(z,y) = e*siny. These functions are differentiable in R?, and their
partial derivatives are

@(x ) = €” cos %(x ) = —e®sin @(x ) = e”sin @(m ) = €” cos
8$ Y) = Y, ay Y) = Y, 8{E 1Y) = Y, ay YY) = Y.

The Cauchy Riemann equations ([2.2.7)) are satisfied for u, v, and hence z — e* € H(C).
(ii) Write z = a + b and w = ¢+ id, for a,b,c,d € R. We use Definition and formula (1.5.2)):

24w _ e(a—l—c)—i—i(b—i—d) — 6a—l—cei(b—l—d) — ea+ceibeid — eaeceibeid — (eaeib)(eceid) — ¢Fel.

e

(iii) Since either cosy # 0 or siny # 0 for all y € R, it is clear that e* # 0 for all z € C. About the
inverse, we use (ii) to write

(iv) It is a consequence of (ii) and (iii).

(v) If w € C\ {0}, by Theorem we can write w = |w|e? = el°8|vle for all § € arg(w). Writing
z = x + iy we have that e* = w if and only if

log | log ||

e“cosy=-e cosf, e“siny=ce sin 6.

Thus e* = w if and only if z = log |w| 4 i for 0 € arg(w). The last identity is just Lemma m

(vi) e# =1 if and only if e”(cosy + isiny) = 1. This is equivalent to siny = 0 and e* cosy = 1, in
turn equivalent to xz = 0, y € 2xZ. This shows that e® = 1 if and only if z € 27iZ.

Now, e* = e if and only if e = 1 (by (ii) and (iii)). By what we have just proved
z—w € 2miZ.

(vii) The injectivity follows from (vi), because z,w € S, and z — w € 2miZ imply z = w. And
for the surjectivity, given w € C\ {0}, we saw in (v) that e* = w if z = log|w| + i« for every
a € arg(w). Choosing « € arg(w) so that a € (a — m,a + 7), we get that z* := log |w| + ia € S,
and e*” = w. O
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2.4.2 Complex Trigonometric and Hyperbolic Functions

We continue defining extensions of the trigonometric and hyperbolic real functions based on the
complex exponential.

Definition 2.50 (Trigonometric complex functions). The complex cosine and sine are the func-
tions C 3 z — cos z,sin z defined by

eiz efiz eiz _ efiz
COS 2 1= %, sin z := — (2.4.2)

We also define the tangent z — tanz, the cosecant z — csc z, the secant z — secz, and the
cotangent z — cot z by

sin z 1 1 cos 2
, CSCz:=——, Ssecz:= , cotzi=—.
CcoS z Sin z COs 2 sin 2

tan z :=

These functions are of course defined at those points where the denominators are nonzero.

For real numbers 0 € R, the functions cos z and sin z agree with their real analogous, since by

expression ([1.2.1)) and property (|1.5.3]), we have
6i9 + e—i@ ei@ —i0

5 = Re(e) = cos# and SR Im(e®) = sin#.

27
Proposition 2.51. The functions z — cos z,sin z satisfy the following properties.
(i) z v+ cos z,sin z are holomorphic in C with (cosz)’ = —sinz and (sinz)' = cos z for all z € C.
(ii) z — cosz,sinz, C— C are surjective.
(iii) cos(z) = cos(—z), sin(—z) = —sinz, and cos z = sin(z + 5) for all z € C.
(iv) cos? z +sin?z = 1 for all z € C.
(v) For all z,w € C, we have

sin(z + w) =sinzcosw + cos zsinw, cos(z + w) = cos z cosw — sin z sin w.

Proof.
(i) By the definition (2.4.2)), this follows from the fact that z — e* is holomorphic in C.

(ii) Let w € C\ {0}. The equality cos z = w is equivalent to & +£~1 = 2w, for £ = e**. By Theorem
the exponential is surjective onto C \ {0}, so proving the existence of z so that cosz = w is
equivalent to proving the existence of ¢ € C\ {0} such that & + ¢~! = 2w. But this equation is the
same as £2 — 2wé + 1 = 0, which naturally has solutions on £ € C\ {0}. And when w = 0, we have
cos(m/2) = w.

The proof of the surjectivity of sin z is almost identical.

(iii) The first two identities are immediate from ([2.4.2). For the third one, use that e’z = i,

i .

e "2 = —1.

(iv) and (v) They are easily verified, using the properties of the exponential; see Theorem O

An obvious warning is that, unlike for real numbers, the estimates |cos z|, |sinz| < 1 are not
true in general.
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Definition 2.52 (Hyperbolic functions). The hyperbolic cosine and sine are the functions C >
z + cosh z, sinh z defined by

z —z z_ =z
cosh z := %, sinh z := %. (2.4.3)

We can also define the hyperbolic tangent z — tanh z as

sinh 2
tanh z :=

woshs’ 2 € {we C : cosw # 0}.

Clearly cosh(iz) = cos z and sinh(iz) = isin z. The functions z — cosh z, sinh z are holomorphic
in C, with (coshz) = sinhz and (sinhz) = coshz. We will derive further relationships in the
exercises; Section [2.5

2.4.3 Holomorphic Roots, Logarithms, and Power Functions

Defining the complex versions of the nth roots, the logarithmic and the power functions is more
delicate than a simple formula, especially if we want those functions to be holomorphic. In order to
get these functions defined with holomorphicity in as many points as possible, instead of considering
a single function, we need to consider branches of these functions. The key step is to understand
the structure of the branches of the argument.

Definition 2.53. A branch of the argument in a set E C C\ {0} is any continuous function
a: E— R with a(z) € arg(z) for all z € E.

According to Example the principal argument Arg : C\ (—o0,0] — R is a branch of the
argument in E = C\ (—o0,0].

It turns out that two branches of the argument in the same domain differ by an integer multiple
of 2m. Also, for every half-line from the origin, we can find a branch of the argument which is
continuous on the complement of that half-line. This is shown in the following proposition.

Proposition 2.54. Let Q@ C C\ {0} be a domain, and ai,as : Q@ — R be two branches of the
argument. Then there exists k € Z so that a1(z) = aa(z) + 2kn for all z € Q.

Besides, for every v € R\ {(0,0)}, for the half-line £, = {Mv : X\ > 0}, there is a branch
ay : C\ £, = R of the argument in the domain C\ £,.

Proof. For each w € €2, we can apply Lemma to obtain aj(w) — ae(w) = 2mn(w), for some
n(w) € Z. The continuity of oy — g in © implies that for every w € Q there is ¢ > 0 such that
D(w,e) C © and

a1(z) — ag(z) = 2mn(w), forall z € D(w,e).

Therefore, oy — a2 is continuous and locally constant in the domain 2. By Proposition we
get that a; — ag is equal to a constant of the form 27n, with n € Z. This proves the first part.

And if v € R?, |jv|| = 1, we write that v = € for § = Arg(v) € (==, 7). If & = =, then
4, = (—00,0] and we simply set «, := Arg. And if § € (-7, ), we define o, : C\ ¢, — R by

{Arg(z) if Arg(z) € (—m,0]

o (2) = Arg(z) —2m if Arg(z) € (0, 7).

Since Arg is continuous in C \ (Arg™'({r})U{0}), it is clear that a, is continuous in C \
(Arg'({6}) U {0}), and naturally ¢, = {0} U Arg~*({6}). O

We next define the branches of nth roots as continuous right-inverses of the function z — 2z™.

Definition 2.55. If n € N, with n > 2, and E C C is a set, a branch of the nth root in E is a
continuous function h : E — C so that (h(w))" = w for all w € E. That is, h(w) € (Yw) for all
w € E; see Definition[1.1]].

According to Example the Principal nth root {/-: C\ (—00,0) — C is a branch of the nth
root in the set C\ (—00,0).
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Some observations on the branches of nth roots are in order.

Remark 2.56. If (2 C C is a domain so that there is a branch « : 2 — R of the argument, n > 2,
and hy, hs :  — C are two branches of the nth rooth in 2, then there exists an nth rooth of unity
¢ € (/1) so that hy(w) = & - ha(w) for all w € Q.

Indeed, by Theorem and because a(z) € arg(z) for all z € Q, we can write

ia(w) 27k (w) . ia(w)  27kg(w) .
hl(w) =1 ‘w’e%e%l’ hQ(w) =1 |w‘e%e+7‘

for all w € Q\ {0} and for functions ki,k2 : Q@ — Z. Because the functions @ > w —
o (w)

hi(w), he(w), ¥/|w|,e = are continuous, so are the functions
2k (w) . 2mko(w) -
N3z pi(w):=e o p2(w) :=e T
But note that o1, 1 : Q — (/1) take values on the finite set ({/1). By Proposition we get
that @1 and @9 are constantly equal to roots of unity &1, & € ({/1). Letting € = & /€1, we conclude
that ¢ € ({/1) and
hi(w) =& ha(w), w € Q.

Proposition also says that there is a branch h, : C\ ¢, — R of the nth root in the half-line
¢, for all v € R?.

Using some arguments from the proof of the Inverse Function Theorem we can prove a
general lemma about holomorphicity of branches of the inverse of a given function f.

Lemma 2.57. Let U,V C C be open sets, f : U — C a function, and h : V — C be a continuous
function with (V) C U and f(h(w)) = w for all w € V. Then, if wy € V is so that f is
differentiable at h(wo) with f'(h(wo)) # 0, then h is differentiable at wg, and
1
W(wg) = .
)= i)

Proof. Define zy := h(wg) € h(V) C U. By assumption f’(zy) # 0, and so, employing Exercise
and the Definition of complex derivative, we find § > 0 so that D(zo,9) C U, f(z) # f(z0) for
all z € D(zp,6), and

Z— 20 B 1
f(z) = f(z0)  f'(20)

Now, by the continuity of h, there exists n > 0 such that D(wg,n) C V and w € D(zy,n)
implies |h(w) — h(wp)| < d. For those w € D(wp,n), we have that h(w) € U, f(h(w)) = w, and

|h(w) — zo] < 0. Hence, (2.4.4) yields
’h(w) — h(wp) 1 ‘

<e, whenever z € D(z,9). (2.4.4)

’ h(w) =20 1
f(h(w)) = f(z0)  f'(R(wo))

w_wo  f(h(w0)) =e

As a corollary, every branch of the nth root in a domain is holomorphic.

Theorem 2.58. Let Q be a domain with 0 ¢ Q, let n € N with n > 2, and h : Q — R a branch of
the nth root in Q2. Then h € H(Q) and

B (w) = n(h(ul)))nl weQ. (2.4.5)

In particular, the Principal nth Root {/-: C\ (—o0,0] — C is holomorphic in C\ (—oc,0] and its

derivative is given by .
(V) (w) = W, w e C\ (—o0,0]. (2.4.6)
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Proof. Tt suffices to apply Lemmawith U=C,V=Qand f:U — C the function f(z) = z".
Since h is a branch of the nth root in €, one has f(h(w)) = (h(w))" = w and f'(h(w)) =
n (h(w))™™ % 0 for all w € Q.

O

Let us examine a couple of branches of holomorphic square roots.

Example 2.59. By Theorem the principal branch of the square root /- : C\ (—00,0] — C is
holomorphic in the domain C\ (—oo, 0] with

z€C\ (—00,0].

However, we may be interested in defining a square root function that is differentiable at some
points of the half line (—oco,0]. Then we can for example consider v = (1,0) € R?, which gives £, =
[0, 4+00) and the branch h, : C\ [0, +00) — C of the square root; see Remark for the existence
of such branch. By Theorem h, is holomorphic in C \ [0, +00) and k. (w) = (2h,(w))~! for
all w € C\ [0,4+00). In particular, we have defined a holomorphic square root that is holomorphic
at all w with Re(w) < 0.

No branch of the square root is differentiable at 0, but we can define a branch that is differen-
tiable at all points of {z € C\ {0} : Re(z) - Im(z) = 0}. For example, taking v = (1,1), combining
Remark and Theorem we get a holomorphic branch of the square root in C \ ¢,; where
l, ={z € C : Re(z) =Im(z) > 0}.

In the same spirit as in the definition of holomorphic nth roots, we define the complex logarithms
based on branches. We want the logarithm to behave as an inverse of the exponential z — €.

Definition 2.60 (Logarithms). Let z € C\ {0}. A logarithm of z is any w € C with €¥ = z. The
logarithm of z, denoted by (log z), is the set of all logarithms of z. By Theorem[2.49(v),

(logz) = {log |z| +i0 : 6 € arg(z)} = {log |z| + i (Arg(z) + 2km) : k € Z}. (2.4.7)
The principal logarithm is the function C\ {0} > z — Logz given by
Log z :=log |z| + i Arg(z), z¢€ C\ {0}. (2.4.8)

Clearly, (log z) = {Log z + 2mik : k € Z} and Logz = log|z| for all z € R\ {0}.
Finally, if E C C\{0}, a branch of the logarithm in E is any continuous function h : E — C
with ") = w for all w € E. In other words, h(w) € (logw) for all w € E.

For example, for z = ¢, the logarithm of z is the set
(log(#)) = {log |i| + i (Arg(i) + 2kx) : k € Z} = {i (g + 2k:7r) . k€Y.

The principal logarithm of i is the complex number Log(i) = 7.

Unlike for real numbers, in general it is not true that Log(z122) = Log(z1) + Log(z2). This can
be seen, as in the comment subsequent to Corollary with 23 = 29 = —i, where Log(z122) =
Log(—1) = i Arg(—1) = mi and Log(z1) = Log(z2) = i Arg(—i) = —7i. This example also shows
that, sometimes, Log(z?2) # 2 Log z.

Nonetheless, this type of property holds to some extent for the set of all logarithms.

Proposition 2.61. Let 21,29 € C\ {0}. Then
(log(z122)) = (log z1) + (log 2z2) := {w1 + w2 : w1 € (log z1), wa € (logz2)}.

Proof. Bearing in mind that log(|z122|) = log |z1| 4 log |22/, the assertion follows easily from the

first identity in (2.4.7)) and Corollary O
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Concerning the branches of a logarithm, we observe the following.

Remark 2.62. Obviously, the principal logarithm Log : C\ {0} — C is a branch of the logarithm
in the set C\ {0}. Also, if E C C\ {0} is a set, and h: E — C is a branch of the logarithm in F,
then, by the expression (2.4.7)), there exists a function o : E — R so that

a(w) € arg(w) and h(w) = |w|+ ia(w), forall we E. (2.4.9)

By the continuity of w +— h(w), |w|, the function a : E — R is continuous in E too. Thus,
«a: F — R is a branch of the argument in E; see Definition Consequenly, in the notation of
Proposition for each v € R?\ {(0,0)}, there is a branch of the logarithm & : C\ £, — C.

Moreover, if Q@ C C\ {0} is a domain and hy, hy : 2 — C are two branches of the logarithm in
Q, there exists n € Z such that

hi(w) = ho(w) + 27ki, for all w € Q. (2.4.10)

Indeed, by (2.4.9), h1 —ha = a1 — g, for branches oy, ag : 2 — R of the argument. By Proposition
there exists k € Z with ag(w) — a1 (w) = 2k for all w € Q, and so we get (2.4.10)).

We next show that all branches of the logarithm are holomorphic as a corollary of Lemma
applied to the exponential function.

Theorem 2.63 (Holomorphic Logarithm). Let @ C C\ {0} be open, and h : Q@ — C a branch of the
logarithm in Q. Then h € H(Q) and

h(w)=—=, we.

1
w
In particular, for Q:=C\ (—00,0], and U := {z € C : Im(z) € (—m, )}, the Principal Logarithm
function w — Logw s a holomorphic bijection from Q to U, with

1

(Logw) = — for all w e Q. (2.4.11)
w

Proof. We apply Lemma 2.57 with U = C, V = Q and f : C — C\ {0} given by f(z) = e*. Since
h is a branch of the logarithm in Q, we have f(h(w)) = e"®) = w and f'(h(w)) = ™) £ 0 for all
w € Q.

O

Theorem does not apply to (—oo, 0], since the function w +— Logw is not even continuous
there. To see this, note that for each a < 0, the sequences z, = a + ; and w, = a — ;- converge
both to a. However, Log z,, and Logw, have different limits, as

Log z, = log |a| + i Arg(a + %) — log|a| + i,
Log wy, = log |a| 4+ i Arg(a — £) — log|a| — im.

The definition of complex powers with arbitrary exponents are based on logarithmic functions.

Definition 2.64 (Complex powers). Let z € C\ {0} and w € C. We define the set w-power of z,
and denote it by 2", as the set

(27) = e®(1982) .= {eE ;¢ € (log 2)}. (2.4.12)

The elements of the set (z*) are called w-powers of z. And the principal w-power of z is
the number

2V = ewloez, (2.4.13)
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For example, in the case z = w = i we have, using the computations in the comments right
after Definition [2.60]

(i = {e€ : £ € (logi)} = {e"GT2) ez} ={e 2t . kL ez}, and
(=X

o e1Log2 —

1 jus
7 e =e€e 2.

A this point, it is worth mentioning the falsity of the equality (e*)¥ = e*"; see Exercise

In the next proposition, we show that the principal power is a holomorphic function. But we
also need to verify that this definition of powers is consistent with previous definitions we gave in
the case of integer exponents (Definition or rational exponents (Definition .

Proposition 2.65 (Properties of complex powers). The power set and function satisfy the following
properties.

(i) Ifw=mn€Z, z€C, then (z) = {2"} and 2" (defined in (2.4.13)) coincides with z" (as in
Definition .

(i) Ifn € N, w=1/n, and z € C, then (2*) = (/2 ), and the principal 1/n-power z*/™ coincides
with the principal nth-root Yz of z.

(i1i) If z,y € (0,400) then the principal y-power of x equals x¥Y. Here, x¥ represents the usual
power of real numbers.

(iv) If wy,we € C, z € C\ {0}, then 2W1z%2 = zW1twz,
(v) If z1,2z0 € C\ {0}, w € C, then (2") - (z¥) = ((z1 - 22)").

(vi) If w € C, the principal w-power function f, : C\ {0} — C, given by fu(z) = 2%, is
holomorphic in C\ (—o0,0] and

(fu)(z) =wz""t, 2€C\ (~o0,0]. (2.4.14)

Proof.

(i) By @.4.13), (z¥) = {e"¢ : € € (logz)}. Using Theorem M(iv), e"s = (ef)", where this nth-
power is in the sense of Definition If ¢ € (logz), then e¢ = z. Therefore, (z%) = {2"}. Tt is
then obvious that z" is the principal w-power of z.

(ii) If w = 1/n, n € N, for every k € Z, we have the equalities

1 . n . Arg(z)+2km n . Arg(z)+2km . Arg(z)+2km
en(log|z\+z(Arg(z)+2k7r)) _ elog |24+ elog \/\z|617n _n ’2‘617" )

According to (2.4.7) and Theorem this shows (2%) = ({/z). And for k = 0, the previous
chain of equalities gives 2% = {/z.

(iii) The principal y-power of z is
eylogz _ cy(log|z[+iArg(z)) _ oylogz _ .y
(iv) Use Theorem [2.49[(ii) to write
222 = e
(v) By (2.4.12) and Theorem [2.49(ii),
() (28) = {e O ) : ¢ € (log 21), & € (log 20)}.

And {(z129)%) = {e*¢ : & € (log(z122))}. But then Proposition says that (log(z122)) =
(log z1) + (log z2), and our claim (z}")(25) = ((2122)") then follows.

w1 Log Z w2 Logz _ e(w1 +wz)Logz _ SWitw2
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(vi) We combine Theorem [2.49|i) with Theorem (and formula (2.4.11))) and the Chain Rule
(Proposition [2.34)) to obtain that

w w
(fw)/(z) — ewLogz el ’U)Zw_l;
z z
where we also used (iv) of the current proposition in the last equality. O

Property (v) of Proposition is false replacing the sets power with the principal powers,
that is, 2} - 25 # (21 - 22)" in general. For instance, if w = 1/2 and 2z; = z2 = —1, then, 2}’ and
24 are both respectively the principal 2-roots of —1, and so 2}’ = 2§ = i. However (21 - z2)"* =1,
and therefore (21 - 22)" # 27" - 2.

2.5 Exercises

Exercise 2.1. Using either the definitions or any of the corresponding characterizations, justify the
following topological claims.

(a) The set A= {z¢€ C : |Re(2?) — 1| > 2} is open.
(b) If f : C — C is continuous in C, then B={z € C : f(z) =1} is closed.
(¢) The set C ={0}UJ,2, S(0,1/n) is compact.

(d) The set D = {z € C : Re(z) - Im(z) > 0} is path-connected, but its interior int(D) is not
even connected.

(e) If a set E C C is conver, then its closure E is convex as well.

Exercise 2.2. We say that a sequence {zp}n C C has the Cauchy property if for every e > 0 there
exists ng € N so that |z, — zm| < € for all n,m > ng. Prove that every sequence with the Cauchy
property C is convergent and viceversa.

Hint: Use that R is complete.
Exercise 2.3. Find a countable set S that is dense in C.
Exercise 2.4. Let A C C be a convex set. Prove the following statements.

(a) For every z € int(A) and w € A, the half-open segment [z,w) := {tw + (1 —t)z : t € [0,1)}
is contained in int(A). Deduce that int(A) is convez.

Assume, additionally, that int(A) # (). Then
(b) int(A) = A and int(A) = int(A).
(c) DA = O(A) = d(int(A)).
Exercise 2.5. Define f : C — C by f = g + ih; where
o) = {+ i (2,) #(0,0)
0 if (z,y) =(0,0)

. h(z)=2*? foral z=x+iycC.

Determine at which points f is continuous.

Exercise 2.6. Let A C C be a subset, let z € A, w € C\ A, and ¢ : [0,1] — C a continuous function
with (0) = z and (1) = w. Show that there exists t € [0, 1] with p(t) € 0A.

Exercise 2.7. Let Q2 C C be open and connected, and f : Q — C continuous so that |f(2)? — 1| < 1
for all z € Q. Show that either Re(f(z)) > 0 for all z € Q or Re(f(z)) <0 for all z € Q2.
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Hint: Observe the behavior of Re(f), and argue by contradiction. Also, take into account that
Re(f)(Q) is a connected set.

Exercise 2.8. Show that:
(a) The function f(z) = |z|? is differentiable only at z = 0, with f'(0) = 0.
(b) The function g(z) = |z| is not differentiable at any z € C.
Hint: Use Theorem [2.33.

Exercise 2.9. Let Q C C open and f : Q — C differentiable at zg € Q with f'(29) # 0. Prove that
there exists r > 0 so that f(z) # f(z0) for all z € D(zp,7).

Exercise 2.10. Let f : C — C the function defined by
flx+iy) = 2?4+ 2y +i(z? +4?), forall z+iyeC.

Determine at which z € C the function f is differentiable.

Exercise 2.11. Let f : C — C be holomorphic so that f(0) =i and the real part w = Re(f) is
w(z +iy) = 203y — 2z + 2% —y®  for all x+iy e C.

Find v = Im(f).

Hint: The Cauchy-Riemann Equations determine the partial derivatives of v. Then somehow
integrate those partial derivatives.

Exercise 2.12. Let f : C — C differentiable at 2o with f'(20) # 0. Prove that f := Re(f) — iIm(f)
is not differentiable at zg.

Suggestion: Suppose that f is differentiable at zy. Arrive at a contradiction.

Exercise 2.13. Let Q2 C C be open and connected, and f : 8 — C holomorphic. Show that f is
constant in Q in each of the following situations:

(a) f(2) CR (f takes only real values) or f(2) C iR (f takes only pure imaginary values).
(b) Re(f): Q2 — R orIm(f): Q — R is constant in .

(c) f:=Re(f)—ilm(f) is holomorphic in Q.

(d) The modulus of |f]| is constant in €.

(e) The principal argument of f, Q > z +— Arg(f)(z) := Arg(f(2)) is constant in 2. Here, we
additionally assume that f(z) # 0 for all z € Q.

Suggestion: Look at Corollary [2.37  For part (d) use part (c). In part (e), write f(z) in
exponential form and look at (a).

Exercise 2.14. Show that if f : Q — R s differentiable at zy = xg + iyo € €2, then

' (z0)| = [V Re(f)(z0, yo)ll = |V Im(f) (w0, o) ;
where || - || is the Buclidean norm in R?; that is, ||(a,d)| = Va2 + b2.

Exercise 2.15. Let f : R?\ {(0,0) — R? be real-differentiable with f = (u,v), and define u(r,0) =
u(rcos@,rsin) and v(r,0) = v(rcosf,rsinf) for r > 0, § € R. Show that the Cauchy-Riemann
equations for u and v are equivalent to

ou 10v Ou OV

o ~rae a0 o
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Exercise 2.16. For every complex function f = u+ iv, we define the differential operators

of _1(0 198 of _1(96 19
(92"_2<8:1:+i8y>f’ az'_z( j )f'

Verify that the Cauchy-Riemann equations for u,v are equivalent to
of
5 =

Use this to deduce that if Q C C is open and f : Q — C, then f is holomorphic if and only if f s
real-differentiable and g—’; =0 in Q. Moreover, in such case, we have f'(z) = %(z) for all z € Q.

0.

Exercise 2.17. Let f : D(0,2) — C be holomorphic with f' continuous in D(0,2). Suppose that f
is injective in D(0,1) and that f'(z) # 0 for all z € D(0,1). Prove that there exists € > 0 so that
f s ingective in D(0,1 + ).

Suggestion: Suppose that f is not injective in any disk D(0,1 + %) with n € N, and use the
Bolzano-Weierstrass Theorem [2.12 to derive a contradiction. The Inverse Function Theorem [2.39
plays a role here too.

Exercise 2.18. For each a > 0, denote Q = {z € C : —a < Im(z) < a} and ' = {w € C :
Re(w) > 0}. Find a conformal map f: C — C in C such that f(Q) = .

Suggestion: Start with the case a = w/2, and look at Theorem to see how f’ should be.

Exercise 2.19. Let u : R? — R be the function u(x,y) = xy. Prove that u is harmonic in R? and
find a harmonic conjugate v of w with v(0,0) = 0.

Exercise 2.20. Let 2 C C be open and connected and u : @ — R be harmonic. Show that if v and
v are two harmonic conjugates of u in §2, then v — v is a constant function.

Exercise 2.21. Let v : R? = R be a harmonic function. Show that the function f := % + ig—g 18
holomorphic in C.

Exercise 2.22. Define u : C\ {0} — R by u(z) = log|z|. Prove that u is (real) harmonic in C\ {0},
and that u has no harmonic conjugate in C\ {0}.

Suggestion: Write u(z,y) in a simple form. Suppose that v : C\ {0} — R is a harmonic
conjugate of u. The Cauchy-Riemann equations for u + iv will lead you to a contradiction.

Exercise 2.23. Give an example of f : C — C holomorphic, and points z,w € C with

f(z) = fw) # f(§)(z —w) forall &€ [zuw].

Here [z,w] denotes the segment line joining z and w. This shows that the real mean value theorem
does not extend to complex differentiable functions.

Exercise 2.24. Let f : C — C be defined by
eV if zeC\ {0
fla) = Joeet o
0 if z=0.

Prove that f € H(C\{0}), that the partial derivatives a%i(f), 8%6(” , 8Ig;(f)7 aIg;(f) exist and sat-

Yy
isfy the Cauchy-Riemann equations at zg = 0, and that lir%f(z) does not even exist. In particular,
z—

f is not continuous at zy = 0.

Suggestion: It is not necessary to compute the partial derivatives of Re(f),Im(f) at all points.

Just remember the definition of partial derivatives (2.2.2)—(2.2.3|) (at the point (0,0)).
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Exercise 2.25. Verify that e = e* for all z € C.
Exercise 2.26. Find max{|e*’| : |z| < 1}.

Exercise 2.27. Give an example of two numbers z,w € C\ {0} such that (e*)* # e*. By (e*)" we
understand the Principal w-power of e~.

Exercise 2.28. Construct the following branches associated with the square root.

(a) f:C\ (—o0,—1] — C holomorphic with (f(2))?> = z +1 for all z € C\ (—o0,—1]. We can
refer to f as a holomorphic square root of \/z+ 1 in C\ (—oo, —1].

(b) g:C\ [1,4+00) = C holomorphic with (g(z))?> = z — 1 for all z € C\ [1,+0c0). We can refer
to g as a holomorphic square root of \/z — 1 in C\ [1, +00).

(c) For Q:=C\ {2z € C : |Re(2)| > 1}, h : Q — C holomorphic with (h(z))* = 22 — 1 for all
z € Q. We can refer to h as a holomorphic square root of /22 — 1 in Q.

Exercise 2.29. Let z,w € C with z # 0. Prove the following.
(a) If (z") has exactly one element if and only if w € Z.

(b) If w € Q and w = p/q with p,q € Z, ¢ > 0, and ged(p,q) = 1, then () has exactly q
elementsl]

(c) If we R\ Q, then (z*) contains infinitely many different numbers.
Exercise 2.30. Show that Log(1 + i)? = 2Log(1 + i) and Log(—1 +i)? # 2Log(—1 +1).

Exercise 2.31. Given w € C, show that the set of all the solutions z € C of the equation sin z = w
is {—i& : € € (log(iw + ¢)), v € (V1 —w?)}. In particular, write down all the solutions z € C of
the equation sin z = 2.

Exercise 2.32. Prove the following trigonometric-hyperbolic identities, for z = x +iy € C:
(a) (coshz)? — (sinh2)? = 1.
(b) cosz = cosx coshy — isinzsinhy.
(¢) sinz = sinz coshy + i cos zsinh y.
(d) | cosz|? = (cosx)? + (sinhy)?.
(e) |sinz|? = (sinz)? + (sinhy)?.
Exercise 2.33. Compute the following sets and/or numbers.
(a) The real and imaginary parts of e3~*.
(b) The real and imaginary parts of cos(2 + 31).
(c) (log(—1++/31)) and Log(—1 4 v/34).
(d) ((=1)") and (-1)".
(e) ((1+)I+D) and (14 4)1+°,

3Here gcd(p, q) is the greatest common divisor of p and ¢, meaning the largest d € N dividing both p and q.
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Chapter 3

Series of complex functions

3.1 Series of complex numbers

Naturally, a series of complex numbers (or a complex series) is an expression of the form
e.@)
21+zog+---+2p+--- oOr E Zn-
n=1

The partial sums of Y > | z, is the sequence {S,}7°; given by S, = > >, zp, the sum of the first
n terms of the series.

3.1.1 Convergence and absolute convergence

The convergence of series in C is defined exactly as in the real line.

Definition 3.1. We say that a series Y .-, z, of complex numbers converges to zy € C if the

sequence of partial sums {>"}_| 2k tnen converges to zo, in which case we will denote Y >~ | zp = 2.

And if the limit of the partial sums does not exist, we say that the series Y - | z, diverges.
Moreover, we say that the series > . | zy is absolutely convergent if the series of the modulus

> o2 |#n| is convergent.

If a series Y o | zy is absolutely convergent, then it is convergent as well. Indeed, the Cauchy
partial sums of Y~ , z, satisfy

M N M M M N
Sa-Ya=| 3w e 3 =Y lal-Ylal
n=1 n=1 n=N+1 n=N-+1 n=1 n=1

for M > N > 1, and the last term converges to 0 as M, N — oo. This is due to the fact that the
sequence of partial sums of ) 7, |z,| converges, and thus have the Cauchy property. We have
shown that the partial sums of "7, z, have the Cauchy property, and since C is complete (see
Exercise , these partial sums converges in C.

Needless to say, there are convergent series that are not absolutely convergent. For example,

S O log 2, whereas 7 | 1 = oc.

n=1 n - n=1n

Proposition 3.2. Let {z,}, C C be a sequence with Y . | z, convergent. The following hold.

(i) lim z, = 0.

n—oo
(i) lim >Nz =0.

Proof.
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(i) The series Y 7, 2z, converges to some S € C, and so the partial sums Sy = Zszl zj, satisfy
lim Sy = S. Therefore

N—oo

3
i
A

|zn| = = 1S, — Sp—1] = |S =S| =0asn— .

(i) Let S = > 0%, 2, and denote S, = Y ", 2, for every m. For each N € N, Y>> . z, is (by
Definition the limit of the sequence Zﬁi N #n as M — oo. Thus, for each fixed N, we have

0o M
%zn = A}gnwgzn = lim (Sy — Sy-1) =5~ Sx-1.

And now, we let N — oo, obtaining

lim Zzn— lim (S —Sy-1)=85-S5=0.

N—oo N—oo

An elementary example to study convergence or divergence is the geometric series.

Example 3.3 (Geometric Series). For every z € D(0,1), that is |z| < 1, using the formula from
Exercise we see that the geometric series >, 2™ is absolutely convergent and

o0

E 2" =
n=0

Note that (3.1.1]) also implies

ZIZ"I = ’Z‘ (3.1.1)

Z(—l)”z” =115 |z| < 1.

n=0

However, when |z| > 1, the series ) 7 ;2" diverges by Proposition as lim [2"| # 0.
n—oo

In the study of absolute convergence for complex series we can apply some of the convergence
criteria that we already know for real numbers. Some of them are recorded in the following
proposition, without proofs.

Proposition 3.4 (Convergence criteria). The following statements hold.

(i) [Cauchy’s Root Test] Let {a,}, C R. Then

hm 1 SUp Vian| <1 = Z lan| converges,

n=1

limsup V/|an| >1 = Zan diverges.

n—o0

(ii) [D’Alembert’s Ratio Test] Let {an}, C R\ {0}. Then

lim sup [@n+1] <1l = Z lan| converges,
n—00 |an| —

n=1

o0
lim inf [t >1 = Zan diverges.
n—oo |ay|

n=1
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(i7i) [Raabe’s Test] Let {an}n C R\ {0}. Then

o
lim inf n (1 — ‘a”“’) >1 = Z |an| converges,
n—00 |an] =

o
limsup n <1 — ]an+1]> <1l = Z|an| diverges.

n—00 ‘an‘ n—1

(iv) [Cauchy’s Condensation Test] Let {an}n C [0,+00) be a non-increasing sequence. Then

o0 o0
E an converges <= E 2"%agn converges.

n=1 n=1

(v) [Integral Test] Let f : [0,00) — [0,00) be non-increasing. Then the series Y .-, f(n) con-
verges if and only if floo f(z)dx < oco. Moreover, in such case, we have the bounds

/1 e <3 g < 10) + /1 F(a) d.

3.1.2 Operations with series. The Cauchy Product

Clearly we can multiply the terms {a,}, C C of a convergent series > >, a,, by an scalar A € C,
and obtain a new convergent series Y -, Aa,. It is also easy to define the sum of two convergent
series Y °7 | an, » o by as the series obtaining by summing termwise: y - ;(a, + by,), which is a
new convergent series so that > o2 (an +bn) = D> o0 i an + Yooy by. However, the product of two
series is a bit more complicated, and we define it through the Cauchy product.

We will use the notation N* := NU {0} in the sequel.

Definition 3.5 (Cauchy Product). Let > >° ja, and Y 7 4b, be two series of complex numbers.
Define the complex numbers

Cn = agbn + a1bp_1 + - -+ + ap_1b1 + anbo = Zakbn,k for all n e N*. (3.1.2)
k=0

The Cauchy Product of 2 a, and Y ° by is the series Y 7 cp.
The Cauchy product of two convergent series is not necessarily convergent, even if the two

series are the same; see Exercise|3.1l To guarantee the convergence of the Cauchy product, at least
one of the series should be absolutely convergent.

Proposition 3.6. Let Y 7 jan and > o7 4b, be two convergent series with at least one of them
absolutely convergent. Then their Cauchy product Y >° ¢, is convergent and

S (&) ()

Moreover, if both > 02 an and Y > b, are absolutely convergent, then » > cn is absolutely
convergent as well.

Proof. Assume for instance that ) 7 a, is absolutely convergent. Define s := Y ° a, € C,
SN 1= Zivzo an, 7= 0" by, € C, ry = Zﬁfzo bn, tN 1= D o Cn, for all n € N*. Observe that
we have, for all n € N,

N N N

N n N N N—k
D 5 ST P10 SRR SV SUTD SYRSNPES S )
k=0 n=k k=0 n=0

n=0 k=0 k=0 k=0
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Because s = A}im sy, for the convergence of {ty}n (to s-r) it only remains to check that
—00

A}im chvzo ap(ry—k—r) = 0. Given ¢ > 0 there exists Ny € N such that |ry—r| < e/(1+> .72 |an|)
—00
for all N > Ny. So, for those N > Ny, we can write

N N N—Np No—1 N—No
Zak(TN—k—T) = Z ar(ry_g—7)+ Z ag(ry_k—r) = Z an—j(rj—r)+ Z ag(ry_k—r).
k=0 k=N-—No+1 k=0 j=0 k=0

The term Z 00 an—j(rj —r) is a sum of Ny-many sequences converging to 0 as N — oo, since
lan| — 0. Hence taking limit superior in the above gives

N N—Np N—Ng
lim sup Zak (ry—g —r)| < limsup Z ag(ry—x — )| < limsup Z lag||rN—r — 7|
N—oo (120 N—oo | 120 0 k=0
N—Np
< lim sup lak| = lan| <e.
1+Zn o‘n’ N—o0 Z 1+Z—o|n‘z "

Because € > 0 is arbitrary, we get A}im Z]kvzo ar(ry_r —r) =0, as desired.
—00

Assume now that both Y >° ja, and > 2, by, are absolutely convergent. Then, for each N € N
we have the bounds

ﬁ:;m 5

n=0

Z akbn—k

k=0

N—k 00 [e)
< Z|ak|§j|bn Wl = Z|ak| ST bal <D larl S [bal;
k=0 n=0 k=0 n=0

where the last term is finite and independent of N. This shows that > 7 ;|cn| < co.

3.2 Sequences and series of functions

Definition 3.7 (Convergence of functions). Let A C C and {f, : A — C},, a sequence of functions
defined in A.

o We say that {f,}n converges pointwise on A if for every z € A, the sequence of complex
numbers { fn(2)}n converges in C. This means that for every z € A, there exists f(z) € C
such that for all € > 0 there exists ng = no(z,¢) € N with | fn(2) — f(2)| < € for all n > ny.

o We say that {fn}n converges uniformly on A to f: A — C if for every e > 0 there exists
no = no(e) € N so that

|fn(2) — f(2)| <e forall n>ng andall ze A
o We say that { f,}n is Cauchy uniformly on A if for every e > 0 there exists ng = ng(e) € N

so that
|fm(2) — fu(2)| <& forall n,m>ng andall ze€ A

Now we consider series of functions Y o, fn defined in A.

o We say that Y .7 | fn converges pointwise on A if for each z € A, the numerical series
Yonl fn(2) converges.

o We say that Y o2 | fn converges uniformly on A if the sequence of functions given by the
partial sums {Sn(2) = > p_; fu(2)},en is uniformly convergent on A.

o We say that Y > | fn converges absolutely on A if the series of functions Y .~ |fn| is
convergent.
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o We say that > o7, fn converges absolutely—uniformly on A if the series of functions

S>oo2 1 | fnl is uniformly convergent.

It is important to be able to distinguish between these various notions of convergence.

Remark 3.8. Concerning Definition we observe the following.

(1)

The difference between pointwise and uniform convergence is whether or not the index ng
depends on the points z € A.

Notice that the uniform convergence {gy}, — g on A can be reformulated as

i (suplan(2) - o(2)] ) =0
n—oo 2€A

Uniform convergence is way stronger that pointwise convergence. For example, the uniform
limit of continuous functions is continuous, as shown below by Proposition However,
this is not guaranteed with pointwise convergence, e.g., f,(z) = 2™ on x € [0, 1].

A sequence of functions {gn : A — C},, is Cauchy uniformly on A if and only if it is uniformly
convergent on A.

Proof. If {gn}n is Cauchy uniformly on A, given ¢ > 0 we can find ny € N such that
lgn(2) — gm(2)| < /2 whenever n,m > ny and z € A. In particular, for each z € A, the
numerical sequence {g,(z)}, is Cauchy and so there exists g(z) € C with g,(z) — g(z) as
n — oo. Thus, for every z € A we can find m, € N, m, > ng such that |g,,.(z) —g(z)| < e/2.
This implies

19n(2) = 9(2)| < [gn(2) = gm.(2)| + lgm.(2) — g(2)] <

and since ng is the same for all z, we conclude that g, is uniformly convergent (to g) on A.
The converse is very easy to prove.

O

For series of functions Y > | fn, the convergence absolutely—uniformly implies (simultane-
ously) uniform, absolute, and pointwise convergence.

To justify this, let >, f, be absolutely—uniformly convergent on A C C. Obviously this im-
plies absolute convergence (simply by Definition [3.7). Now, Y >, f,, converging absolutely—
uniformly means that 7, |f,| is uniformly convergent in A. Thanks to point (2) of the
present remark, we can argue as in the comment after Definition to deduce that also
>0 | fn converges uniformly in A. Indeed, for each M, N € N, M > N, one has

N

N
sup an =D ful2)| < sup ORIAE )| = sup Zlfn =2 1Fa2)
n=1

zeA n=1 z€ n N+1

But the sequence of partial sums of the series of functions ) 7, |f,| is Cauchy uniformly,
so the last term goes to 0 as M, N — oo. This is then telling us that the sequence of partial
sums of the series Y > | f is Cauchy uniformly on A, which, again by point (2), implies that
Y021 | fn| converges uniformly.

A series can converge absolutely and uniformly on a set A, and yet not absolutely—uniformly
on A. See Exercise
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3.2.1 The Weierstrass M-test. Continuity

One of the most useful results for convergence of functions is the Weierstrass M-test, which we
will use systematically in this chapter.

Theorem 3.9 (Weierstrass M-test). Let A C C, and a sequence of functions f, : A — C such that
for every n € N there exists M, > 0 with |fn(2)| < M, for all z € A, and so that > >" | My, is
finite. Then the series Y .- | fn converges absolutely—uniformly on A.

Proof. Let € > 0. Because Y 2 | M, is convergent, by Proposition there is ng € N so that
Y omeng Mn < e. If M > N > ng we have

M N
sup D @)=Y 1fal2)] = sup Z | fr (2 |<supZ | fu(2 r<supZM <e.
z n=1 n=1

n N+1 n no EAn no

Thus > 7 | |fn| is Cauchy uniformly on A, and thus Remark (2) says that > >° | f, converges
absolutely—uniformly on A. O

We finish this section showing that the uniform limit of continuous functions is continuous.

Proposition 3.10. Let A C C and {f, : A — C},, a sequence of continuous functions in A that
converges uniformly on A to some f: A — C. Then [ is continuous in A as well.

Proof. Fix zg € A and let us check the continuity of f at zy. Given € > 0, by the uniform
convergence of {f,}, on A, we can find N € N so that

sup | fv(2) — F(2)] < g (3.2.1)
z€A

This function fy is continuous at zg, so we can find § > 0 for which

1fx(2) — fn(z0)| < % for all 2 € AN D(z, ). (3.2.2)

Using (3.2.1) and (3.2.2)) and the triangle inequality we obtain, for z € AN D(z,J),

[f(2) = f(20)| <1 (2) = fn ()| + [ fn(2) = v (20) + [fn(20) = f(20)]

< 2sup [fy(w) = f(w)| + [fn(2) = [n(20)] < % + % —°
weA

3.3 Power series

The main type of series of functions we will be studying is the power series. One of the main goals
of the course is to show that every holomorphic function can be written as one of these series.

Recall that we are using the notation N* := NU {0}.

Definition 3.11 (Power series). A power series is a series of functions of the form > >" ;an(z —
20)", with zg,a, € C for all n € N*. We then say that zy is the center of series.
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3.3.1 The Radius and Disk of Convergence. Abel’s Lemma

Definition 3.12 (Radius of Convergence). Given a power series y - an(z — z0)", we define its
radius of convergence R € [0, 0] as

o
R :=sup {7" >0 : Zanr" converges} . (3.3.1)

n=0

Then, the disk of convergence of the series is D(zg, R). In the case R = oo, by D(z, R) we
mean the whole complex plane C.

Remark 3.13. A couple of preliminary observations are in order.

(1) If the numerical series Y °  a,r™ converges for some r > 0, then Y > |ay,|s™ converges for
every 0 < s <.

Indeed, the convergence of the first series implies that lim a,r™ = 0 by Proposition @ In
n—oo
particular, there exists C' > 0 with |a,|r™ < C for all n € N*. Thus

io: |an|s" = i |an|r™ (;)n < Cﬂi:% (;)n = C'T i S <o

n=0 n=0

(2) The radius of convergence R € [0, 0] of a power series > > ;an(z — 2p)" is also

o0
R = sup {r >0 : Z |an|r"™ converges} : (3.3.2)

n=0

To see this, denote by S the supremum in the right hand side of . Since absolute
convergence implies convergence, we clearly have S < R. To show the reverse inequality,
suppose that S < R and let ¢ > 0 be so that S < S+e < Rand )~ a,(S+¢e)™ converges.
The existence of such an ¢ is guaranteed by the definition of R (3.3.1). By (1) of the present
remark, we get that Y7 |a,|(S 4 §)™ converges, contradicting the definition of S.

Combining the idea of the proof of Remark [3.13|(1) with Theorem we obtain the following
criterion for convergence of power series due to Abel.

Theorem 3.14 (Abel’s Lemma). Let > > an(z — 20)" be a power series and assume there exists
z1 € C so that sup{|a,(z1 — z0)"| : n € N*} < co. Then the series of functions > 7 g an(z — z0)"
converges absolutely—uniformly on each disk D(zo,r) with 0 < r < |29 — z1].

Proof. Define M := sup{|an(z1 — 20)"| : n € N*} and let r > 0 be so that 0 < r < |21 — zo|. The
functions D(20,7) 3 2z + an(z — 20)" satisfy

< lan(z = 20)7] <\Zl—zo|) SM(!Z1—20\> '

n
Because ) ° M (ﬁ) < 00, Theorem (3.9 says that > > ; an(z — 20)" converges absolutely—
uniformly on D(zg, ). O

Z— 20

lan(z — 20)"| = |an(21 — 20)"|

21 — 20

Observe that Theorem provides a lower bound for the radius of convergence R of a power
series > 7 g an(z—z0)". Namely, if z; is as in Theorem then in particular ) 2 a, 7™ converges
for all 0 <7 < |20 — 21|, and so R > |zp — 21].
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3.3.2 Convergence of Power Series: The Cauchy-Hadamard Theorem

In proper subdisks of the disk of convergence, the convergence of the power series is absolutely—
uniform, and the series always diverges outside the disk of convergence. Moreover, there is a
formula for the radius of convergence in terms of {a, },. This is the content of the next theorem.

Theorem 3.15 (Cauchy-Hadamard Theorem). Let Y °  an(z — 20)" be a power series with radius
of convergence R € [0,00]. The following is satisfied.

(i) If 0 <7 < R, the series Y o an(z — 20)" converges absolutely-uniformly on D(zy,T).

(ii) If z € D(z0, R), the numerical series Y - an(z — 20)" converges absolutely. We will express
this by saying that the series converges (absolutely) pointwise in D(zy, R).

i11) For all z € C so that |z — 29| > R, the numerical series > oo an(z — 20)" diverges
n=0

(iv) The radius of convergence R is given by the formula

(3.3.3)

1
R=—
lim sup {/|an|

n—oo

In the case limsup {/|a,| = 0, we have R = oo; and if limsup {/|a,| = co, we have R = 0.

(v) If an, # 0 for all n and lim lanl [0, 4+00], then

noyoo lant1l

R= lim (3.3.4)
Proof.
(i) If 0 <7 < R, then we can find ¢ > 0 so that r <r+¢e < Rand )~ an(r+¢)" is convergent.

Taking any 21 € S(z0,7+¢) so that |21 — 20| = r+¢, then sup{|an(z1 —20)"| : n € N*} < 00, and so
the series > ; an(z—20)" converges absolutely—uniformly on D(zg, s) for all s < |21 —zg| = r +e,
which of course includes the disk D(zg, 7).

(ii) Assume R > 0 (otherwise there is nothing to prove), and z € D(zp, R). Clearly we can find
0 < r < R with z € D(z9,7), e.g., taking |z — 20| < 7 < R. By (i) there is absolute—uniform
convergence of the power series in D(zp,7), and in particular absolute convergence at z = z.

(iii) Andif |21 —z0| > R, suppose, for the sake of contradiction, that > 7 ; an (21 —20)" is convergent.
Then sup{|a,(z1 — 20)"| : n € N*} < co and Theorem says that the series Y 7 an(z — 20)"
converges (absolutely—uniformly) on each disk D(zp,r) with 0 < r < |21 — zo|. If € > 0 is so that
|21 — 20| > R+ ¢, and we put 2z = 29 + (R +¢) € D(z0, R+ €), the above gives the convergence of
the numerical series > ° ;a,(R +¢)", contradicting the definition of R; see (3.3.1]).

(iv)P| Consider first the case where limsup |a,|"/" € (0, +00) and denote r = ﬁ Recall
n—roc imsup |an|

that limsup |a,|'/" = lim sup |a,,|"/™, and hence r = lim 1/(Sup|am|1/m). So, for every € > 0
n—00 n—=Om>n n—o0 m>n
there exists ng € N so that

1
—— <r+ S forall n > nyg. (3.3.5)
suplani/m =2
m>n

r <

_ <
2

LOf course, this statement is vacuous when R = oo.

2This proof can be very much simplified applying directly the Root Test (Proposition to series of the form
Yo’ o lan|s”, in combination with formula . But we offer here the full argument to remind the reader the idea
of proof of the Root Test Criterion.
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From the left inequality of (3.3.5)), we get, in particular, that |a,| < (7‘ - %)_1/ "

Thus we have the estimates

no—1 no—1
Z|an|r—5 OZ|an|r—5 +Z\an|r—€ <OZ|an|7“—5 +Z< i) < o0.
2

n=ngo n=no

for all n > ng.

Therefore, the series Y > |an|(r — €)™ converges and so, by (3.3.1)), » —e < R. And the second
inequality of (3.3.5) leads us to |ay, | > (7“ + %)_1/ "k for a subsequence nj — 00, as k — oo. Hence,

o0
Z|an|r+5 Z|ank|r+5 >Z<T+€>k:oo.
k=0

By relation (3.3.2) in Remark the above yields R < r+¢. We have shown that r—e < R <r+¢
for arbitrary € > 0, and so R = r, as desired.

Now, if limsup |a,|'/" = oo, then for every r > 0 we can find a subsequence (1), — co with

n—o0

lan, | > (%)mC . This gives

- G = r+1\™ ad
Z |an|r" > Z |an,, [ > Z ( " > P’k = Z(r + 1) =
=0 k=0 k=0 k=0

Since r > 0 is arbitrary, this means, by e.g. formula (3.3.2)), that R = 0.
1/n — 0, for every r > 0 we can find ng € N such that lan| <

Finally, in the case limsup |a,|
n—oo

(%1)” for all n > ng. Thus,

0 no—1 no—1
Z|an|7“n Z |an | + Z |an|r™ < Z lan|r™ + Z <r+1) < 0.

n=0 n=ngo n=ngo

Because r > 0 is arbitrary, we have shown that R = oc.

(v) Define r := lim ‘a| an| i € [0, +oc]. Let us begin with the case r < co. We have for every ¢ > 0,
hat n—oo [4n+1
tha
ntl e ifp >0
lim [an+1|(r +€) = (r+e¢) lim [n1] — 1 "
n—oo|an|(r +¢)" n—o0  |an| oo ifr=0.

The limit is greater than 1 in any case, and by the Ratio Test (see Proposition , this implies
that > 07 |an|(r + €)™ does not converges. Identity leads us to R < r + ¢, and because
€ > 0 is arbitrary, we get R < r. This in particular proves the result in the case r = 0.

Consider now the case 0 < r < 00, and 0 < & < 7. Again we use the Ratio Test for numerical
series: »
n
) =(r—e) lim ]an+1|:r—€<1.

n—oo ‘an‘ r

L (=
weJal(r — )"

Thus the series Y7 |an|(r — €)™ converges and by the same reasoning we get that r —e < R for
all € > 0, implying that » < R. We conclude R =r.

And when r = oo, we use an identical argument to show that, for each M > 0, the series
Y02 o lan|M™ converges, which implies R = oo = 7. O

We now apply Theorem to concrete examples of power series.

Example 3.16. Let us determine the radius and disk of convergence in the following cases.
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(i)

(iii)

(iv)

> (1;7;)” (z —14)™. The series is centered at 7 and the coefficients are a,, = (1277?” To find
the radius of convergence R, we use formula (3.3.3). We have |a,| = [1+i["/n" = (ﬂ/n)n
So,
lim sup v/|a,| = hrn sup (ﬁ/n)n = lim supﬁ =0.
n—o0 n—oo N
Therefore R = co. So the series converges pointwise in all of C, and absolutely—uniformly
on each bounded subset of C (as these are all contained in disks of the form D(zy, N) for

N e N).

Yool o(14nd) (Z“) . The center is 290 = —i and the coefficients are a,, = 3 for all n € N*.
Nierd

So the moduli are |a,| = , and

27‘1

1/n
Al 2 1 I/n 1
lim sup |ay |/ = lim sup <+n> = glim sup (\/ 1+ n2) =5

27L
n—oo n—oo n—oo

Therefore, the radius and disk of convergence of the series are R = 2 and D(—¢,2). Within
each closed subsdisk of D(—i,2), the series converges absolutely—uniformly. On the the
open disk D(—1i,2), we have pointwise convergence, and outside the disk D(—i,2) the series
diverges at every point. These are all conclusions from Theorem [3.15

But, what is the situation when z € 0D(—i,2)? Unfortunately, Theorem is useless here
and we need to study the convergence by other methods. If z is such that |z+i| = 2, then the
numerical series ) > _0(1 +ni) (254)" has general term equal to b, = 15 (2 +i)". But then

b,| = |14 ni| = v/1 4+ n?, which of course does not converge to 0. According to Proposition
the series Y > (1 + m) (ZH)" diverges.

> %z”. The center is zp = 0 and the coefficients are a,, = % for all n € N. Hence

(m)””_l

lim sup |ay|"/" = lim sup 3
n

n—oo n—o0

The radius and disk of convergence are R = 1 and D(0,1). By Theorem we have
absolute—uniform convergence in closed subdisks of D(0, 1), pointwise convergence in D(0, 1)
and diverge in all of C\ D(0, 1). In the boundary dD(0, 1), again Theorem is inconclusive.

But if |z| = 1, the numerical series >, %z” has general term equal to b,(z) = %z",
with
V14+n2 V1+4n2 \@n V2
bl = =gl =y < T =

Because > °° Y2 < 0, we have that > 1+§”z" is convergent for each z € 9D(0,1).

n1n2

Moreover, since the bound above is independent of z € 9D(0,1), Theorem tells us that
0D(0,1) 3 z — >.°  LEni,n converges absolutely—uniformly.

nl n3

n!)?

2
Yoo EZ;L) 12" The coefficients are a, = @) and the center is zyp = 0. Perhaps in this case
h

—~

formula (3.3.3)) is not the easiest way to calculate the radius of convergence, especially if all
we know is that lim {/(n!)?2 = lim {/(2n)! = co. We can try out Theorem [3.15(v) instead:
n—oo n—o0

(nh)?

i [ =l O (2n+2)(2n+1) .
n—=00 [any1|  n—oo §§7I+1)1>)>! noo (n+ 1)2

Therefore, the radius of convergence is R = 4 and D(0,4) is the disk of convergence. We
know very well what the convergence is in D(0,4) and in C\ D(0, 4) from Theorem

However, if z € 9D(0,4), since lnn E; )), = oo the series Y > Eg )),z diverges.

3This is a consequence of Wallis’ product formula, which actually shows that ()% gn ~ /1.

(2n)!
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(v) Let us treat some series with infinitely many terms equal to 0. Let ¢ : N* — N* be an
increasing function, and consider the series » anz?™ . In oder to apply the Cauchy-
Hadamard formula (3.3.3]), we can define new coefficients

b — Jan if k= p(n), for some n € N*,
70 otherwise.

Then ) 7, anz?™ = 3¢, bi2® and their radius of covergence R satisfies, by (3.3.3)),

R™! = limsup |y /% = klim sup{|b;|1/7 : j >k} = klim sup{|an|Y¢™ : j >k, j = p(n),n € N*}
—00 —00

k—oo
= lim sup{|an|"/?™ : o(n) > ¢(k), n € N*}
k—o00

= lim sup{|an|/?"™ : n >k, n € N*} = limsup |a,|"/*™.
k—o00 00

In the fourth equality we used that if {cj}, C R is non-decreasing, then lim ¢, = lim cy ).
k—o0 k—o0

So we can again derive a formula for R in terms of {ay }n.

For example, let us examine ) 7 a,2*". By the above, the radius of convergence R satisfies

1/2
R™! = limsup|a,|"/*" = (hmsup \"/\ano .

n—o0 n—o0

If it is difficult to figure out lim sup {/|a,,|, we can try a variation of the Ratio Formula (3.3.4)),

n—oo

always provided that a, # 0 from some N on. Note that (3.3.4) cannot be applied as it is for
the series > o a, 22", because the coefficients of the terms of the form 22" are all zero.
Thus we go back to the Ratio Test for numerical series (Proposition , and use that

2(n+1)
. Qn41|T . an+1
hm % = T2 hm | nt | )
n—00 |y |2 n—oo |ay,|
for r > 0, to obtain
oo converges, if lim lantal /r?,
n n—soo lanl
> lanlr" = lanii] 5
n—0 diverges, if lim "7+|1 > 1/r°.

n-sco lan

1/2
By (3.3.2)), this clearly shows that R = ( lim M) .

n—oo |Gn+1]

3.3.3 Convergence on the Boundary

We have learnt from Example that it is not so easy to determine the convergence of a power
series on the boundary of its disk of convergence. Theorem [3.15|is inconclusive in this respect: on
the boundary the series may converge or diverge at all points, or converge only at some points.
We next prove a criterion for convergence on the boundary, covering a reasonably big amount of
cases. We first need the useful Abel’s Summation by Parts formula.

Lemma 3.17 (Abel’s Summation by Parts). Let {an }n, {bn}n be sequences of complex numbers and
denote B, =Y by for every n € N*. Then for all M, N € N* with M > N we have

M M—-1

Z anby, = ap By —anBn-1 — Z (@nt1 — an)Bp.
n=N n=N
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Proof. 1t is enough to spell out the last term of the right hand side:

M-—1 M-—1 M-—1 M M-1
- Z (an+1 - an)Bn = - Z an41Bn + g anBy = — Z apBp_1+ Z an By,
n=N n=N n=N n=N+1 n=N
M-—1

= —ayBu-1+ Y an(Bo— Bn1) +anBy
n=N+1
M—-1

=—apmyBy-1+ Z anbn, + any By
n=N+1
M

= —ayBy—1 — apby + Z anb, — anby + anBy
n=N
M

= —ay By + Z anby, +anBn_1.
n=N

Theorem 3.18 (Picard’s Criterion). The following statements hold.
(i) If {an}n C C are such that y " |ant1—an| < co and Jingoan = 0, then the series Y > ; a,2"
converges for all z with |z] =1 and z # 1.

it) In particular, if {a,}, C R converges monotonically to 0, then the series > -, anz" converges
(ii) g y S 9
for all z with |z| =1 and z # 1.

Proof. We first prove part (i). Let z € C with |z| = 1 and z # 1. Let us show that the partial sums
of Y>>, anz" satisfy the Cauchy property. Indeed, if M > N are naturals, Lemma permits
to write
M N M M N M-1 n
Zanz” - Zanz” = Z An2n = Q)M ZZ" —an+1 Zzn — Z (ant1 — an) sz.
n=0 n=0 n=N-+1 n=0 n=0 n=N+1 k=0

Taking moduli, using the triangle inequality, and computing the geometric sum, we get

M N M N M-—1 n
DU YA FIV]) ST RIN]) pid Bl SiTEAL) i
n=0 n=0 n=0 n=0 n=N-+1 k=0
1 — M1 1 oN+1 M-1 1 — gl
= lanm| ’1_2 + lan4| 1_ Z |nt1 — an| B
n=N+1
9 M-—1
< ‘1_ ‘ <|aM—|—|(1N+1|—|— Z |an+1_an’>;
z n=N+1

where we used the crude estimate |1 — 2| < 14 |z|™ = 2 in the last inequality. Because a,, — 0,
we have that |aps|, |lan+1] — 0 as N, M — oco. And the term 271\14:,]\}“ |an+1 — ap| also tends to 0
as N, M — oo because it coincides with the difference of partial sums

M-1 N
Z |Gnt1 — an| — Z |ant1 — anl,

of the convergent series Y |an4+1 — an|. We conclude that the partial sums of Y 7 a,2" have

the Cauchy property.

Now, to prove (ii), observe that Ziv:o |an+1 — an| = ‘Zivzo(anﬂ - an)‘ as the sequence {a, },
is monotone. But the last term is equal to |ayi1 — ap|, whose limit is |ag|. Therefore the series
Egzo |an+1 — an| converges, and we can apply (i). O
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Here there is an obvious generalization of Theorem for arbitrary radius and center.

Corollary 3.19. Let {an}n C C, 29 € C, and r > 0. Assume that Y oo o [r"an11 —r"ay,| < oo and
lim 7"a, = 0. Then Y > an(z — 20)" converges for all z € 0D(zp,r) \ {20 + 7}

n—oo
In particular, if a sequence {a,r"}, C R converges to 0 monotonically and lim r"a, = 0, then
n—o0

Yool an(z — 20)" converges for all z € dD(zq,7) \ {z0 + 1}
Proof. Writing > ~>° g an(z—20)" = > pe g an™” (Z;ﬂ)n , it suffices to apply Theorem for a,r"

in place of a,, and w = (2 — zp)/r in place of z. O

. n . . . .
For example, the series )", 2= has radius of convergence equal to 1, and so there is pointwise

converge in D(0, 1) and absolute—uniform convergence in disks D (0, r) for all » < 1. The coefficients
ap =1 1 0andif 2 € 9D(0,1) \ {1}, we can apply Theorem [3.18(ii) to conclude that Y o°, % is
convergent. In the case z = 1, the series clearly diverges.

3.3.4 Differentiability of Power Series

If R > 0 is the radius of convergence of a power series f(z) = Y., _q an(z—20)", then Theorem 3.15]
implies that, on every disk D(zp,r) with r < R, f is the uniform limit (as N — oo) of the partial
sums ZTJLO an(z—20)" on z € D(zp,r). By Proposition f is continuous at every z € D(zp, R).
So, power series are continuous on their disk of convergence. Our next objective is to show that
they are actually infinitely differentiable on the disk. The main technical difficulty is, as usual,
exchange the order of derivatives with limits of partial sums.

Theorem 3.20 (Differentiability of Power Series). Let Y an(z — 20)" be a power series with
radius of convergence R > 0. Then the function f : D(zy9, R) — C defined as

f(z)=> an(z—2)", z€D(x,R),
n=0
is holomorphic in D(zp, R) and
fl(z) = Znan(z —2)""!,  z¢€ D(z0,R).
n=1

Moreover the power series of ' above has radius of convergence equal to R.

Proof. Define the function D(zg,R) 3 2 + g(z) := Yo% nay(z — 20)""'. By Theorem
(3-3-3), we have limsup |a,|"/* = 1/R and so
n—o0

1
lim sup(nla,|)/™ = lim sup n'/"|a, |*/™ = o
n—0o0 n—o0

Then the radius of convergence of Y o° | nan(z — z9)" ! is also R (again by (3.3:3)). This gives
plenty of information. First, we have confirmed that g is well defined in D(zg, R). Also, for every
0 < r < R, the series Y o, nfa,|r"~! is convergent (also thanks to (3.3.2)). Therefore, using
Proposition [3.2fii), we get that

o0

: n—1 __
A}gnoorg;vn\an]r =0. (3.3.6)

Moreover, from Theorem we learnt that >.°° ; na,(z — 20)" ! converges (even uniformly) on
each disk D(zp,r) with 0 < r < R, so

N—oo

N
g(z) = lim Znan(z —20)"Y, 2 € D(z,7). (3.3.7)
n=1
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Now, to check that f is holomorphic with f’ = g on D(zp, R), let us fix z € D(z0, R), take r
with |z — 29| <7 < R. In D(29,r), the series defining f and g converge, and we can write, for all
w € D(zp,7) and N € N:

o0

flw) = fn(w) + fN(w), with  fy(w Zan w—20)"  Nw)i= D an(w—z)",
n=N+1
g(w) = gn(w) + g™ (w), with gn(w Znan —20)" Y N (w) = Z nan(w — 20)" 1.
n=N-+1

But notice that fx is just a polynomial function, with f), = gy on D(zg, R). Thus, the idea is that
we only need to verify that fV is differentiable at z, with (fN)(2) = gV (z) for sufficiently large
N. Let us make this rigorous. Given ¢ > 0, these observations along with (3.3.6|) and (3.3.7) yield
the existence of N € N and 0 > 0 with 0 < § < r — |z — 2| such that

9(:) —gx (N < =, Y e < S, and 'W—W(z> <t (33
n=N

whenever w € D(z,9)\ {z}. Using the estimates of (3.3.8)), we can write, for all w € D(z,60)\{z} C
D(zg,r) :

f(w) — f(z fN(w) = fN(z Sn(w) — fn(2)
JOIZJE) )| = [T IO IV )] () - aw(e)
w—z w w—z
00 00 n—1
(w—20)"— (2 —20)"| 2¢ an(w — z) -k Bl 2e
< Z an . + == Z e (w—2p)" (z — 20) +§
n=N+1 n=N+1 k=0
o0 n—1 2 o0 n—1 %
= Z anZ(w—zO)"_k(z—zo)k +§ < Z ]an\z\w—zo\”_l_k\z—zo\k—i-f
n=N+1 k=0 n=N+1 k=0
- i, o 2¢e e 2
< Z |an|z nelkpk Z n|an|7‘n_1+§ < §+§ =E.
n=N+1 n=N+1
We may conclude that f is differentiable at z, with f'(z) = g(z). O

According to Theorem [3.20] any power series is holomorphic on the disk of convergence and
its derivative is new power series (obtaining by differentiating termwise in the original series) with
the same radius of convergence. We can apply the theorem repeatedly to derive the following.

Corollary 3.21 (C regularity of power series). Let > o, an(z—20)" be a power series with radius
of convergence R > 0, and let D(zo, R) 3 z — f(2) :=> 2 an(z — 20)". Then,

(i) f € C®(D(z,R)).

(i) f*(2) =32, n(n—1)--(n—k+ ag(z — 20)"* for all z € D(z0, R).

(i1i) The coefficients {an}nen+ are unique and satisfy a, = e ZO) for all n € N*. In particular,
on D(zp, R), the series Y 7 an(z — 20)" is the Taylor series of f centered at z.

Proof. By iterating Theorem [3.20] we get that f is infinitely many times differentiable in €2, with
each f(*) given by the power series >.°°, n(n—1)---(n—k+1)(z—20)" " on z € D(zo, R), whose
radius of convergence is equal to R. And evaluating at z = 2, we get f (k)(z) = klag. O

Similarly, we can obtain primitives (anti-derivatives) of power series by integrating termwise in
the series.
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Corollary 3.22 (Antiderivatives of Power Series). Let Y 7 an(z—20)" be a power series with radius
of convergence R > 0, and define D(zy, R) 3 z + f(2) :== Y 2 an(z—20)". Then the power series

[e.9]

Qn n+1
> 1 (2 — 20)
n=0

)n+1

has radius of convergence equal to R, and the function g(z) = >, (2 =20 is holomorphic

in D(z0, R) with ¢'(z) = f(2) for all z € D(zp, R).
Proof. Because

= lim sup (]an|1/">n/(n+1) 1

)
n—oo R

|an‘ >1/(n+1)

‘an‘ 1/(n+1)
n+1 >

lim sup ( T
n

n—o0

= lim sup (

n—o0

the radius of convergence of the series Y2 -2 (z — 2)" ! is equal R by Theorem Applying

Theorem to this power series, we get that g(z) = > 72, (2 — 20)" ! is holomorphic in
D(zp, R) with

g(z)=> an(z—20)" = f(2), z€ D(2,R).
n=0

3.4 Analytic Functions

Definition 3.23 (Analytic function). Let  C C be open and f : Q — C a function. If zy € §2, we
say that f is analytic at zq if there exists r > 0 with D(zg,r) C Q and a sequence {ay }nen C C
so that

flz) = Zan(z —20)" forall zé€ D(z,r).
n=0

If f is analytic at every zg € ), we say that f is analytic in Q. We denote the family of all
analytic functions in Q by A().

Remark 3.24. If f : @ — Cis analytic at 29 € Q and f(z) =), _,an(2—20)" for all z € D(zg,r) C
), then in particular > _,a,s™ is convergent (to f(zo + s) € C) for all 0 < s < r, and therefore
r < R, the radius of convergence of the power series ) _,an(z — 20)"; recall Definition
Consequenly, f coincides with a power series on a disk D(zp,r) contained in its disk of convergence

D(z, R). By Corollary [3.21], f € C°°(D(z0,)) and

f(z) = Z ) ('ZO) (z—20)" forall ze D(zp,r).
n=0 ’

n

And observe that in the case where f(™(z) = 0 for all n € N* (understanding that f(0) = f), f is
identically zero on D(zg,r).

Note that Remark implies that we only need to assume analyticity of f at a point zg to
guarantee C*° regularity on a whole disk D(zp,r) around zp.

3.4.1 Analyticity of Power Series

The next step is showing that actually analyticity at a point zy implies analyticity on a disk
around zg. To prove this, we will show that all power series are analytic functions on their disk of
convergence. We first need a Fubini-type property for summation of iterated series to make our
proof entirely rigorous.
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Proposition 3.25. Let C': N* x N* — C be a function such that

either ii|€(n,k)|<oo or ii\(f(n,k)|<oo.

n=0 k=0 k=0n=0

Then we have o o o o
YN Cmk) =)D Cnk).
n=0 k=0 k=0 n=0

Proof. Assume, without loss of generality, that > ° />~ |C(n, k)| < co. Consequently

» Cn,k)eC, ) |C(n,k)|€Cloralln and » C(n,k)€C, > |C(n,k)| € C for all k,
k=0 k=0 n=0 n=0

which we will be using systematically (and implicitly) in the proof. Now, let e > 0. For each
n € N*, we have that p(n) := Y 7 ,|C(n, k)| € C, as a consequence of the assumption. Moreover,
the assumption says that >~ , ¢(n) converges, and so the partial sums have the Cauchy property.
Thus there exists Ny € N such that

M 00 M
Z Z\C(n, k)| = Z p(n) < g, for all M,N > Np. (3.4.1)
n=N+1 k=0 n=N+1

The convergence of > >° > |C(n, k)| also implies that L := "> >"7°  C(n, k) € C. Thus we

can find Ny > Ny such that
N1 oo
> 2 Clnk) -

n=0 k=0

€

<3 (3.4.2)

But also Klim Zszo C(n,k) € C for all n, and so we can find K; (depending on N; and &) such
—00
that, for every K > K :

N1 o N1 Kj c
< =
303 ot - 353 Cla| < £
n=0 k=0 n=0 k=0
This estimate, in combination with (3.4.2), gives

K N
> Y Cink) - ZZC n, k) <% foal K> K. (3.4.3)
k=0n=0 n=0 k=0

It is now tempting to freeze K and let N — oo in , but we are not allowed to do so because
here K is at least K7, which depends on Ni. We need to show an estimate like replacing
N; with every N > N;. But we can use with N > N; > Ny (and itself) to get that,
for all K > K7 and N > Ny,

K N K N K N K Ny
Y>> Cnk <D > k) => > +1)> Cnk) -
k=0n=0 k=0n=0 k=0 n=0 k=0 n=0
K al 2¢ e 2
<> C k)l + 5 <+ =¢

Now we can first freeze K and let N — oo to obtain ‘Zf:o Yoo Cln, k) — L‘ < g, and then
let K — oo to conclude [> 72> > C(n,k)—L| < e. Since ¢ > 0 was arbitrary, we get
Yooy C(n, k) = L, as desired.

O
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Theorem 3.26 (Analyticity of Power Series). Let Y 7 jan(z — 20)" be a power series with radius
of convergence R > 0. Then the function D(zo, R) 3 z — f(2) := > " qan(z — 20)" is analytic in
D(Zo, R) .

Proof. Obviously we already have that f is analytic at zg. So let z; € D(z9, R)\ {20} and let r > 0
be so that r + |21 — 29| < R. Note than then D(z1,7) C D(zo, R). For every z € D(z1,r) and
n € N*, we write (z — 20)" = ((z — 2z1) + (21 — 20))" and apply the Binomial Formula (|1.1.3) to
obtain

:Zan(z—zo Zanz< > z—21) (zl—zo ZZCn k); (3.4.4)
n=0 n=0 =

n=0 k=0

_ k o n—k i <L <
where C(n, k) := {gn(k)(z 21)" (21 — 20) if 0<k<n

if &>n.

It is now convenient to be able to apply Proposition to change the order of summation
Yon >k = Don Ok, for which we will check first that > 2 (>~ 27 |C(n, k)| < oo. Indeed,

510000 < 3 el ()12 1ler = 20" = 3 laal (2 = 2l + 12 )"
n=0

n=0 k=0 n=0 k=0

But s := |z—z1|+|z1—20| < r+|21—20] < R, and R is the radius of convergence of > > ; an(2—20)",

so e.g. (3.3.2)) says that series Y 7 |a,|s"™. Therefore > 2 (> 27, |C(n, k)| < cc.
Continuing with the equalities of (3.4.4), we use Proposition to arrive at

:ZZC(n,k):ZZC(n,k‘):ZZan<Z>(z—zl)k(zl—zo - Zbk z— 2k

n=0 k=0 k=0 n=0 k=0n=k
(3.4.5)

where by = Z an, (Z) (z1 —20)" %, keN-
n=~k

Let us justify why by € C for all k. Because ( ) < I+ we have the estimate

9]
n —k <

Z|an|<k>|2120|” < kl|z |kZ|an|n |21*Z(]|

n==k

and we check whether this series converges using e.g. the Root Test; see Proposition [3.4 We have

lim sup <\an]nk]zl — zoln) / = |21 — 20| limsup |a,|"/™ = M,
n—o0 n—oo R
by virtue of formula , as R is the radius of convergence of the series ) > an(z — 20)™.
But |21 — 20| < R, so the previous limit superior is smaller than 1, and so the numerical series
S0 4 lan|n®|z1 — zo|™ is convergent, as so is the series defining the number by,. From (3.4.5)), we
see that f is analytic at 2. O

Corollary 3.27. Let Q2 C C be open and zg € Q. If f is analytic at zg, then f is analytic on o disk
D(zp,7) C Q.

Proof. By Remark f is a power series on a disk D(zp,r) contained in the disk of convergence
of this series. By Theorem f is then analytic in D(zo, 7). O
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3.4.2 Examples

Let us find the power series expansions of some of the elementary functions we constructed in

Section 241
Example 3.28. The complex exponential C 5 z — e? € C from Definition [2.48|is analytic in C, and
o Zn
e’ = Z — forall zeC. (3.4.6)

|
n:OTL

To see this, let us recall known results from real analysis:

T _ oz _ — (-1)" 2n Co — (=1)" 2n+1 R
(& —ZF, Cosy—z <2n)'y y Slny—Zmy y x,ye .
n=0 n=0 n=0

This is shown via computing the Taylor series at the origin of the functions R> z +— e¢*, R y —
cosy,siny. The series of cosy and siny above converge absolutely, and so we can sum termwise
and take into account (1.1.2) to obtain

4+ isi . (_1)n 2n 44 . (_1)n 2n+1 . Z'Zn 2n + - i Z'Zn 2n+1
COS 18Iy = 1 — = — e
Y =2, (2n)! Y Z (2n+1)!y 2 2n)!” nzzo @n+1)1Y

n=0 n=0
i 2n+1 f: ((zy)2” (iy)2”+1 ) i (Zy)n
+ = .
| | |
vt 2n+1 =\ (2n)!  (2n+1)! ~= n!
For all z,y € R, the two numerlcal series Y 7 f: and Y 7 Z?n converge absolutely (e.g. by

the Root Test from Proposition , and so their Cauchy product is absolutely convergent, and
converges to the product of the series by Proposition From (3.1.2)), the general term of the
Cauchy product is

ot (y)n Tt Ln\ gk (@+iy)

) = 3 g () = S
k=0 k=0

after applying Newton’s binomial formula. This shows the identity

e“tW = e%(cosy + isiny) = (Z i;) (Z ) ch x,9) ZM,

n=0 n=0 n=0

thus showing (3.4.6). Using the definitions (2.4.2) in combination with (3.4.6)), we get that z —

sin z, cos z are analytic in C with

(D" (D" ona
COSZ:Z 2", sinz:zmz ntl zeC. (3.4.7)
n=0 ’ n=0 )

Example 3.29. Let us prove that the principal branch of the logarithm (Definition [2.60)) satisfies

oo n

Log(l—2)=—-Y_ % 2] <1, 2 # 1. (3.4.8)

n=1

Indeed, it is immediate that the radius of convergence of the series above is R = 1, by (3.3.3).
Defining f(z) = — > 02 2", by Corollary the series obtained by differentiating termwise

oo [e.e]
= —Zz"il = —Zz”, |z| <1,
n=1 n=0
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is holomorphic on D(0,1) with ¢’ = f. But g is a geometric series, whose value is g(z) = 1 -. Now,
the points of the form w = 1 — z, with |z| < 1, clearly satisfies Re(w) > 0, contained in the domain
of holomorphicity of Log, see Theorem m Thus (Log)'(1 — 2) = £ = f/(z) for all |2| < 1. By
Corollary D(0,1) 5 z +— Log(1 — 2z) and f differ by a constant, but evaluating at z = 0, we
see that f(0) = 0 = Log(1), from which we obtain ) for all |z| < 1. Now, for z € 9D(0,1)
with z # 1, we have from Picard’s Criterion that — Zn 10 12m is convergent. If r € (0,1) then
rz € D(0,1), and so
og(l —rz) ; - Z e

n=1

By the continuity of Log in C\ (—o0, 0] and Exercise we deduce
1

L 1-— = 1l L 1— —_] Z o .on
og(l—z) im Log(1l —rz) im Z r" 2"

r—1- r—1-

and this proves completely (3.4.8]). Note that (3.4.8) also implies

= ()" _ o ()
LOg(l—l—Z):—Z 2272’“’ |Z| Sl?'z#_l'
n=1 n=1

n n

3.4.3 Operations with Power Series and Analytic Functions

As expected, linear combinations of power series is another power series in the appropriate disks of
convergence. The same holds for the product, using the Cauchy product to obtain the coefficients
of the new series.

Proposition 3.30. Let Y ° an(z — 20)" and >_,” o bn(z — 20)" be two power series centered at
zo € C with radius of convergence Ry > 0 and Ry > 0 respectively. Then,

(i) If X € C\ {0}, the power series Yy > o Aan(z — z0)" has radius of convergence Ry, and
Z Aan(z — z0)" = A Z an(z —20)", 2z € D(z0, R1).

(ii) The power series > o> (an + by)(z — 20)" has radius of convergence R > min{Ry, Ry}, and

o

Z(an—{—b (z—2z0)" Zan z—2p) —|—Zb z—2z0)", z€ D (zp,min{Ry,R2}). (3.4.9)
n=0

(iii) The power series > o°  cn(z — 20)"

gence R > min{R;, Ra} and

chz—z(] (Zanz—zo )(Zb z— zp) ), z € D (zp,min{ Ry, Ra}).

(3.4.10)

, where ¢, = Y p_o akbn—k, n € N*, has radius of conver-

Proof.

i) That >°°° Aan(z — z0)™ has radius of convergence R; is immediate from the definition ([3.3.1]),
n=0

and the equality because the sums for all z € D(zp, R;) follows from the C-linearity of limits (of

partial sums, in this case).

(ii) For every r < min{R;, Ry}, the two series > 7 janr™ and > 7, b,r™ are convergent, and so is
Yo glan + by)r™. Therefore R > min{R;, Ry}, and the equality (3.4.9) clearly holds.
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iii) For every r < min{ Ry, Ra}, and every z € D(zp, r), the numerical series Y oo . a,(z — z9)"™ and
( ) y { 9 9 y 9 ) n=0

Yoo o bn(z — 20)™ converge absolutely; see Theorem By Propostion the series > 07 ¢n -
also converges (even absolutely), where

n n

Cnz = Z ap(z — zo)kbn_k(z — zo)"fk =(z—20)" Z arbp—r = (2 — 20)"cn,
k=0 k=0

and (also thanks to Proposition , we have

(Zanz_zo )(Zb s 20) ) D

This holds for all z € D(zp,7), 0 < r < min{R;, Ry}, from which we get the bound R > {R1, R2}
and the equality (3.4.10) for all z € D (29, min{ Ry, Ra}). O

Consequently, analyticity is closed under multiplication with scalars, sums, and multiplications
of functions.

Corollary 3.31. Let Q C C be open, and f,g € A(R), A € C. Then also

AfeARY), f+geAQ), f-ge AQ).

Proof. For every zy € 2, we have expansions f(z) = > 7" jan(2—20)" and g(2) = > 2 bn(2—20)"
on z € D(zp,r). By Proposition (3.30)), we have expansions for A\f, f+g, and f-g into power series
centered zp on the disk D(zp,r) as well, and so those functions are analytic at zg. ]

The division of power series and/or analytic functions is a slightly more delicate issue and
we are not yet able to prove that dividing analytic functions gives another analytic function. If
f.9 € A(Q) and g # 0 on Q, then f,g € H(2) (Theorem [3.20), and h = f/g € H(Q) as well; see
Proposition [2.34 But we do not (yet) know that then h € A(Q). This will be proven in Chapter
Nonetheless, assuming a priori that h is analytic, we can deduce an expression for the coefficients
of the power series of h in terms of those of f and g.

Namely, let f,g € A(Q), z0 € Q with g(z0) # 0 and f(z) = Y 2 jan(z — 20)", g(z) =
Yoo o bn(z — 20)™, h(z) = Y07y cnl(z — 20)™ on z € D(z,r). Let us express the coefficients ¢, in
terms of a,, b,. We can assume that the convergence of the three series is absolutely—uniform on

D(zp,r), and because f = h - g, (3.4.10) says that
(z nle 0 ) (zb - ) S b ) = € Dl
n=0 k=0

whence a, =Y ckbn—i for all n € N*. Therefore

k—1
a 1 1
Co = Fz, = b() (a1 —cob1), ..., cn= % (an - kz_ockbnk> , neN.

3.4.4 Identity Principles for Analytic Functions

Analytic functions have a rather rigid structure. In particular, if at some point of a domain all
its derivatives are zero, the function is automatically everywhere zero on that domain. This is the
content of the next theorem.

Theorem 3.32 (15 Identity Theorem). Let © be open and connected, and f : Q — C analytic in Q.
The following statements are equivalent

(i) f(z) =0 for all z € Q.
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(ii) There exists zg € Q such that f(z0) = f(20) = 0 for all n € N.
Proof. The impplication (i) = (i7) is obvious. Conversely, assume (ii) and define
E:={zeQ: f™(z)=0 for all neN*}.

The set E is nonempty because zg € F and obviously £ C €.

Let us show that E is open. Indeed, if z € E, then f("(z) = 0 for all n € N*, and since f is
analytic at z, there exists 6 > 0 so that f(w) = 0 for all w € D(z,); as we pointed out in Remark
Of course this implies f(™(z) = 0 for all n € N* and all w € D(z,0) as well, which shows
that D(z,0) C E. Consequently, E is open.

Now, let us prove that E = F N €, for some closed set F. Each function f™ : Q — C
is continuous on  (because f € C*°(2)), and since {0} is closed, Proposition says that
(f(”))_1 ({0}) = F, N Q for some F;,, C C closed. But then F' = (2, F, is closed as well (by
virtue of Proposition , and clearly E = FNQ.

Since F is nonempty, £ = F' N, with F' closed, and €2 is open and connected, by Proposition
2:27 we conclude E = €, which means f =0 in Q. O

A particular consequence of Theorem [3.32]is that if f is analytic on a domain 2 and f =0 on
some open subset U C 0, then f =0 on Q as well. Actually the distribution of zeros of (non-null)
analytic functions is even more rigid: their zeros are isolated. This is a fundamental principle for
analytic functions, which is stated and proved in the next theorem.

For a function f : Q) — C, we denote the set of zeros of f in Q by

Zo(f) = { € Q : f(z) =0},
For every A, we denote by A’ the set of accumulation points of A; recall Definition

Theorem 3.33 (2"¢ Identity Theorem). Let Q be open and connected, and f : Q — C analytic in
Q. The following statements are equivalent

(i) f(z) =0 for all z € Q.
(ii) There exist zp € Q and a sequence {zx}r C Q\ {z0} such that klim 2z = 20 and f(zx) =0 for
— 00
all k € N. By Pmposition this is the same as saying that (Zo(f)) NQ # 0.

Proof. The implication (i) = (i) is obvious. Conversely, assume that (i7) holds and let zy €
and {zx}r be as in (i7). Since f is analytic at zp, Remark says that we can write

X fn) (5

f(z) = Z / n(' O)(z —20)", z€ D(zp,r) C Q.
n=0

Suppose, seeking a contradiction, that f Z 0 on ). By Theorem there is some mgy € N* such

that f("0)(zy) # 0. Let m € N* be the smallest nonnegative integer with the property f(™(zy) # 0.

The series above then becomes

0 f(n—i—m) (ZO)

0 £(n)(,
e =3 LB gy where g(2) =S n+ m)!

n=m n=0

(z — 2zo)"

for all z € D(zg,r). Because zp — 29, we may assume that z; € D(zp,r) for all k. The assumptions
says that 0 = f(zr) = (2 — 20)™g(zk), whence g(z) = 0 because z, # zp. But g : D(z2p,7) = Cis a
continuous function, and z; — zp implies g(z) — g(z20) = % # 0. This is a contradiction. [

Theorems and are not true outside the class of analytic functions. For instance, the
real function f : R — R given by

e if >0
0 if x <0,

is of class C®(R,R) with £ (0) = 0 for all n > 0, and obviously f is not identically null in R.
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3.5 Exercises

Exercise 3.1. Prove that the Cauchy product of the series > >~ E/_an)nl with itself is not a convergent

series.

Exercise 3.2. If {z,}n, {wn}n are sequences complex numbers, prove, justifying carefully all the
steps, that:

(i) D02 zn converges if and only if > o7 | Re(z,) and Y07 Im(zy,) converge.

i) If |zn| < |wp| for all n € N, and >0, w, converges absolutely, then > °° . z, converges
n=1 n=1
absolutely too.

(iii) Y o7 | zn converges absolutely if and only if Y .7 | Re(zn) and Y 7 Im(z,) converge abso-
lutely.

Exercise 3.3. Use Exercise to show that if {zp}n C C is such that there exists 0 < 0 < 7/2 so
that |Arg(z,)| < 0 for all n € N, then

o0 oo
Zzn converges <= Zzn converges absolutely.

n=1 n=1
Suggestion: Use the assumption on Arg(z,) to study the proportion between Im(z,) and Re(zy).
Exercise 3.4. Consider the sequence of functions {f, : C — C},, given by

n + e*

fn(z) = m»

neN, zeC.
Find f : C\ {0} — C so that {fn}n converges pointwise to f on C\ {0}. Then show that this
convergence is uniform on each set A :={z € C : 1/R < |z| < R}, with R > 0.

Suggestion: We remind that |e*| = eRe(2) | see ([2.4.1)), which helps when estimating.

Exercise 3.5. For Q := {z € C : Im(z) > 0}, consider the sequence of functions {f, : @ — C},
given by fn(z) = tan(nz), z € Q, n € N. Prove that f, converges pointwise to the constant

function f(z) = i for all z € §, and that the convergence is uniform on each set of the form
{z € C : Im(z) > e} with e > 0.

Exercise 3.6. Let K C C be compact, and {f, : K — R}, a sequence of real-valued and continuous
functions on K such that { f,,}n converges pointwise to a continuous f : K — R, and that f,(z) <
frnt1(2) for all z € K, n € N. Prove that {f,}n converges to f uniformly.

Exercise 3.7. Let A C C be a set, and {fn}n sequence of continuous functions f, : A — C
converging uniformly on A (to some function f : A — C). Show that also {fn}n converges
uniformly on A.

As a corollary, show that if a power series Y " an(z — 20)", {an} C C, 2y € C, converges

uniformly in some set A, then it converges uniformly on A.

Exercise 3.8. Prove that if a power series y > an(2—20)", {an}n C C, 29 € C, converges uniformly
in all of C, then there exists ng € N so that a, =0 for all n > nyg.

Suggestion: Show first that the uniform convergence of > 2 an(z — 20)" on z € C, implies
that {|an(z — 20)"|}n converges to 0 uniformly on z € C as well.
Exercise 3.9. Consider the series of functions > " | fn, with fn(x) = #w” forallx € A:=[0,1),
n € N. Prove that Y > | fn converges absolutely and uniformly on A but not absolutely-uniformly
on A. This amounts to show that:
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(a) for each x € A, the numerical series Y > | fn(z)| converges;

(b) the sequence of functions given by the partial sums {Zgil fn : A = R}y converges uniformly
on A,

(c) the sequence of functions given by the partial sums {fo:l |fnl : A — R} N does not converge
uniformly on A.

Hint: For (b) and (c), it is easier to study the truth/falsity of the corresponding Cauchy prop-
erty.

Exercise 3.10. If Q := {z € C : Re(z) > 1}, prove the following about the series of functions
Yo #, z€Q:

(a) >0, # converges absolutely for each z € €.

(b) >20°, L converges absolutely-uniformly on each set {z € C : Re(z) > 1+ ¢}, with e > 0.

(c) S, # does not converge uniformly on Q.

zLogn zlogn

Clarification: Here n® is the principal z-power of n, that is, n* = e =e . For parts

(b) and (c), it’s perhaps easier to prove/disprove the corresponding Cauchy property.

Exercise 3.11. Let f : R — [0,00) be a decreasing function with fooo f(z)dx = oo. Prove that the
series y o1 f(n)z" has radius of convergence R < 1.

Exercise 3.12. Determine the disk and the radius of convergence of the following power series.

Q) Yoty e D) (<1+)< —it Y (V-1 (-1 d) Tl
)Ny 24 (1)) )Nl B g)Xos, (logn)2e" h) Yool Ty "
)t " P k) Yoo, 2 )L 2me"
m) Yty b n) o, AT o) e, 3R )y Basn,

If needed, feel free to use Stirling’s Theorem: lim —&— —1.
n—oo N*V2mn

Exercise 3.13. For the series a)-p) in Exercise study the convergence in the boundary of their
disk of convergence.

Exercise 3.14. For every m € N, find a power series with disk of convergence D(0,1) and so that
it diverges precisely at m points of the boundary 0D(0,1) of D(0,1).

Suggestion: Look at Theorem and recall that there are precisely m mt-roots of unity.

Exercise 3.15. Let & € C\{0} be so that )7 jan™ is convergent. Prove that the series of functions
{30 g anr€™}y, defined on r € [0, 1], converges uniformly on [0,1]. Then deduce that

o o
lim Zanfnr" = Zanlf".
=1 n=1

r—1-
n
Suggestion: Use Abel’s Summation by Parts formula; Lemmal3.17

Exercise 3.16. Prove the following power series exrpansions.

n=

(a) coshz:zoo()% for all z € C.
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(b) sinhz =", % for all z € C.
(c) 1€_ZZ =30 (ZZ:O %) 2" for all |z| < 1.

(d) (1—lz)m =32 ("N 2" for all |2] < 1, and a fived m € N.

m—1

Suggestion: In (c), use the Cauchy Product, Definition Proposition of two known

Series.
Exercise 3.17. Show that the following series converge in the given sets and calculate their sum.
(a) 3_pzgnz", for |z < 1.
(b) -2 n%z", for |z| < 1.
(¢) dopio(2" —=1)2", for|z| < 1/2.
(d) 3200, <) g g e R 0< |0 <

(e) 300,90 for 6 e R, 0 < [6] < .

n

Suggestion: In (d), look at the logarithmic expansion (3.4.8)), in Example [3.29
Exercise 3.18. Ezpress the following functions as power series centered at z =0 and z = i.

1 1 1

W= Og—g e, =%

Suggestion: In (c), use partial fraction decomposition.

Exercise 3.19. For the function f(z) =sinz, z € C, show that Z(f) = {kn : k € Z} (the zeros of
f). This function is analytic in C, not identically null, and vanishes in a sequence. Ezplain why
this does not contradict the 2nd Identity Theorem[3.33

Exercise 3.20. Let f € A(D(0,1)) such that f(:5) = ﬁ for alln € N, n > 2. Find the explicit
formula for f(z) for all z € D(0,1).

Exercise 3.21. Let f € A(D(0,1)) such that f(%) = n?—il for allm € N, n > 2. Find the explicit
formula for f(z) for all z € D(0,1), and calculate f™(0) for all n € N.
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Chapter 4

Complex Integration. The Fundamental
Theorems

In this chapter we cover some of the most important theorems of the course, for the class of

holomorphic functions, as well as some of their consequences. Here is a brief summary:

e The Local Cauchy-Goursat Integral Theorems: holomorphic maps have null integrals over

triangles, and over closed paths in convex domains; see Theorem and Corollary

The Cauchy Integral formula: an expression for a holomorphic map via path-integrals against
a rational function (Theorem and Corollary [4.29)).

C*>-reqularity for holomorphic functions and the Cauchy Formulae for the derivatives: holo-
morphic maps are infinitely differentiable and the derivatives have integral expressions against
rational functions; see Theorem [4.32]

Analyticity of holomorphic maps: holomorphic functions are analytic; see Theorem [4.39

The Morera Theorem: a characterization of holomorphicity via null-integral condition over
triangles; see Theorem [4.36]

The Weierstrass Convergence Theorem: the locally uniform limit of holomorphic functions
is holomorphic; see Theorem [4.37]

The Mazimum Modulus Principles: the modulus of holomorphic maps attain their maximum

in the boundary; see Theorems

The Liouville Theorem: holomorphic maps in C are either unbounded or constant; see The-
orem 4.4

The Fundamental Theorem of Algebra: every complex polynomial of degree n has precisely
n roots counted with multiplicty; see Theorem [4.47]

4.1 Contour Integration

The contour integral is a type of integral defined for complex-valued functions over a sufficiently
suitable class of curves or paths. In these notes, we will use the terminology complex path-

integration.

4.1.1 Continuous and Piecewise C''-paths

In Section we briefly discussed the differentiability of curves v : (a,b) — C in order to deal
with angle-preserving and conformal maps; see Definition [2.40] Here we extend this concept to

piecewise continuous or piecewise C'' curves.
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Definition 4.1 (Path). A path is any continuous function 7y : [a,b] — C with a,b € R, and a < b.
Then the trace of the v is the set

7 i=(la, ) = {7(t) : t € [a, ]}
We also say that the path «y : [a,b] — C is closed if y(a) = v(b).

Observe that the trace v* = 7([a,b]) of a path v : [a,b] — C is always a compact set, as the
image of the compact set [a,b] by a continuous function; see Proposition [2.25
There are two basic operations with paths that we will use systematically.

Definition 4.2 (Reverse path and Composition of paths). If v : [a,b] — C is a path, the reverse
path v~ of ~y is the path v~ : [a,b] — C given by

’Y_(t> = 7<a+b_t)7 te [avb]'
In particular, v~ (a) = (), 7~ (b) = 7(a) and 7* = (7)".
Also, if y1 : [a,b] = C and 72 : [¢,d] — C are two paths with v1(b) = v2(c), the concatenation

or composition of y1 and 7y is the path 1 * vz : [0,1] — C given by

yi(a+ (b —a)2t) if t€]0,1/2]

‘ (4.1.1)
Yale+ (d—e)(2t —1)) if t€[1/2,1].

(71 % 72)(t) = {

The continuity of v1 and 2 and v1(b) = v2(c) imply the continuity of v1 vz in [0, 1].
Example 4.3. Some instances of paths are the following:

e Given z,w € C, the segment line [z,w] joining z and w can be described via the path
v : [0,1] — C, y(t) = tw + (1 — t)z for all ¢ € [0,1]. Note that this path v has certain
orientation, meaning that the initial and terminal points are z and w respectively. The reverse
path v~ : [0,1] — C given by (t) =tz + (1 — t)w for all t € [0, 1], has initial and terminal
points equal to w and z respectively. The traces of these paths are v* = (y7)* = [z, w].

e Given zg € C, 7 > 0, n € N, the trace v* of the path v : [0,27] — C given by v(t) = zo+7e"™,
t € [0, 27, is the circle S(zo, r). However, «y travels on the circle n times and counterclockwise.
The reverse path v~ of v is v~ (t) = 20 + re~™, ¢ € [0, 27], which takes precisely n loops on
the circle S(zp,r) but in the clockwise direction.

e The set 9Q = {z € C : max{|Re(2)|,|Im(z)|} = 1} is the boundary of the unit square of
R2, which can be written as the trace of the concatenation Y1 * 2 * ¥3 * 4 of the paths

The closed path 7 := 1 xy2 %3 %74 travels 0Q counterclockwise with 1 —1 as initial (and terminal)
point.

According to Definition a path v : [a,b] — C is differentiable at a point t € (a,b) when
the real functions Re(y),Im(y) : [a,b] — R are differentiable at ¢y. The one-sided derivatives of
and the points a, b are defined in the natural way:

/

Y4 (a) :== lim M, 7 (b) := lim

4.1.2
t—at t—a t—b— t—0b ( )

This enables us to define paths that are C' in [a, b] except at finitely many points.
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Definition 4.4 (Piecewise C'-paths). We say that v : [a,b] — C is a C'-path if v is differentiable at
all point of (a,b), the one-sided derivatives exist (meaning that they are complex numbers),
and the derivative v : [a,b] — C is continuous in [a, b].

More generally, we say that v : [a,b] — C is a piecewise C'-path if there exist finitely many
points a =t < to < --- <tny_1 <ty = b so that each restricted curve Mitmstn ] - [tn, tny1] — C is

a C'-path for alln € {1,...,N —1}.

Remark 4.5. If v : [a,b] — C is a C'-path (resp. piecewise C'-path), the reverse path v~ : [a,b] —
C is C! (resp. piecewise C1) as well.

Also, it is clear that if v : [a,b] — C, 72 : [¢,d] — C are piecewise C'-paths with 1 (b) = ya(c),
the composition y; x 2 : [0, 1] — C is also piecewise C'1.

Furthermore, if 7 : [a,b] — C is piecewise C!, then there are C'-paths 71,...,yy with 7, :
[an,by] = v foralln=1,..., N, ¥—1(bn—1) = Wn(ay,) foralln =2,..., N and yop = vy x- - -xyn,
where ¢ : [0,1] — [a,b] is given by ¢(t) = a + (b — a) for all t € [0,1]. This tells us that every
piecewise Cl-path is, up to a reparametrisation, the concatenation of finitely many C'-paths.
Definition [4.7| below will clarify this concept.

Definition 4.6. If v : [a,b] — C is a piecewise C*-path, the length of vy is

length(y /}’y (t)| dt. (4.1.3)

We will sometimes use the notation length(y) = £() to shorten.

We observe that [a,b] 5 ¢ — |y/(t)| is continuous (possibly) except at finitely many points, as
7 is a piecewise C''-path, and so the integral (4.1.3)) is well-defined.
For example, if v : [0, 27] — C is given by ~(t) = ™ for t € [0,27], then /() = ine and

27 ) 2
length(vy) = / |ine”’ dt = / ndt = 2mn.
0 0

Also, if ¢ : [0,1] — C is given by ¢(t) = tw + (1 — t)z, t € [0,1] and z,w € C, then ¢'(t) = w — z
and length(y) = |w — z|.

Paths with the same trace and orientation can be represented by means of many different
mappings 7 : [a,b] — C. To express this rigorously we need to define the following concept.

Definition 4.7 (Reparametrisation of paths). Let v : [a,b] — C be a piecewise C'-path. We say that
a piecewise Ct-path n : [c,d] — C is a reparametrisation of v if there exists a C' and increasing
bijection ¢ : [c,d] — [a,b] with n(s) = v(¢(s)) for all s € [c,d].

In such case, we say that v and n are equivalent paths.

A bijection ¢ : [¢,d] — [a,b] of class O with ¢'(t) > 0 for all t € [a,b] (as the one appearing
in Definition is often called an orientation-preserving change of variables between [c,d] and
[a, b].

An observation that follows from the Change of Variables in the Riemann integral is that two
equivalent paths v : [a,b] — C, n: [¢,d] — C have the same length. Indeed, if ¢ is as in Definition

[4.7] then

length(n / }77 ‘ds_/ ‘fyo ‘ds_/ 17 (¢(5))]¢' (s ds—/ |7/ (t)| dt = length().

4.1.2 Complex Path-Integral and Arc-Length Integral

The integral of complex functions h : [a,b] — C whith both real and imaginary part Riemann-
integrable is defined in the obvious way. The integration along a piecewise C* path + involves the
derivative «'.
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Definition 4.8 (Integral and Complex Path-Integral). Let h : [a,b] — C be a function with Re(h),Im(h) :
[a,b] — R Riemann integrable in [a,b]. The integral of h in [a,b] is defined by

/ bh(t) dt = / ’ Re(h(t)) dt + i / b Tm(h(t)) dt. (4.1.4)

Now, if v : [a,b] — C is a piecewise Cl-path and f : v* — C is continuous, we define the
path-integral of f along v by

b b b
/ f(z)dz == / FO0(8)) -/ (t) dt = / Re (f(+(1)'(£)) dt + i / Im (F(4(£) (1)) dt. (4.1.5)

We remark that the product f(y(t)) - 7/(t) appearing in is the complex product. Also,
note that the functions [a,b] 3 t — Re ((fov)(t) -7 (t)),Im ((f o¥)(t) - 7/(t)), being continuous
on [a,b] except (possibly) at finitely many points, are Riemann-integrable in [a,b] and is
well-defined.

Example 4.9. Let zp € C, r > 0, k € Z, and consider the curve v : [0,27] — C given by
Y(t) = 2o +re*t, t € [0,27]. If f(2) = ZEZO for z € S(zg,r), then clearly f is continuous and
the path-integral of f on -~ is

27 1 21 1 ) 27
2)dz = —— dt:/ : -ikre’ktdt:/ ik dt = 27ki.
/ﬂ“ jas= [ = [ g

We will discuss more about this type of integral in Corollary below.

The notion of arc-length integral over a path is inspired by the Definition of length.

Definition 4.10 (Arc-Length Integral). Let vy : [a,b] — C be a piecewise C-path and f : v* — C be
continuous. The arc-length integral of f on 7 is defined by

b b b
/ F(2)ldz] = / FO®) (@) dt = / Re(f(+(1) |7/ (8)] dt + i / I(f(v(O) 7/ (1) dt. (4.1.6)
o a a a

We now establish some basic properties concerning the previous integrations.

Proposition 4.11. Let «y : [a,b] — C be a piecewise C*-path, h : [a,b] — R Riemann integrable, and
9 :7" = C continuous. The following properties hold.

(i) If € € C, then fv(if-i-g) =& f+ /9
() Iy =,

(iii) If n : [c,d] — C is another piecewise Ct-path equivalent to vy, then

fo-1

(iv) If o : [c,d] — C is another piecewise C*-path with v(b) = o(c), then

Awf=Lf+Lf

(o) [ n(t) e < [ nco)]a.

(i) | [, () 4| < [ 1) lld2] < (sup{|f (w)] : w € 7*}) length(y).
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Proof.

(i) Clearly the path-integral of a sum of functions is the sum of the two path-integrals, so we may
assume that ¢ = 0. Now, if £ € R, the property holds immediately from the R-linearity of the
mappings Re,Im : C — R and Definition Now, consider the case ¢ = i. Then,

b b
/@f:/iﬂ%wwﬁﬁuz/[mﬂﬂ%mVW)HRdﬂ%MVwﬂdf
v a @

b b
:/—mummﬂmw+73mwwmwnw

a
b

b
= [ ey o) ai [ Re(r6m)x ) a
b b
= [/ Re (F(v(0)'(1)) dt+z’/ T (f(7(£))7' (1)) dt] :i/fzg/f'

a

The third equality is from the definition of path-integral (4.1.5)), the fourth is a consequence of the
(already proven) R-linearity of the path integral, and the fifth is again by definition (4.1.5)).

Finally, the arbitrary case £ € C follows from combining the previous cases.

(ii) Since v~ : [a,b] — C is defined by v~ (t) = v(b+ a — t), one has (y~)'(t) = =7/ (b+a —t) for
all ¢ € [a, b]. Therefore,

b b
= - (Y () df = — bta— A bta—t)d
[ 1= e arma== [ 160+a-n) Aera- i

:A%w@»V@wz—A?wm»vwwz—Aﬁ

after applying the change of variables s = b+ a — t in the integral in the third equality.

(iii) There exists a C! bijection ¢ : [c, d] — [a, b] with ¢'(s) > 0 for all s € (a,b] and 1(s) = v(¢(s))
for all s € [a,b]. By the Chain Rule we have n'(s) = 7/(¢(s))¢/(s) for all s in [c,d] except for

finitely many points. Applying this and the Change of Variables to the Riemann Integrals from
path-integral Definition [£.8] we obtain

d d b
/fz/fM@W%ﬁBZ/fﬁ@@W#@@W%ﬁbz/fW@wﬁﬂkj/ﬁ

where in the middle Riemann integrals, the derivatives are defined except at finitely many points.

(iv) Clearly there exist reparametrisations 7 : [0,1/2] — C, 77 : [1/2,1] — C of v and 7 respectively,
so that the composite path v 7 : [0,1] — C defined via formula (4.1.1)) satisfies

_[A0) it tefo,1/2)
(y*n)(t) = {ﬁ(t) if tel1/2,1].

Using (iii), we get

L*nfzéf+/ﬁf:Af+Af.

(v) The case where ffh = 0 is trivial, so we assume ffh =% 0. Observe that in such case, the
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definition (4.1.4) gives

[ oy 2

2 2 2

/ Re(h(n) dr + i / t(h(t) | = (/ b Re(n(0) ae) + ( | blm(h(t))dt)

-/ b (/ " Re(h(t) at) Re(s)) ds + [ b (/ L (h(1) at) tn(h(s)) ds

-/ b (/ " Re(h(1) at) reh(s) + ([ L (h(t) at) m(h(s) | ds

<[ ( / "Re(h(t) dt, / i) at)|

\( )t / )| [ imetntsn. minisy as
ed e

The inequality is due to Cauchy-Schwarz inequality: u,v € R? implies (u,v) < |Jul|||lv]|. The fifth
equality is the R-linearity of the integral, and the sixth one is by the definition of complex integral
(4.1.4). The above clearly implies the desired estimate.

(vi) To obtain the first inequality we apply property (v) and formula (4.1.6):

’t)dtls/abv(v(t ol a= [ eI lar = [ 1.

For the second inequality, note that |f| is bounded in ~v*, as |f] : v* — R is continuous and
v* = v([a, b]) is compact, as a continuous image of a compact set; see Proposition We then
apply the definition of arc-length integral and use the linearity and monotonicity of the Riemann-
integral (for real-valued functions):

(Re(h(s)), Im(h(s)))[| ds

[1-

[ - / OO O] < sup 7o) / @t = ( sup [£w)] ) engen(r)

wey*
where the last equality is the just the definition of length; (4.1.3)). O

A consequence of Proposition is that one can interchange limit and integral when the
convergence is uniform.

Corollary 4.12. Let v : [a,b] — C a piecewise C*-path, and {f, : v* — C}, a sequence of continuous
functions in v* converging uniformly to f : v* — C. Then,

lim A Falz)dz = L f(z)dz

Proof. By Proposition one has that f : v* — C is a continuous functions, and so f7 fis
well-defined. Also, since f,, — f uniformly on v*, we actually have that

lim sup |fn(w)— f(w)| = 0.

n—o0 ’UJG“{

Thus, by Proposition [4.11f(vi), the above implies

dz—/f )dz

= lim
n—00

lim
n—0o0

< hm /|fn — f(2)|] dz|

(fn(2) = f(2)
Y

< (i, sup 1) - f(w)\> length() = 0.

n—o0 wE’Y
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4.1.3 Primitives and a Fundamental Theorem of Calculus

Definition 4.13. Let 0 C C be open and f : Q — C be a function We say that F : Q@ — C is a
primitive of f in Q if F € H(Q) and F'(z) = f(z) for all z € Q.

Remark 4.14. Primitives are unique up to an additive constant when 2 is a domain. Indeed, if
F,G : Q — C are two primitives of f: Q — C, then (F —G) = F -G = f—f=0o0n Q and
Corollary implies that F' — G is constant in (2.

We now show a version of the Fundamental Theorem of Calculus for the complex path-integral.
Theorem 4.15. Let 2 C C be open, f : Q — C be continuous, and F : Q — C be primitive of f in
Q. If v : [a,b] — Q is a piecewise C-path, then

[ £:)42 = PO 0) - PO, (4.1.7)
¥

In particular, if 7y : [a,b] — C is additionally a closed path, one has fv f(z)dz=0.

Proof. Let us first prove in the case where v is a C''-path (not only piecewise C'-path).
As shown in Lemma (there, the paths were defined in (—e¢, ) but the result is identical for
C! paths in (a,b)), we have that F o~ : (a,b) — C is differentiable at all point ¢t € (a,b) with
(Foy)(t) = F'(v(t)Y(t) = f(~(t))y (t). Moreover, since F’ = f and f is continuous, we have that
Fo~y € C'(a,b). Also note that F o~ : [a,b] — C is continuous in [a, b] because so are v : [a, b] —
and f : Q — C. Thus Re(F o),Im(F o7) : [a,b] — C are continuous in [a, b] and C'(a,b) (in the
real sense), and the Fundamental Theorem of Calculus applies for both functions:

b b b b
= ") dt = Fo~)(t)dt = Re ((F o~) d 7 Im ((F o~) d
L s / SO (8) dt / (F o~)(t) dt / ((Fony)(t)dt + / ((For) (1)) dt
b

b
= / (Re(F o)) (t) dt +i / (Im(F 0 ~)) (¢) dt
= Re(F 0 7)(b) — Re(F o y)(a) + i (Im(F 0 v)(b) — Im(F o v)(a)) = F(v(b)) — F(v(a)).

This proves the assertion when « is a C'-path. If v is piecewise C'-path, by Remark there
are Cl-paths 71, ...,yn with v, @ [an, by] — 7% and v, _1(by_1) = Yn(a,) for alln =2,..., N and
1N =1 %---*yN, where 1 : [0,1] — C is a reparametrisation of «. By Proposition M(iv) and the
proven C' case, we deduce

N N
[£=32 ] £= 3 (FOua)) = Fnlan) = Fln(bw)) = Fn(ar)) = FGO) ~ Fo(a).
v n=1 n n=1

O
Theorem in the particular case of v equal to a line segment, we deduce the following.

Corollary 4.16. Let @ C C be open, f : Q — C be holomorphic with f' continuous in QE If
w, & € Q so that [w,&] C ), then

1
FE) — fw)= | f(z)dz= / £ (w4 € — w)) /(1) dt. (4.1.8)
[w,&] 0
Proof. We apply Theorem for v(t) = w+t(§{ —w), t € [0,1]. O

We will see in Theorem that assuming that f’ is continuous is unnecessary, as holomorphic functions are of
class C°.
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Example 4.17. Let us apply Theorem to some concrete examples.

(1) If f(2) = 22, 2 € C, then clearly f has the primitive F(z) = ? in C. Therefore, using
Theorem for any piecewise C'-path ~ : [a,b] — C, one has

(2) If f: C\{0} — Cis given by f(z) = 1/z, then f has no primitive in any disk D(0, ). Indeed,
if v : [0,27] — OD(0,7) is given by y(t) = re, then ~ is a piecewise C!-path, and

1 27 /t 27 - it
/dz:/ 7()dtz/ D dt = 2mi # 0.
s o () 0o Te

So Theorem says that there is no F € H(D(0,r)) with F/ = f on D(0,r). Although the
principal logarithm Log : C\ (—o0, 0] — C satisfies Log’(2) = 1/z, it is not valid as a primitive
of 1/z in any disk D(0,7), due to the discontinuity of Log at every point z € (—oo, 0].

(3) If f:C\ {0} — Cis given by f(z) = 1/2%, then F(z) = —1/z is a primitive of f in C\ {0}.
Therefore, for any piecewise C'-path v : [a,b] \ C \ {0}, we have, by Theorem m that

/ 1 q -1 —1 1 1
_— z = _ = —_ .
y 22 ) @) A(a)  ~(b)
4.1.4 Differentiation under the Integral sign

Using Theorem we prove the following result on differentiation under the integral sign will
permit us to handle several technicalities in the coming sections.

Theorem 4.18. Let Q C C be open, v : [a,b] — C a piecewise C*-path, and ¢ : v* x Q2 — C a
continuous functions such that for every & € v* the function Q 3 z +— (&, z) is holomorphic in €,
and v x Q3 (&,2) — g—f(f, z) is continuous in v* x Q. Then, the function F : Q — C given by

F(z) = / o(€.2)de, zen,
Y

is holomorphic in € and

)= [ 2%
F(Z)— ,yaz(g’Z)d£7 ZEQ'

Proof. Fix zp € Q and r > 0 so that D(zg,r) C . For any w € D(zo,7), consider the C'-path
Ly : [0,1] = D(z0,r) defined by £,(t) = zo + t(w — 20) for all ¢ € [0, 1], and apply Theorem [4.17]

for the function D(zp,r) 3 z — g—f(ﬁ, z) along this path to obtain

1

o6 w) — o6 )= [ SRz = [ (e b)) dt,

Lo 0

for all £ € v*. Taking into account this identity, we see that the differentiability of F' at zy amounts
to study the existence of the following limits, as w € D(zo,7) \ {20} :

_ 1
o Fw) = Fo) S (& w) — ¢(&,20)) dE . / ( % ¢ o) dt) "
w—20 w — 2o w—20 w — 2o w—z0 J \Jo 0z
(4.1.9)
So, let {wy}n C D(z0,7) \ {20} be a sequence converging to zp. We now claim that the sequence
of functions {h, }, converges uniformly to h on v* x [0, 1], where h,, and h are define by:

7 X 0,1] 3 (61) o haE, 1) 1= D (€ 00, (1)), mEN

7 ) 0,1] 3 (6,8) o h(E1) = S2(E ).
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Indeed, suppose, seeking a contradiction, that h, does not converge uniformly to A on the set
7* % [0,1]. Then there exist € > 0, a subsequence {ny}, and sequences {&x}r C 7", {tk}x C [0, 1]
for which

¢

0
az (fk,ZO + tk(wnk — Zo)) — ﬁ(fk,ZQ) = ‘hnk(fk,tk) — h(fk,tk)’ 2 g, for all k& c N. (4.1.10)

0z

By the compactness of the sets v*, [0,1] and D(zp,r), we can assume, passing to subsequences
that & — € € v, tp, — t € [0,1] and wy,, — 20; see Bolzano-Weierstrass Theorem @ By the
assumption, 7* x Q 5 ({,w) — g—f(ﬁ, w) is continuous, and so letting £ — oo in (]@ leads to a
contradiction. We have proven that

. dy Op
lim sup sup |=—(§,%w,(t)) — =(&, 20)| =0.
35, Sup sup 5 (& tw (1)) = 57(&, 20)
By Proposition |4.11[v), this clearly shows
1
. Op Op
1 C2 e 0, (1) dt — Z2(€, 20)| = 0. 4.1.11
Jmsop | [ 226 b, )t - (6 0 (11.11)
For every n, consider the mapping v* 3 £ — g,(§) := 01 g—f(ﬁ Uy, (t)) dt and apply Proposition

[M.11)(v) to get, for every &,&" € v* :

87%0(57“) - &0(6/7u)‘ .

1
9(6) — g(&)] < /0 R R

B (€t (0) = b)) 5 s

u€D(z0,r)

For every § € 4%, the last term tends to 0 as 7" 5 & — & as _otherwise Theorem would give
e > 0 and sequences v* D {&,} — &, D(20,7) D {un}tn — u € D(z0,7), and the contradiction:

dp

Dy
a(fa un) - &(Em un)

dp

92 (6 un) — 22 (60 un)

> .
0z 0z ¢

- ?

> inf

|9 e
0= |az(§’“)_az(5’“) nf

= lim inf
n—0o0

the second equality due to the continuity of g—i on v* x Q. Thus {g, : v* — C},, are continuous

functions which, by (4.1.12)), converge to g—f(f,zo) uniformly on & € ~*. Proposition then
yields

n—oo

. Loy [0y
lim 7( ; &(f,zwn(t))> di—lw(g,zg)dﬁ. (4.1.12)

Since {wy, }n, is any sequence in D(zp,7) \ {20} converging to zp, we can conclude from the combi-

nation of (4.1.10) and (4.1.12]) that

lim
w—r20 w — 20

o)~ Fleo _ O o
v

O]

Let us apply Theorem to very important particular situation, which we will use to prove
the Cauchy Integral Formula.

Corollary 4.19. Let zp € C, 7 > 0, k € Z, and let v : [0,21] — C the path v(t) = zo + re*t,
t € [0,2x]. Then

1
/d§ =2nki, forall z € D(zg,r).
v§—2
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Proof. Clearly v* = S(zp,7), and we define 2 := C \ S(z9,r) and the function ¢ : v* x Q@ — C by

p(€,2) = Siz, (&,2) € v* x Q.

For each £ € ~*, the function 2 3 z — (&, 2) is holomorphic in €, and

_
(€ —=2)*
is continuous in v* x . By Theorem the function

2,7 = (€2 €77 x 9

Fe) = [eeade= [ 2ode zen,
Y Y

is holomorphic in € with

F’(z):[ygi(f,z)dﬁz/v(é_lzydf, z €. (4.1.13)

We claim that F'(z) = 0 for all z € D(zp,r). Indeed, given z € D(zp,7), let € > 0 be so that
z € D(zg,7 — €), and define U = D(zg,r +¢) \ D(20,7 — ¢€). Clearly g(&) := @, ¢ € U, defines
a continuous function which has a holomorphic primitive G(§) = Z%, ¢ € U. Since the path
v : [0, 27] — S(zp,7) is closed and takes values in U, we can apply Theorem to deduce that

1
/7(5_2)2@:0,

and then ([4.1.13)) implies that F'(z) = 0. Since D(2g,r) is open and connected, by Corollary
F' is constant in D(zp, 7). But then Example shows that

F(z)=F(z) = / ! d¢ =2nki, =z € D(zo,7).

'yf_ZO

4.2 The Cauchy-Integral Theorem

4.2.1 The Cauchy-Goursat Theorem in a triangle

Naturally, by a triangle T C C we understand the union of three segment lines [a, b], [b, c], [¢, al;
where a,b,c € C are not align in the plane. Note that here T is only the boundary of the solid
triangle A generated by a, b, c. Since A is clearly the convex envelope of T, given any triangle T,
we will denote by co(T) the corresponding solid triangle. In other words, T = 9 (co(T")); recall
the Definition of boundary. Also, we will always assume (without loss of generality in the
next theorems) that the segments [u, v] forming the edges of T are parametrized by the C'-path
0,1] 5t u+t(v—u).

Theorem 4.20 (Cauchy-Goursat). Let Q C C be open, T be a triangle such that co(T) C 2, zp € 1,
and f : Q — C continuous in  and holomorphic in Q\ {z0}. Then

/T £(z)dz = 0.

Proof. Let [a,b], b, c], [c,a] be the edges of T. We need to consider several cases depending on the
location of the distinguished point zg.
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Case 1: 2z ¢ co(T). We will compare [, f with the integral an f over smaller and smaller subtri-
angles T, of co(T"). Then, in those T},, we will compare f with its first-degree Taylor polynomial,
which admits a holomorphic primitive, and so its integral over any triangle is null.

Define Ty := T and join the midpoints of the edges [a, b], [b, c], [¢, a] of T by three segment lines,
which are naturally contained in co(7"). These three lines form a triangle Té‘, and moreover split
co(T) into the convex envelopes of four triangles T}, T2, T3, Té. Parametrizing all these triangles
with segment lines following the same orientation (clockwise/counterclockwise) as Ty, we claim

that \
/Tf:/:rbf:j;/z{f' (4.2.1)

Indeed, denote by Ej, k=1,2,3, 7 =1,2,3,4 the kth edge of Tg, with orientations determined
by the orientation of Tj. Denote £ = {(k,j) € {1,2,3} x {1,2,3,4} : £, C T'}. Then Proposition
4.11)iv) gives

Z/f ZZ/f—Z/f+Z/ /f+§j/f

j=1k=1 (k.j)eL (k.j)¢L

Now, the set {1,2,3} x {1,2,3,4} \ L corresponds to the segments Ki that are in the interior region
of the triangle Tp. These are precisely 6 segments, and more precisely the segments £ 4, %2 4, (3 4
(edges of Ty) along with their reverse paths 01 4505 4545 4. So, by Proposition Mii), we see that

S o= ([ o[ )= ([ -] o)

(k.g)EL

and then (4.2.1)) follows. By the triangle inequality, there must exist at least some j € {1,2, 3,4},
giving raise to a triangle 73 which we denote by T} from now on, so that

1
co(Th) C co(Tp), length(1y) = ilength(To), and

A42444'

Repeating the same tiling procedure for 717 in place of Ty, we obtain a new triangle 75 with the
properties

1
co(Ty) C co(T1), length(Ty) = Zlength(To), and ]

IR

[
To
By induction we obtain a sequence of triangles {71}, }2° , with the properties

1
co(T},) C co(T,,—1), length(T,,) = 2—”Iength(T0), and

S

T Tof', neN. (4.2.2)

By Lemma there exists a unique wo € (,—co(T) C 2\ {2}. And f is differentiable at wy,
so, given € > 0 we can find r > 0 with D(wp,r) C © and

[F(w) = Fwo) = f'(wo)(w — wo)| < elw — wol, w € Dl(w,r). (4.2.3)

Since hm dlam(co( = 0by ([#.2.2) and wy € (,~,co(T3), we can find ng € N so that |wy—w| <
r for all w € co(Ty,), n 2 no. Now, the polynomial w — f(wq) + f/(wp)(w — wp) is continuous and
clearly has a primitive (in all of C). Since triangles are closed piecewise C'-paths, Theorem
tells us that

. (f(wo) + f'(wo)(w — wp)) dw =0, forall neNU{0}. (4.2.4)
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Applying first (4.2.4)), then Proposition 4.11|(vi), then (4.2.3)), then Proposition vi) again, and
finally the second property of (4.2.2)), we obtain, for n > ng,

1=

< . | f(w) = f(wo) — f'(wo)(w — wo)||dw]

/T (f(w) = f(wo) = f'(wo)(w — wo)) dw

length(Tp))?
< / efw — wo||dw| < £ (length(T}))? < Wa
T
By the third property of (4.2.2)), we may conclude
length(Tp))?
/7= f‘ < f’ < 4 0BT _ (tongin(my))?e,
T

implying that [, f = 0 because € > 0 was arbitrary.

Case 2: 2 € {a,b,c}. Without loss of generality, we can assume zp = a. By the continuity of f in
the compact set co(T), there exists M > 0 so that |f(z)| < M for all z € co(T); see Proposition
Given € > 0 we can find points &; € [a,b] and & € [c,a] such that if T} denotes the triangle
with edges [a,&1], [€1,&2], [§2, a], then length(71) < /M. We also define the triangles Tb, with
edges [£1,0], [b, &2, [€2, 1], and T3, with edges [b, ], [¢, £2], [€2, b]. We again consider the orientations
in 11,75, T3 determined from the one in 7. As in Case 1, we use Proposition M(n) to write

3

b L o e e b e L7 e

o Lot o o Lot o
/agler/[&, f+/[bc]f+/£2]f+/&’ /= /f (4.2.5)

Since zg ¢ T> U T3, by Case 1, we have
/ f= f=0.
T Ty

Also, by Proposition vi), we can estimate

gh

/T 1f\ < <sup \f(w)l> length(T}) < ( sup \f(w)l> length(T}) < M— =

weT] weco(T)

Using these two observations in (4.2.5)), we can conclude

)=

/Tlf‘Sa

and since € > 0 we get that [, f =0.

Case 3: zy € co(T) \ {a, b, c}. In this case we can form triangles T}, j = 1,2, 3 with co(T}) C co(T)

and so that zg is a vertex of each of them. Applying Case 2, we have fT. f=0for j=1,2 3, and
J

providing the triangles with the suitable orientation, we have

3
/Tf:;/ij:O.
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4.2.2 Cauchy Theorem in Convex Sets. Existence of Primitives

A first application of Theorem is the existence of primitives of holomorphic mappings in
convex domains. We first prove, without utilizing Theorem [4.20] a version for merely continuous
functions that will be useful later on.

Lemma 4.21. Q C C be open and convex, and let f : Q@ — C be continuous in € and with the
property that, for every triangle T with co(T) C ), one has

/ f=0. (4.2.6)
T
Then there exists F : Q@ — C holomorphic with F' = f in Q.

Proof. If we fix a point wy € €2, then the segment lines [wq, w] are entirely contained in € by the
convexity of 2. This enables to define our primitive F' by the formula

F(w) = /[ ]f, w € Q. (4.2.7)

Here, we understand that the integral is along the path v(t) = wo + t(w — wp), t € [0, 1]. Because
f is continuous on 2, the function F' is well-defined. Let us now fix w €  and prove that
F'(w) = f(w). Given € > 0, we can find > 0 so that D(w,r) C  and

[f(z) = f(w)| <&, z€ D(w,r). (4.2.8)

Then, if £ € D(w, ), we define T¢ as the triangle with edges [wo, w], [w, £], [§, wo]. By the convexity
of €2, these segments lines are contained in €, as well as co(T¢) C Q. By the definition of F in

(.2.7) we get

PO = Fw)= /[woé] - /[wo,w} = /[wvf] - </[woxw} I /[w,f] I /[Eyw()] f) - /[wé] - Te g

and by the assumption (4.2.6]) applied for T¢, this means that F'(§) — F(w) = f[w €] f. Then we can
write

[F(§) = F(w) = fw)(§ —w)| = ‘/[ i (f(z) = f(w)) dz

< ( sup |f(z) —f(W)I) length(fw, £])

z€[w,€]

< ( sup | f(z) - f(w)|> € —w] <el¢ —w;
z€D(w,r)

where we employed (4.2.8]) in the last inequality. This shows that F' is differentiable at w, with

F'(w) = f(w). O

Theorem 4.22 (Primitives in Convex Domains). Let Q C C be open and convez, let zo € Q, and
let f:Q — C be continuous in Q and holomorphic in Q\ {z0}. Then there exists F' : Q@ — C
holomorphic with F' = f in Q

Proof. By Theorem Jr [ = 0 for every triangle T with co(T") C . Thus, Lemma implies
the existence of F':  — C with F’ = f in Q. O

As a consequence of Theorem we can show a more general version of the Cauchy-Gourset
Theorem [4.20] where we can replace the triangle with any path contained in a convex domain.

Corollary 4.23 (Cauchy Theorem in a Convex Domain). Let  C C be open and convez, zy € €,
and let f: Q — C be continuous in @ and holomorphic in Q\{zo}. Then, for every closed piecewise

C'-path 7y : [a,b] — €, one has
[=0
g

Proof. By Theorem we can find F € H(Q) with F’ = f on Q. Thus, applying Theorem
to F' and the closed path ~, we obtain that fv f=0. ]
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4.3 The Cauchy Integral Formulae

The main result of this section is the Cauchy Integral Formula for a holomorphic function f €
H(Q) :

1 flw

f(z) = w

- % S(Zﬂn) w—z

dw, ze€Q;

where the integral is understood along the path that travels the circle S(z,7) only once and with
counterclockwise orientation; see Corollary for the precise statement. This formula will have
numerous implications in holomorphic functions that we will show in the following sections.

4.3.1 The Winding Numbers

The Cauchy Integral formula can be generalized to path-integrals over more general closed paths
than the circle. This is done via the winding numbers.

Definition 4.24. Let «y : [a,b] — C be a closed piecewise C1-path and let z € C \ v*. We define the
winding number of v around z by

W(y,z): 1/ ! dw. (4.3.1)

211 w—z

These numbers can be interpreted as the number of times that a path travels counterclockwise
around a point. Let us examine an elementary example.

Example 4.25. Given zp € C and k € Z, consider the path ~y : [0,27] — C, v(t) = 20 + rei**. By
Corollary for every z € D(zp,r), one has

1 1 ki
W('y,z)—/ dw = 5 _
Yk

2T w—z 21

We collect some properties of the winding numbers in the following proposition.

Proposition 4.26. Let v : [a,b] — C a closed and piecewise C'-path, and z € C\ v*. The following
properties hold.

(i) If v~ : [a,b] — C is the reverse path of ~y, then W (v, z) = =W (~y, 2).

(i) If o : [c,d] — C is another closed and piecewise C-path, with v(b) = o(c), and z € C\y*Uc*,
then
W(yxo,z) =W(y,2) + W(o, z).

(i) W(v,z) € Z.
(iv) If z,w are in the same connected component of C\ v*, then W (v,z) = W (v, w).

(v) If z is in the unbounded connected component of C\ ~*, then W (v, z) = 0.

Proof.
(i), (ii) They are immediate from Proposition and Definition of winding numbers.
(iii) We define the function b : [a,b] — C by

t A

h(t) == / ) s e an)
a ’Y(S) -z

Because ' is continuous (possibly) except at finitely many points, we get (by virtue of the Fun-

damental Theorem of Calculus) that h is piecewise C* in [a, b], and

v'(t)

h/(t) = Wa

t e [a,b]\{tl,...,t]v}.
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We also define H : [a,b] — C by the formula H(t) := (y(t) — 2)e ", t € [a,b]. By differentiating
we get
H'(t) = /() ™V — (3(¢) = 2) e "K' (1) = 0

for all ¢ € [a,b] \ {t1,...,tn}. Since H is continuous in [a, b], this implies that H is constant in
[a,b]. Thus

@) — 2 = (1(a) — 2)e” = (7(a) — )™ = H(a) = Hb) = (+(b) ~ 2)e ")

which together with v(a) = ~(b) yields that e=*(®) = 1. But according to Theorem this means
that h(b) € 2miZ, and so we have we have that

1 1 1 [ A(s) h(b)
(7,2) 27ri/7w—z T omi ), s — 2T omi ©

(iv) We first claim that the function C \ v* 3 z — W (7, 2) is continuous. This can be justified for
example by considering the function

1
*xC\7" > (w,z) — y2) = )
VX C\Y 3 (1,2) - p(w,2) i= ——
so that, for every w € v*, the mapping C \ v* 3 z — ¢(w, 2) is holomorphic, and g—ﬁ
Oy 1
*XxC\7v" 2w, 2) = —(w,2) = ——
i \ i (w Z) az (w Z) (w _ 2)2

is continuous in v* x C\ v*. By Theorem C\v* — fv ﬁ dw is holomorphic, and in particular
continuous in C\ v*.

Therefore, C \ v* 3 z — W (7, z) is continuous. But we saw in (iii) that W (v, z) € Z for all
z € C\ v*, so Proposition says that W (v, z) must be constant on each connected component
of C\ v*.

(v) Since &* is a compact set, there exists R > 0 such that &* C D(0, R). By (iv), we know that
W(v,z) = W(v,n) for every n € N with n > 2R. Applying Proposition 4.11j(v) we get, for all

n>2R:
1 1 1 1 1 1 length
2mi J, w—n 2m J, [w—n| 2r Jyn—R 27(n — R)

Letting n — oo in the last term, we may conclude W(+y, z) = 0. O

(W (v, 2)| = [W(y,n)| =

4.3.2 The Cauchy Integral Formula. The Mean Value Property

Theorem 4.27 (Cauchy Integral Formula in Convex Domains). Let Q C C be a convex open set,
7y : [a,b] = Q a closed piecewise C'-path and f : Q — C holomorphic. Then,

W) f(e) = — [ 1)

= Q\~". 4.3.2
5 w—zdw’ forall zeQ\~y (4.3.2)

.
Proof. Fix z € Q\ v* and define a new function h :  — C by
P =1 5 e g,
h(w) = w—z
1(2) if w=z.

Because f is holomorhic in €2, we have that h is continuous in Q and holomorphic in Q\ {z}.
Corollary [4.23] tells us that

Ozlh(w)dwzlf(w)_f(2> dw:[yf(w)dw—L /() dw:[y IO qy—2mi f(2)W (3, 2);

w—z w—z w—z w—z

which clearly yields (4.3.2]). O
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A particular case of Theorem 4.27| gives the following corollary.

Corollary 4.28 (Local Cauchy Integral Formula). Let Q C C be an open set, f : Q@ — C holomorphic,
and D(z9,7) C Q a closed disk. Then,

f(z)= ! S (w) dw, forall z¢€ D(zp,7); (4.3.3)

2710 Jop(zor) W — 2

where the integral is along the circle 0D(zo,r) traveled counterclockwise once.

Proof. Letting «y : [0, 27] — C be the path (t) = zg+re®. We saw in ExampleMtha‘c Wi(y,z) =
1 for all z € D(zp, 7). Consequently, Theorem implies (4.3.3)). O

We can improve a bit Corollary as follows.

Corollary 4.29 (Cauchy Integral Formula in a disk). Let f : D(zo,7) — C be continuous in D(zg,r)
and holomorphic in D(zg,7). Then,
1
fz)=— f(w) dw, forall z¢€ D(zp,7); (4.3.4)

2T Jop(z0r) W — 2

where the integral is along the circle 0D(zo,r) traveled counterclockwise once.
Proof. Let {an}n C (0,1) be a sequence with a, 1 1. Define, for each n € N, the function
In: D(Zmé) = C,  [fulz) = f(anz), ZED(ZOMILR)'

Because f is continuous in holomorphic in D(zg,r), we see that f,, is holomorphic in D(zp, i)
Notice that D(zo,r) C D(zo, i) and we can apply Corollary to fn, thus obtaining

fu(z) = /a f(w) dw forall ze D(z,7),ne€N. (4.3.5)

D(zo,r) w—z

Let us now show that {f,}, converges to f uniformly in D(zp,r). Indeed, since D(zq,r), f is
uniformly continuous there; see Proposition 2.25] Thus, given £ > 0, we can find § > 0 such that
|£(&) — f(w)] < e for all &, w € D(zg,r) with | — w| < J. Let N € N such that (1 —ayx)r <. We
have that |a,w — w| = (1 — a,)|w| < (1 — a,)rd, for all n > N, and consequently

sup |fp(w) — f(w)|= sup |f(apw)— f(w)| <e, forall n > N.
weD(zp,r) weD(z0,r)

This confirms that {f,}, converges to f uniformly in D(z,r). Combining Proposition with
([4.3.5), we can conclude
1 1
f(z) = lim fn(z) = / lim fn(w) dw = f(w) dw.
0D(zo,r

n—00 2 yn—oe W — 2z 2 dD(zo,r) W — 2

Z0,T
O

Also, Corollary implies the following identity principle, giving a bit of a hint of what we
will obtain in Section £.4.3

Corollary 4.30. Let f,g : D(zo,7) — C continuous in D(zg,7) and holomorphic in D(zg,r). If
f =g on0D(z,r), then f =g on D(z,7).

Proof. 1t suffices to apply formula (4.3.4]) in Corollary to the function f — g. O

Another consequence of Corollary is the following mean value (integral) property for
holomorphic functions.
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Corollary 4.31 (Mean Value Property). Let f : D(zq,7) — C be continuous in D(zg,r) and holo-

morphic in D(zo,7). Then,
1 2

f(z0) = f(z0 +re't)dt. (4.3.6)

2m Jo
Proof. We apply Corollary for z = zp, where 0D(zp,r) is parametrized by the path v :
[0,27] — C, v(t) = 20 + re®, to obtain

L7 F00) g L [T fGotret) g L[

f(z0) 27t Jo  (t) — 20 2mi Jo rett e 27 Jo flzo +ret)

4.4 Differentiability and Analiticity of Holomorphic functions

4.4.1 The Cauchy Formulae and Estimates for the Derivatives

We continue deriving fundamental properties from the Cauchy Integral Formula; Theorem or
Corollary (4.28]). More precisely, derivatives of holomorphic functions are holomorphic, and their
derivatives can be written via formulas similar to that of (4.3.3)).

Theorem 4.32 (Cauchy Formulas for the Derivatives). Let Q C C be open and f : Q@ — C holo-
morphic. Then, for all n € N, the n' derivative f) : Q — C exists and is holomorphic in Q.
Moreover, for every open disk D with D C ), the following formula holds:

f(n)(z) _ L‘ f(w)

=5 (w2 dw forall z€ D, neNU{0}. (4.4.1)
oD -

Proof. We prove both the existence and holomorphicity of £ and at the same time and
by induction on NU {0}. In the case n = 0, then f () = f and the claims (the holomorphicity of f
is already known from the assumption) follow from Theorem Now assume that f( : Q — C
exists and is holomorphic and that holds. Denoting by v : [0,27] — 0D the curve that
travels 0D once and counterclockwise, we define the function

!
Y*x D3 (w,z) — p(w,z) = ;mw

This function is continuous in v* x D and for each w € ~*, the function D > z — p(w,z) is
holomorphic in D with derivative (with respect to z) equal to

(n+ 1! f(w)

21 (w — z)"t2’

a—(w,z): z € D;
z

which defines a continuous function in v* x D. Applying Theorem we get that

D3z fM(z) = n /f(w)dw:/go(w,z)dw
g g

T omi ), (w— z)n ]
is holomorphic in D, with

/ o n ! w
D>z f0th) = (f(n)) (2) = /7 ?f(w,z) dw = | ;7;1.1) A (w {(Z))n-i-Q dw.

By induction, the claims are proven for all n € N. ]

An extension of The Cauchy Integral Formulas (4.4.1)) are also true when the circle path are
replaced by any piecewise C''-path, provided we have our function holomorphic in a convex domain.
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Corollary 4.33 (Cauchy Formulas in Convex Domains). Let Q C C be open and convez, 7y : [a,b] —
Q a closed piecewise C'-path, and f : Q — C holomorphic. Then, the following formulae holds:

Wy z)f(”)(z):n!/f(w)dw forall z€Q\~*, neNU{0} (4.4.2)

) 27_[_1 . (w _ Z)n+1 ) . B
Proof. We already know from Theorem that all the derivatives of f exist in Q. Let 7 : [a, b] —
be a closed piecewise C'-path, and let us show ([4.4.2). In the case n = 0, then ™ = f and the
formula holds by virtue of ([#.3.2)). For n € N, we can apply formula (#.3.2) to £ and repeatedly

Exercise (to fO=1 . f', f) and we get

W(’y,z)f(")(z)zl./f(m(lu)dw_ 1 /f(”‘l)(u;)dw: 2 /f(n—Q)(w)dw
v v ~

21 ), w—z T 2mi ), (w—2) omi ), (w—z)3
SR et L N i C5) N Y B ()
T o A<w_@nm”—zn,ww_zwﬂdw

O]

Another consequence of Theorem [4.32] is the following collection of useful inequalities for the
derivatives of holomorphic functions.

Corollary 4.34 (Cauchy Estimates for the Derivatives). Let D(zg, R) be an open disk and f :
D(z, R) — C a holomorphic and bounded function. Then

n!- R-sup{|f(w)| : w € D(20,R)}
(R — |z = z|)"*! 7

‘f(")(z)‘ < for all z e D(zp,R),n e NU{0}. (4.4.3)

Also, if Q C C is open, D(z9, R) C Q and f : Q — C is holomorphic, then
‘f(”)(zo)’ < ]Zisup{\f(w)\ . w e dD(z0,R)}, forall neNU{0}. (4.4.4)
Proof. Let n € NU {0} and z € D(zp, R). Observe that
lw—2z| =|w—20— (2 —20)| > |w— 20| — |2 — 20|, forall we D(z,R). (4.4.5)
Now, let 0 < r < R so that z € D(zg,r). Since D(z29,7) C D(z0, R) and f is analytic in the latter

disk, we can apply Theorem in combination with Proposition {4.11|vi), and then (4.4.5), to
derive, for all z € D(zq,r) :

| |
iy 1) gl [ L,
2mi 0D (zo,r) (w - Z)n 2m 0D(zo,r) |w - Z|n

| |
n |f (w)] __ |duw| = ”/ |f(w)] Jdu
27 JoD(z,r) (|0 = 20| — |2 — 20]) 27 Jop(zo.r) (1 — |2 = 20])

£ ()] <

IN

n!sup{|f(w)| : w € dD(zp,7)} n!-r-sup{|f(w)| : we dD(zo,7)}

IN

length(0D(zp, 7)) =

2m (r — |z — zo|)"*! (r =]z — 2"
(4.4.6)
n!-r-sup{|f(w)| : w e D(z,R)}
< :
B (r— |z — 2"

Letting 7 T R, we conclude (4.4.3)).
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For the second part, when D(zg, R) C Q and f : Q — C is holomorphic, we can repeat the
previous computations replacing r with R and z with zy up to line (4.4.6)), obtaining,

709z < ST w € OD G0 R _ 1)+ w € 0D (=0, ).

Furthermore, Theorem [.32] permits to prove the following extension-type property.

Corollary 4.35 (Holomorphic Extension to a Point). Let Q C C be open, zo € 2, and f: Q — C be
continuous with f € H(Q2\ {z0}). Then f € H(Q).

Proof. For every z € 2, we can find an open disk D with z € D. Since D is convex, and f
is continuous in D and holomorphic in D \ {zy}, Theorem says that there is ' : D — C
holomorphic in D with F = f. But Theorem tells us that F’ : D — C is holomorphic in D
too, implying, in particular, that f is complex-differentiable at z. ]

4.4.2 Morera’s Theorem. Weierstrass Convergence Theorem

Theorem 4.36 (Morera’s Theorem). Let Q@ C C be open, and f : Q@ — C be continuous. Suppose
that for every triangle T with co(T) C €, we have

[i=o

Proof. For every z € €2, we can find an open disk D with z € D C Q. Thus D is convex, and by
the assumption we have that [ f = 0 for every triangle T' with co(T) C D. Since f is continuous
in D, Lemma yields the existence of F' : D — C holomorphic with F/ = f in D. But Theorem
then implies that F” is holomorphic in D, and consequently f is differentiable at z.

Then f is holomorphic in €.

O

Theorem 4.37 (Weierstrass Theorem). Let 2 C C be open, f : Q — C a function, and let {fy :
Q — C}y be sequence of holomorphic functions in Q converging locally uniformly to f in Q. Then,

(i) f is holomorphic in €.

(i) For everyn € N, the sequence of nt'-derivatives {f]gn) : Q — C}y converges locally uniformly
in Q to the n'"-derwative f of f.
Proof.

(i) By Proposition the function f : Q@ — C is continuous in Q. To show that f € H(), let
z € Qand r > 0so that D(z,r) C Q and f; converges to f uniformly in D. Observe that, for every
triangle T with co(T") C D, Theorem says that

/szo, ke
T

as each f is holomorphic in D(z,r). Since the uniform converge fr — f holds in the piecewise

C'-path T, Corollary gives
/f = lim /fk = 0.
T k—oo T

But since T', with co(T") C D, we can apply Morera’s Theorem to f in D, to deduce that f is
holomorphic in D.
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(ii) By part (i), we know that g := f — fi : @ — C is holomorphic in Q, for every k € N. Given
20 € Q, let 7 > 0 be so that D(z9,2r) C Q and f; converges to f uniformly in D(zg,2r). That is,

lim sup |gx(w)| =0. (4.4.7)

k—o00 ’LUEE(Z() 727,‘)

Let us show that
lim  sup \g(n)( )] =0, forall neN. (4.4.8)

k—yoo 2€D(z0,r)

Note that if z € D(zq,r), then D(z,7) C D(29,2r) C 2. We can then apply inequality (4.4.4]) of
Corollary to gr and the disk D(z,r) to infer that, for all n € N,

n! n!
97 (2)] < 2 sup{lge(w)| : w e aD(=m} < 1 sup Jgu(w)].
r weD(zp,2r)

By (4.4.7), we have, taking limits of supremums in z € D(zq,) :

) n!
lim  sup |g,(€ (2)| < hm — sup |[gr(w)| =0,

k—o0 2€D(z0,7) oo 1™ weD(zp,27)
for all n € N. This implies (4.4.8)), and we haved proved (ii). O

Corollary 4.38. If Q C C is open and {fx : @ — C}y is a sequence of holomorphic functions in
so that Y 72, fi converges locally uniformly in Q, then Y poq fi is a holomorphic function in Q.

For instance, consider the series of functions Y 2, n“ for all z € Q := {z € C Re(z) > 1};
see Exercise |3.10) “ Naturally, the functions 2 5 z — 1/n? are holomorphic for all n € N, as 1/n? is

nothing but
1 1

= — = €

- —zlogn
n? ezlogn :

The series o0 | -L converges uniformly on each set . := {z € C : Re(z) > 1+¢}, € > 0. But
for every z € 2, we can find € > 0 and r > 0 for which D(z,7) C Q., and in particular }°°, -1
converges uniformly on D(z,7). That is, the series converges locally-uniformly in €. According to
Corollary the sum of the series

defines a holomorphic function in €.

4.4.3 Analyticity of Holomorphic functions

Theorem 4.39 (Analiticity of Holomorphic Functions). Let & C C be open and f : @ — C a
holomorphic function. Then, for every closed disk D(zo,r) contained in €, we have that

> f(n)
— Z fn('zo)(z —20)", forall z€ D(z,7); (4.4.9)

and the series converges absolutely-uniformly in z € D(zo,r). In particular, f is analytic in Q.

Proof. If D(zg,7) C €2, then by the compactness of this disk, there exists ¢ > 0 so that D(zg,r+¢) C
Q as well. Observe that for w € 9D(zo,r + €) and z € D(zg,7), we have the bounds

|z — 2] o7

< <1. (4.4.10)
|lw—2z0] — r+e
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Thus we can express (w — z) ! as a geometric sum:

I 1 1 i z—z2\"
w—z_(w_zo)<1_z—zo>_w—z0n:0 w—z)

Moreover, bearing in mind (4.4.10), we can apply the Weierstrass M-test (Theorem with
M,, = r™/(r+¢€)™ to deduce that the convergence of the series above is uniform in w € dD(zg, r+¢).

Now, on the disk D(zq,r +¢), we use first Corollary (formula (4.3.3))) and then Theorem
for the derivatives of f (see (4.4.1))) to write, for all z € D(zp,r) C D(z0,7 + ¢€):

f() = = ) g, = L Fu) 3

- a8 - - a8 - 1
21 OD(z0,r4e) W — Z 21 OD(z0,7+¢) = (w— 20)"t

2 (z—2)"
Z _ +1°
n=0 (’U) ZO)n

w — 20

= Z (217”/ 717( ) dw) (z—20)" = Z S (z0) n(' 0) (z —z0)™.
n=0 9 n=0 ’

D(zg,r+¢) (’UJ - ZO)nJrl

Note that in the third equality we used the uniform convergence of the series in w € 9D(zg,7 + €)

and Corollary to move the series outside of the integral. We have shown (4.4.9) for all
z € D(zg,7). To show that the converge is absolute-uniform, we apply Corollary estimate

([4.4.4) at the point 2o and over the circle D(zg,r + ¢), obtaining the bound

FARIED v

n!

< (Sup{‘f(w)| Lwe aD(ZQ,'r + E)})l/n
- r+e

, neN.

The limit superior of the last term is at most 1/(r + €), so by Theorem (formula (3.3.3))), the
radius of convergence R of the power series

0 r(n)(,
Z " (20) (Z _ Zo)n
n=0

n!

is at least r 4+ . In particular, again by Theorem this series converges absolutely-uniformly
on D(zg,7). O

Corollary 4.40. Let Q C C be open, f : Q — C holomorphic, and let R € (0,+0o0] be the radius of
convergence of the Taylor series

> £(n)
> e ar
n=0 ’

centered at zg € 2. Then R > sup{r >0 : D(z,r) C Q}.

According to Corollary if we know that an f : D(zp,7) — C is holomorphic in D(zg,7),
then

© f(n) (4
f(z) = Z A 0)(,2 —20)", z€ D(z,r),

= n!
with absolute pointwise convergence in D(zg,r) and absolute—uniform convergence on each closed
subdisk D(zp, s) with s < 7.
Also, if f: C — C is holomorphic, then for all zg € C we can write

f(”)(zo)
n!

f(z) =

with absolute pointwise convergence in D(zp,7) and absolute—uniform convergence on each closed
subdisk D(zp,r) with r > 0.

(z —20)", z€C,

The Identity Principles for analytic functions from Section [3.4.4] are then true for holomorphic
functions. They follow as an immediate consequence of Theorems [£.39] [3.32] and [3.33]
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Corollary 4.41 (First Identity Principle for Holomorphic Functions). Let Q@ C C be open and
connected, and f,g : Q@ — C two holomorphic functions such that there is zy € Q with f™ (20) =
g™ (20) for allm € NU{0}. Then f =g on Q.

Observe that in Corollary we really need the identity f(™(z9) = g™ (20) for all n € NU{0}
in order to claim that f = g in 2, and assuming that identity for infinitely many n’s is not enough.

For example, the function f(z) = cosz in C has the property that f*~1(0) = 0 for all n € N,
and of course f # 0 in C.

However, it is natural to wonder about the case where the first m—1 derivatives of a holomorphic
function are zero, but not the m-th one. Let us discuss this now.

Definition 4.42 (Order of a zero). Let Q C C be open, zop € Q, m € N, and f : Q@ — C a holomorphic
function. We say that f has a zero of order m at zy provided that

f(z0) = f'(z0) = -~ = [""M(20) =0 and [ (z) #0.
A function with a zero of order m at zy admits a factorization via (z — z9)™

Proposition 4.43. Let 2 C C be open, z9p € Q, m € N, and f : Q@ — C a holomorphic function.
Then f has a zero of order m at zo if and only if there exists g € H(Q) with g(z9) # 0 and

f(z)=(2—=20)"g(2), forall zeQ.

Proof. Assume that f has a zero of order m € N at zy. By Theorem there exists r > 0 with
D(zp,7) C Q and such that for all z € D(zp,7) :

X £(n)(, 2. )y
9= 5 Lo 5 S
n=0 ’ n=m ’

with uniform convergence of the series in D(zg, ). Defining h : D(zg,7) — C by

X fn)
h(z) = Z ! n(!ZO) (z—20)"™ ™, z€ D(z,1),

we notice that h is continuous in D(zp,r) by the uniform convergence of the series there (recall
Proposition [3.10]), and that h(zg) = f™(z)/m! # 0. The desired function g is defined by

f(z) ;
o(z) = 4 G0 if z€ Q\ {2}
h(zo) if z = 2.

We immediately see that g(zo) = h(z0) # 0 and that g is holomorphic in © \ {z0}. Also,
yields that g(z) = h(z) for all z € D(zp,r), so the continuity of h at zy implies the continuity of g
at zg. According to Corollary g € H(D).

Conversely, assume the factorization f(z) = (z—20)™g(z), z € Q, for some m € Nand g € H(Q?)
with g(zo) # 0. Differentiating the expression (z — z9)™g(z) at zp up to m times we get that

F(z0) = f'(z0) = -+ = f""(20) =0 and  f)(z)) = mlg(z0) # 0,
and thus f has zero of order m at z. O

Finally, as a consequence of Theorems and we get that the zeros of a holomorphic
function are isolated.

Corollary 4.44 (Second Identity Principle for Holomorphic Functions). Let Q C C be open and
connected, and f,qg: Q2 — C two holomorphic functions such that there are zg € Q0 and a sequence
{zi}x € Q\ {20} such that klim 2z, = 2o and f(zr) = g(zx) for all k € N. Then f = g on Q.

— 00

In other words, if f =g in a set E C Q with E'NQ # 0, then f = g in Q.
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4.4.4 Liouville’s Theorem and The Fundamental Theorem of Algebra

Theorem 4.45 (Liouville’s Theorem). Let f : C — C be holomorphic and bounded. Then f is
constant in C.

Proof. For every z € C and r > 0, the estimate (4.4.4)) for f’ in the disk D(z,r) gives
< sup{|f(w)| : w e dD(z,r)} _ sup{|f(w)|] : we C}

/
z <
7)) : < ;
Since the last supremum is a finite positive number, letting » — oo in the above inequality implies
that f’(z) = 0. But because C is connected, Corollary says that f is constant in C. O

A consequence is that the image of a non-constant holomorphic map f : C — C is dense in C.

Corollary 4.46. Let f : C — C be a non-constant holomorphic. Then f(C) = C.

Proof. Suppose, for the sake of contradiction, that there is wy € C\ f(C). Then there exists € > 0
so that D(wg,e) N f(C) = 0; see (2.1.1) in Proposition Therefore, the function g : C — C

given by
1

9(2) 7o) — w0
is holomorphic in C, as | f(z) —wp| > € > 0 for all z € C. Precisely thanks to this estimate we have
that |g(z)| < 1 for all z € C. That is, g is bounded, and hence g (and consequently f) is constant
in C, a contradiction. O

z € C;

There is a stronger result due to Picard (called Picard’s Little Theorem), which shows that a
non-constant holomorphic function C — C takes all the values (possibly) except one.

We are finally equipped with the necessary analytic tools to give a proof of the Fundamental
Theorem of Algebra, using ingredients from complex analysis.

Theorem 4.47 (Fundamental Theorem of Algebra). Let P(z) = apz" + -+ a1z +ag, 2 € C, a
polynomial of degree n € N, that is, an # 0. Then there numbers z1,...,z, € C so that

P(2) =an(z —21) - (2 — 2zn), 2z€C. (4.4.12)
In particular, P has at least one root.

Proof. We will prove first that every polynomial P of degree n € N, must have at least one root.
Suppose, for the sake of contradiction, that P(z) # 0 for all z € C. The polynomial P(z) =
anz™ + -+ 4+ a1z + ag is holomorphic in C, and so is the function f = 1/P : C — C; see e.g.
Proposition Observe that, for all z # 0,

‘P<2)|: }anzn_i_an_lzn*l+..-+a12+a0‘ Z ‘z‘n (‘an____>7

which clearly shows that lim |P(z)| = oo, and so |l‘im |f(z)] = 0. Thus there is » > 0 so
Z|—00

|z]—o0
that |f(2)| < 1 for all |z| > r. Since of course |f| is also bounded in D(0,7),(by continuity; see
Proposition , we get that f: C — C is bounded and holomorphic. By Theorem f must
be a (non-zero) constant in C, and so P must be constant in C. This contradicts what we proved
above lim |P(z)| = co. Therefore, this shows that there exists some z € C with P(z) = 0.

|z]—o00
Now, let us prove the factorization (4.4.12)) for P. Let z; € C be so that P(z1) = 0. We can
manually factorize P in terms of z — z1, for all z € C, using the identity (|1.1.4]):

n n n n k-1
P(z) = P(z) — P(z) = Zakz - Zakzl = Z ap(2F — 28 = Zak(z —2z1) sz_l_]z]
k=1 k=1 k=1 k=1 =0
n k—1 n k—1
=(z—21) ) ak z]f_l_]zj = (z—2z1)P1(2), where Pi(2)=) ai zf_l_]z]
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Now, P, is polynomial of degree n — 1, and the coefficient of the monomial 2"~ of P; is equal to
ap. By what we have proved already in the current proof, there exists some zo € C with P;(22) = 0.
Repeating the factorization above for P;, we obtain a new polynomial P of degree n — 2, with
coefficient of the term 2"~2 equal to a, and such that

Pi(2) = (2 — 22)Pa(2), P(2) =an(z—21)(z — 22)Pa(2) z€C.

By repeating this argument, we obtain numbers z1, ..., 2,1 € C and a polynomial P,,_; of degree
1 with coefficient of the monomial z equal to a,, and such that

Pz)=(z—2z1)(z —22) - (2 — zp_1)Pr-1(2) ze€C.

Obviously there exists z, € C such that P,_1(z) = a,(z — z,) for all z € C, yielding (4.4.12). O

4.5 The Maximum Modulus Principles

In this section we show that the modulus of holomorphic functions attain their maximum on the
boundary of a disk, or more generally, on the boundary of bounded domains. These are the
Maximum Modulus Principles.

Theorem 4.48 (Maximum Modulus Principle I). Let Q@ C C be open and connected, f : Q — C be
holomorphic in , and z9 € Q, 7 > 0 so that D(zg,7) C Q. Then

|f(20)| < max{|f(z)| : z € OD(z0,7)}. (4.5.1)

Moreover, the inequality (4.5.1) becomes equality if and only if f is constant in €.
Proof. Define M (r) := max{|f(z)| : z € 0D(zp,r)}. By Corollary we have

2m ) 1 2m ) 1 2m
f(zo—}—relt)dt' < / ‘f(zo—i—re’t)‘ dt < 5 M(r)dt = M(r),
0

1
el =55 [ <o -/

which proves (4.5.1). To prove the second part, assume that |f(z9)| = M(r). In the case where
M (r) = 0, we have that f =0 on dD(z,r); which by Corollary implies that f = 0 on €. So,
let us study the case where |f(zo)| = M(r) > 0. Define the function g(z) = e~#A18(/(20)) f(2) for
all z € Q, and note that g(zg) = e *48U ) f(20) = |f(20)] > 0 and M(r) = max{|g(z)| : z €
0D(zp,r)}. Applying Corollary to g, we get

1 2w ) 1 2 )
g(z0) = — / Re (g(z0 + re™)) dt +i— Im (g(z0 + re™)) dt;
27 0 27 0
which clearly implies
1 2 )
— (Re(g(zo0 +re™)) — g(20)) dt = 0. (4.5.2)
27 0
But on the other hand, we have that
\/(Re (9(z0 + 7‘6”)))2 + (Im (g(20 + 7“6“)))2 = ‘g(zo + reit)‘ < M(r) = g(20) (4.5.3)

holds for all ¢ € [0,27]. Since the function [0,27] > ¢ = Re(g(zo + re®)) is continuous, (4.5.2) and
([4.5.3)) together give Re(g(zo + re')) = g(z0) and Im(g(zg + re®)) = 0 for all t € [0,27]. Thus g is
constantly equal to g(zg) in the set 0D(zp, 7). By Corollary g and f are constants in 2. [

As a corollary, we deduce that non-constant holomorphic function cannot attained their max-
imum in the interior of their domain.

Corollary 4.49. Let Q2 C C be open and connected, f : Q — C be holomorphic in §2, and assume
there exists zg € Q with |f(z0)| > |f(2)| for all z € Q. Then f is constant in .
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Proof. Let r > 0 be so that D(z,7) C €. Denoting M(r) := max{|f(2)| : z € 0D(z0,7)}, we
know from Theorem that |f(z0)] < M(r). The assumption of the current corollary says that

[f(z0)] = sup{[f ()] = 2 € Q} 2 max{[f(2)[ : 2 € ID(20,7)} = M(r).
Thus |f(z0)] = M(r) and the second part of Theorem yields that f is constant in €. O

Theorem or Corollary do not hold for smooth real functions. For example, notice
that the function f : R? — R? given by f(z,y) = e~ (@ +y%) ig of class C>(R?) (even real-analytic
in R?), but

£(0,0) =1 = max{| f(z,y)| : (z,y) € D(0,1)} = max{|f(z,y)] : (z,y) € R*}.

Theorem 4.50 (Maximum Modulus Principle II). Let Q C C be open, connected, and bounded.
Let f : Q — C be continuous in Q and holomorphic in ). Then, the maximum of f in Q is attained
in the boundary:

max{|f(2)| : z € Q} = max{|f(2)| : z € 9Q}. (4.5.4)

Proof. Suppose, seeking a contradiction, that is false. The set , being closed and bounded,
is compact; see T heorem Since f is continuous in (2, Propositionsays that there is zg € O
at which |f| attains the maximum on Q. This information together with the (assumed) falsity of
(4.5.4)) is gathered as follows:

|f(20)| = max{|f(2)] : z € Q} > max{|f(2)| : z € IN}. (4.5.5)

Then necessarily zp € int(2) = Q and |f(20)| > |f(2)] for all z € Q. Corollary tells us that

f(2) = f(z0) for all z € Q. The continuity of f in €2 implies that also f(z) = f(20) for all z € 99,
contradicting (4.5.5]). O

In Theorem the assumption that € is bounded is really needed. For example, the right
half-plane Q2 = {z € C : Re(z) > 0} has boundary 92 = iR, the pure imaginary numbers, and the
holomorphic function f(z) = e* satisfies

max{|f(z)] : z € 8Q} = max{e®*® : 2 € iR} =’ = 1.

But |e?| = ef*(®) is clearly unbounded in Q, that is, sup{|f(z)| : z € Q} = cc.

4.5.1 The Schwarz Lemma

As a consequence of Theorem [4.48] we show that bounded holomorphic mappings between the unit
disk have a quite rigid structure. Let us denote by D the open unit disk of C, that is,

D:={z€C: |z|] <1}

Theorem 4.51 (Schwarz Lemma). Let f : D — C be a holomorphic function with f(0) = 0 and
[flloo == sup{|f(2)| : z € D} < 1. Then

(i) |f(2)| < |z]| for all z € D.
(ii) [f'(0)] < 1.

(111) If either (i) holds with equality for some z € D\ {0} or (ii) holds with equality, then there
exists A € C with |\| =1 so that

f(z) =Xz forall zeD.
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Proof. We define a new function g : D — C by

M, if zeD)\ {0},

9(z2) =4 ~*
f/(0) if z=0.

Since f € H(D) and f(0) = 0, then g is continuous in D and g € H(D \ {0}). By Corollary {4.35
g € H(D) as well. For every r € (0,1), we apply Theorem to g in the disk D(0,7) C D,
obtaining for all z € D(0,r) the estimate:

max{|f(w)| : w e dD(0,r 1
92)] < max{lg(u)] : w e 9D(0,r)} = P2 wEIPON} 1,
the last inequality being due to the assumption || f||oc < 1. Therefore, one has
1
lg(z)] < lim — =1, forall zeD. (4.5.6)

r—1-T

This implies that |f(z)| < |z| for all z € D and that |f/(0)| = |g(0)| < 1, proving (i) and (ii).

To show (iii), observe that if either |f(z)| = |z| for some z € D\ {0} or |f/(0)] = 1, then we
have that |g(zo)| = 1 for some zp € D. By (4.5.6), this yields that |g(z)| > max{|g(z)| : z € D},
and then Corollary tells us that g is constant in D. Thus there is A € C with |A\| = 1 such that
f(z) =g(z)z = Az for all z € D. O

4.6 Exercises

Exercise 4.1. Compute the following path-integrals in the indicated paths, where, for the closed
paths, we understand that the paths are traveled once and counterclockwise.

(a) fvfdz, for v equal to the circle 0D(0,R), R > 0.

(b) fvfdz, for v equal to the boundary of the square [—-R, R] x [-R, R|, for R > 0.
(c) f7 |z|dz, for y={z € C : |z| =1, Arg(z) € [0,7]} and v = 90D(0,1).

(d) [, 2*dz, fory=[1+4,2].

(e) f Im(z)dz, for v equal to the triangle with vertices 1,i, —i.

Exercise 4.2. Prove the following inequalities.

(a) f7 %dz’ < me, where y ={z € C : |z| =1, Arg(z) € [0,7]}.

(b) f ZQH dz’<7r/6 where y ={z € C : |z| =2, Arg(z) € [0,7/2]}.

() |[, %dz( < 2= " where v = [R,R+iR], R > 0.

(d) | [, = dz| < ‘RQ - where y ={z € C : |2| = R, Arg(2) € [0,7]}, R >0, R# 1.

_p2iz T _
(e) fwﬁdz‘ < ﬁ, where v ={z € C : |z| = R, Arg(z) € [0,7]}, R > 1.
Suggestion: Use appropriately the inequalities from Proposition |4.11|(vi).

Exercise 4.3. Let Q C C be open, f : Q — C continuous, v : [a,b] — Q a C'-path, and {7, :
[a,b] — Q},, a sequence of Ct-paths so that v, — v and 7., — ' uniformly in [a,b]. Show that

lim f dz—/f

n—0o0
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Exercise 4.4. Compute the following path-integrals in the indicated sets/paths.
(a) f,y e* dz, where y(t) = ie' for t € [0,7].
(b) f,y 23 dz, where y(t) = e fort € [0, 7).
(c) f,y cos z dz, where y(t) = i + e® fort € [0,7/4].
(d) f7 5 dz, where y(t) = cost + 2isint, t € [0,2n).
(e) f,y L1 dz, where v is the segment line [1,1).

(f) fv(z — 20)"dz, where 20 € C, n € Z, and y ={2 € C : |z — z9| = 1, Arg(z — 29) € [0, 7]},
traveled once and with the counterclockwise orientation.

Suggestion: Theorem [{.15

Exercise 4.5. Let Q) be open and convex, and f : Q — C holomorphic (with f' continuous) in Q
with Re(f'(z)) > 0 for all z € Q. Show that f is injective in €.

Exercise 4.6. Let Q C C open, f : Q@ — C holomorphic and v : [a,b] — Q a closed piecewise
C*'-path. Prove that if n € NU{0} and 29 ¢ v*, then

R O
[y (z — z0)" == L (z — zo)"t! dz.

Exercise 4.7. Let Q C C open, f,g: Q — C holomorphic (so f',q" are continuous), and v : [a,b] —
Q a closed piecewise C'-path. Then

/f’(Z)g(Z) dz = f(v(b)g(v(b) — f(v(a))g(v(a)) — / f(2)d'(2) dz.
Y Y

Exercise 4.8. Let r > 0, zg € D(0,r) and n € N. Prove that for every polynomial P with deg(P) <

n, one has
P
AD(z0,r) # (Z - ZO)

Suggestion: Use the linearity of the integral and observe the decomposition into simple fractions
of the integrands.

Exercise 4.9. Let z1,22 € C and r > 0 so that |z1| < r < |z2|. Show that

/ dz 2w
opoy) (2 —21)(z —22) 21—z
Exercise 4.10. Compute the following path-integrals in the indicated sets/paths.

(a) f,y Z(Z;2J.r|_14) dz, where v = 0D(0,r) for r # 2.

) [, ©’* dz, where v = 0D(—1,1/2).

224z

(0) [, <2022 0z where 4 = D(0,1).
(d) f’y % dz, where v = 8D(0, 1)'
() iy e =9D(0)

(f) fA/ z%sin (1) dz, where v = 8D(0,1).
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Suggestion: In (f), recall the Taylor expansion of the complex sin function.

Exercise 4.11. Prove that:

(a) [, Z+31Z 1 3y dz = 6mi, where v = 0D(0,4).

(b) f zzzil dz = 4mi, where v = 0D(0,2).

(c) f7 z”fiil dz = 27, where v = 0D(0,2).
(d) [ xS dz = 2mic?, where y = 9D(2,1).

Exercise 4.12. Define f: D(0,1) — C by f(z) =
that

ﬁ? z € D(0,1). Prove, for every 0 <r <1,

1 2w
2

r

|f(reit)‘ dt = T2

Suggestion: It is helpful to calculate the integral faD(o " (172)%% first with the Cauchy Integral
Formula, and then with the definition of complex path-integral. Here 0D(0,r) is traveled once and

counterclockwise.

Exercise 4.13. Let r > 0 and let P be a polynomial whose roots are all contained in the open disk

D(0,7). Prove that
P'(z)
dz = 27wideg(P).
/8D(O,r) P(z) )

Suggestion: It is very helpful to use Theorem[{.{7 to factorize P. Recall that for a polynomial
P(z) = apz" + -+ -+ a1z + ag with a,, # 0, we have deg(P) = n.

Exercise 4.14. Let Q2 C C be open so that D(zg,r) C €, and let f : Q — C be holomorphic. Prove
that

2
f(20)]* < W2 / |f (20 + se™)|* sds dt.

Exercise 4.15. Use appropriately the Cauchy Integral Formula to calculate the integral

/ dz
ap(o,1) (2 —=3/2)(z —2/3)

2 dt
/0 13 —12cost’

Exercise 4.16. Let £ € C with |£] # 1. Compute the integral

27 dt
/0 1 —2fcost + &2

Exercise 4.17. Define, for each v > 0, the path ~y, : [0,7/4] — C by ~,(t) = re®. Prove that

Then calculate the real integral

. _ 2
lim e ? dz=0.
r—+00
Yr

_,2

over the paths Ty := [0, 7] % v, % [re%,O], r > 0, to show that

o oo /2
/ sin(z?) dz = / cos(z?) dz = ver
0 0 4

Then, integrate the function e



107

Suggestions: For the limit part, take into account the inequality cos(2t) > 1—%t forallt € [0, F].
For the second part, what is the value of ny- e % dz forallr > 07

Exercise 4.18. Define, for each r > 0, the path ~, : [0,7] — C by 7,.(t) = re®. Prove that:
: ¢t 4
(a) }gr(l)f% & dz =i,
. e g, _
(b) lim [, & dz=0.

(c) Integrate the function z — % over the paths [—R, —r|x~, *[r, R| xyg, with R > r > 0, and
let ¥ — 0 and R — oo to prove the identity

00 .+
ST m
dx = —.

0 X 2

Suggestions: In (a), estimate the modulus f% % dz —mi = f%
the Taylor Series of e — 1 centered at w = 0.
In (b), the estimates sint > 2t/m and cost > 1 — 2t/7 for t € [0,7/2] can be helpful.
In (¢), find the winding number W (I'y r,0) of the path T'y g := [=R, —r] x v, % [r, R] * yp around
0, for all r < R, and then use appropriately Theorem [{.27

e —1
z

dz, and take into account

Exercise 4.19. Let f : C — C holomorphic such that there constants C,a > 0 with | f(z)| < Ce®?l
for all z € C. Prove that |f'(z)| < Cae**! for all z € C.

Suggestion: Corollary [£.57).
Exercise 4.20. Let f : D — C be holomorphic. Prove that
2f/(0)] < sup{|f(w) — f(—w)| : we D}

Exercise 4.21. Let Q := {z € C : |Im(2)| < 1}, and let f : Q@ — C be holomorphic so that there
are constants C' > 0 and a € R with

lf(2) <C(A+]z))* forall z€q.

Prove that for every n € N, there is a constant Cp, > 0 so that
‘f(n)(fv)‘ <Cp(1+z))* forall xeR.

Exercise 4.22. Let f : C — C be holomorphic. Prove that for every z € C there exists M > 0 such
that | f")(2)] < M - n! for every n € N.

Exercise 4.23. Let Q) be open, zg € ), and [ : Q — C holomorphic in 2. Show that the estimates
1™ (20)] = nln"
only can hold for finitely many n € N.

Exercise 4.24. Let Q) be open and connected, and f :  — C be holomorphic so that there exists
z0 € Q and C > 0 with ]f(”)(zo)\ < C for every n € N. Prove that there is a function g : C — C
holomorphic with g = f on €.

(n)
Suggestion: What is the radius of convergence of the power series y - u ng::o) (z—2z0)"? Then,
at some point Corollary[{.44] can be helpful.

Exercise 4.25. Let ) be open and connected, and f,g :  — C be two holomorphic functions with
f(2)g(z) =0 for all z € C. Show that either f =0 in Q or g =0 in Q.
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Suggestion: Use appropriately Corollary[{.44}

Exercise 4.26. Let f : C — C be holomorphic, and suppose there are constants r,C > 0, n € N
such that |f(2)| < C|z|™ for all |z| > r. Prove that f is a polynomial with deg(f) < n.

Exercise 4.27. Let f : C — C be holomorphic with |f'(z)| < |z| for all z € C. Show that there exist
wi, we € C with |wy| < 1/2 so that f(z) = wy +wqz? for all z € C.

Exercise 4.28. Let f : C — C be holomorphic, and suppose there are constants C' > 0, a > 0 with
a ¢ N such that |f(z)] < C|z|* for all z € C. Prove that f is identically zero in C.

Exercise 4.29. Let f : C — C be holomorphic with lim &) — 0. Prove that f is constant in C.

|z| =00

Exercise 4.30. Let f : C — C be holomorphic so that there exist M > 0, o € (0,1) with |f(2)] <
M (1 + |2|%) for all z € C. Prove that f is constant in C.

Exercise 4.31. Find the Taylor series of f centered at zy in the following cases.
(i) f(z) =€ 2z =1.
(ii) f(z) =sin?z, zg = 0.
(i1i) f(z) =e*sinz, zp = 0.
Suggestion: In (ii), it is helpful to note that 2sin® z = 1 — cos(22).

Exercise 4.32. Show that there exist no function f : D(0,2) — C holomorphic in D(0,2) with
f(A/n) =—=1/n? and f (%) = 1/n for alln > 2.

Suggestion: Use appropriately Corollary [{.44}

Exercise 4.33. Let f : D — C be holomorphic with f (ﬁ) € R for all n € N. Show that f(Z) =

f(2) for all z € D.

Exercise 4.34. Let f : D(zg, R) — C be holomorphic. Prove that if 0 < r < R, then

()

2
1o i | (20) | 20
o ; |f(20+ret)|2dt:2) ol r2n,

(i) Denoting M (r) := max{|f(z)| : z € 0D(z0,7)}, then

o | £m) (5|
Z / n(' 0) 2n < (M('I“))Z
n=0 :

Exercise 4.35. Let f : C — C be holomorphic. Prove that f is constant in any of the following
cases.

(i) |f(z)| > 1 for all z € C.
(ii) Either Re(f)(z) >0 for all z € C or Im(f)(z) > 0 for all z € C.
(iii) Either Re(f)(z) # 0 for all z € C or Im(f)(z) # 0 for all z € C.

Suggestion: Use appropriately Theorem [{.45.
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Exercise 4.36. Let P(2) = agz"+a12" '+ -+a,_12+a, a polynomial with ag # 0. Let 21, . .., z,
be the roots of P. Show that:

s a = a
1
g 2y =—— and H 2 = (=12,
ap Pt a

0

Exercise 4.37. For any nonempty set A C C, denote M(A) := max{|e*| : z € A}. Find M(A) in
the following cases:

(i) A={z€C: |z —1—1d <1}
(ii)) A={z€ C :|Re(z) —2| <1 and |Im(z) — 3| < 1}.

Exercise 4.38. For any nonempty set A C C, denote M(A) := max{|cosz| : z € A}. Find M(A)
in the following cases:

(i) A={z¢e C : Re(z), Im(z) € [0, 27]}.
(i) A={ze€C : |z| <1}
Suggestion: Theorem [{.50,

Exercise 4.39. Let Q2 C C be open and connected, with D(0,7) C Q for somer > 0. Let f,g: Q — C
be holomorphic with |f(2)| = |g(2)| for all = € dD(0,r) and f(z) # 0 # g(z) for all z € D(0,r).
Prove that there exists A € C with |A\| =1 so that f = A\g in Q.

Exercise 4.40. Let Q C C be open and connected, f : Q — C a non-constant holomorphic function
such that f(z) # 0 for all z € Q. Prove that the function |f| : Q@ — R has no local minimum in Q.

Exercise 4.41. Let Q C C be open and connected, {f, : Q@ — C}, a sequence of holomorphic
functions in Q with f,(z) # 0 for all z € Q and n € N. Prove that if { fu}n converges uniformly to
f:Q — C in compact subsets of Q, then either f(z) # 0 for all z € Q or f =0 in Q.

Exercise 4.42. Let Q C C be open and connected with D C Q, and f : Q@ — C a non-constant
holomorphic function such that |f(z)| = 1 for all z € OD. Prove that f has finitely many, and at
least one, zeros in D.

Exercise 4.43. Let Q) C C be open and connected so that D C Q and let f : 2 — C be holomorphic.
Prove the following statements.

(i) If f is non-constant in Q@ and |f| is constant in OD, then there exists zo € D with f(z9) = 0.
(i1) If f is pure imaginary in 0D (that is, f(OD) C iR), then f is constant in €.
(iii) If f is real in OD (that is, f(OD) C R), then f is constant in .

Exercise 4.44. Let Q C C be open, connected and bounded, and f : Q — C continuous in Q and
holomorphic in Q. Prove that if |f| is constant in OSY, then either f is constant in Q2 or f has a
zero in ).

Exercise 4.45. Let f : C — C be a non-constant holomorphic function and ¢ > 0. Prove that

FeC: J@l<d={:€C: |f(z) <c}.

Exercise 4.46. Let f : D — C holomorphic with |f(z)| < 1 for all z € D and so that f(w) =0 for

some w € D. Prove that
Z—w

1f(2)] < for all z € D.

1 —wz




110




111

Chapter 5

Laurent Series and Singularities

In this chapter, we study the behaviour of functions f that are holomorphic in a punctured disk
D(zp,7) \ {20}. We then say that the function has an isolated singularity at zp. These functions
f can still be written as power series around zp, if we include negative powers (z — 2p)~" in the
series. This series is called the Laurent Series of f around zy. We classify the type of singularities
depending on the coefficients of the Laurent Series. Our main goal is to prove the Cauchy Residues
Theorem, which, among other applications, permits to easily compute improper real integrals.

5.1 Laurent Series
Laurent Series are essentially formal power series containing all possible negative powers as well.

Definition 5.1 (Laurent Series). A Laurent Series centered at a point zy € C is any series of the

form
o

Z an(z —20)";  where {ap}tnez C C.

n=—oo

The series o2y a—n(z — 20)"" is called the principal part of the Laurent Series above.
Also, we say that the series Y o> an(z—20)" converges at z € C if both series y - an(z—

20)" and > "> a—n(z — 29) " converge. Note that then

N

o0 o
Z;)an(z —20)" + z:l a_n(z—20)"" = A}gnoo Z an(z — 20)".
n= n=

n=—N

Let us make some remarks on the radii of convergence of the series above, as well as the
holomorphicity of those.
Remark 5.2. Let > °° _ a,(2—20)" be a Laurent series centered at zg. If we denote by R € [0, +0o0]

n=—oo
the radius of convergence of the power series 7, a_,&", we know that

n—-+o00

-1
R = (limsup\a_n|1/”> ,

by virtue of Theorem We actually know from that theorem that » 7, a_,&" converges
absolutely when |¢| < R, and absolutely-uniformly on ¢ € D(0,7), for all » < R. Equivalently,
Yoo L a—n(z — 29)”" converges absolutely when |z — zp| > 1/R and absolutely-uniformly when
|z — 20| > 1/r for all » < R. In other words, denoting

Ry = limsup |a_n|"/",

n—-+0o00
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the principal part > 2 a_n(z — 29)~" of the Laurent Series > 2 an(z — 20)" is absolutely

convergent in the set {z € C : |z — 29| > R1}, and absolutely-uniformly convergent on each set
{z€C: |z—2z| >r1} foral ry > Ry.
On the other hand, the series 7 jan(z — 20)™ has radius of converge Ry € [0, 400] given by
the formula .
Ry = <limsup]an|1/”> )

n—-+4o0o

again by Theorem [3.15] Thus, if Ry < R, the Laurent Series

o) N
Z an(z —29)" = lim an(z — 20)",

N—oo
n=—oo n—=—

converges absolutely whenever Ry < |z — zp| < Rg, and absolutely—uniformly on each set {z € C :
r1 < |Z — Z()| < 7’2}, with R; < r1 <7r9 < Rs.
Moreover, by Weierstrass Theorem the Laurent series

o0

Z an(z — 29)"

n=—oo

defines a holomorphic function in the set {z € C : Ry < |z — 2| < Ra}.

Throughout the rest of the chapter we will use the following notation, for zg € C, 0 < r; <
ro < 400 : o
Ay ro(20) == D(20,72) \ D(20,71) = {2 € C : r1 < |z — 20| < ra}.

That is, Ay, r,(20) is the annulus centered at zy with larger radius 7, and smaller radius r;.

The following lemma for holomorphic functions over annuli is crucial.

Lemma 5.3. Let Ry € [0, +00) and Ry € (0,+00] with Ry < Ry, let z9 € C, and let g : AR, r,(20) =
C be holomorphic in AR, r,(20). Then, the value of the integral faD(O " g(w) dw is the same for all
Ry <r < Rs.

Proof. Let R1 < s <r < Rgand let ¢ >0 besothat Ry <s—e<s<r<r+e< Ry. We claim
first that for every 6 € [0, 27|, we have

S+1r 91 —3S8 5
5 6107 9 +2> CAs—a,r+a(ZO)-

Dy =D <Zo+

Indeed, if z is in the disk of the left hand side, then the triangle inequality yields

Now, denote by 75 and 7, the paths that travel once and counterclockwise the circles 9D(0, s) and
0D(0,r) respectively. Using the inclusions (5.1.1]), clearly we can find a partition 0 = tg < ¢; <
<o <ty < tyg1 = 2w of [0,27], and points Oy, ...,0n4+1 € [0,27] so that, if we denote D,, := Dy,
for all n € {0,..., N + 1}, then

sEr + 2T e (511

2

s—e<

<lz—2 <

D,NDpi1#0, n=0,...,N+1; and s ([tn,tnt1]) U ([tn,tns1]) € Dp, n=0,...,N.
(5.1.2)
But by (p.1.1)), each D,, is convex subset of Ag, r,(20); where g is holomorphic. So, Corollary
provides us with F,, : D,, — C holomorphic so that (F,)’ = g on D,,. But then in the set
D, N Dpy1, both F, and F, 11 are primitives of g and so F,4+1 — F, is a constant in Dy, N Dy 41,

and by (5.1.2)) this implies

Fn—&-l(%"(tn—o—l)) - Fn—l—l(')’s(tn—o—l)) = Fn(VT(tn+1)) - Fn('}/s(tn—i-l)% n=0,...,N. (513)
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Now, applying Theorem to each f on each path vs([tn, tn+1])s ¥ ([tn, tnt1]), and taking into
account (|5.1.3)), we can write

N
w) dw — w)dw = w) dw — w) dw
/r 9le) /75 gle) nz:;) </Yr([tn,tn+ﬂ)g( ) /YS([tnvthrl]) o) )
N N
= Z En(yr(tnt1)) — Fa(ye(tn)) — Z Fo(vs(tnt1)) — Fa(vs(tn))
n=0 n=0

I
WE

[Fn (v (tnt1)) = Fn(vs(tns1)) — (Fn((tn)) — Fa(7s(tn)))]
0

3
I

I
E

[Fn+1<7r(tn+1)) - Fn+1(%(tn+l)) - (Fn(’Yr(tn)) - Fn(%(tn)))]

1
>

N1 (v (Ev41)) — Fo1 (s (Evs1)) — (Fo(vr (o)) — Fo(vs(to)))
+1(7(27m)) = Frg1(ys(2m)) — (Fo(1(0)) — Fo(75(0))) =0—-0=0.

|
=

And the assertion is proven. O

We are now ready to prove a version of the Cauchy Integral Formula on annuli; compare to

Corollary

Theorem 5.4 (Cauchy Integral Formula in an Annulus). Let R; € [0,4+00) and Ry € (0, +00] with
Ry < Ry, let zg € C, and let f : Ap, r,(20) = C be holomorphic in Ag, r,(20). Then, for every
r1,T9 with Ry < ry <19 < Ry, we have

f(z)= ! / de 1 / f(w) dw, whenever ri < |z—zo| <ry. (5.1.4)
o] 1s]

211 D(z0,r0) W — 2 21 D(z0,r1) W — 2

Proof. Fix ri,re with Ry < r1 < ro < Ry, and z with r1 < |z — 29| < ro. Define the function
g : AR, Ro(20) = C by

fw) = f(z) if we Ag, r,(20)\ {2},
gw)=¢ W77
O S

It is clear that g is continuous in AR, Rr,(20) and holomorphic in Ag, r,(20)\{z}, so Corollary
implies that actually g € H (AR, r,(20)). Denote by 7, and 7,, the paths describing respectively
dD(zo,71) and OD(z0, r2) traveled once and counterclockwise. Then, by Lemmal5.3] we may write

(w) = f(2) (w) = f(2)
0= w)dw — w)dw = 2 dw — ——dw
/mg< ) /Mg< jw = [T e

W) g [ W g ( dw [ dv )
— [ I qw [T i) (W5 2) - W 2)
= de— de+2m’f(z).
'Yle_Z Yro -z

In the last equality we used that W (~v,,,2) = 1 and W (v,,, z) = 0; see Proposition We have
thus shown ([5.1.4)). O
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Finally, we show that holomorphic functions in annuli admit Laurent Series expansions.

Theorem 5.5 (Laurent Series Expansion). Let R; € [0,+00) and Ry € (0,400] with R1 < Ra,
let z9p € C, and let f : AR, r,(20) — C be holomorphic in AR, r,(20). Then there are numbers

{an}nen+, {bn}nen such that
% 00 b,
f(z) :Zan(Z—ZO)"—FZm, fOT all ZEAR1,R2(ZO)7 (515)
n=0 n=1

with absolute convergence for all z € Ag, r,(20). More precisely:

o The series Y~ an(z — 20)" converges absolutely in D(zo, Ra), and absolutely-uniformly in

D(zg,12) for all 0 < ro < Ry;

o The series y o7, (z—b,:o)" converges absolutely in C\ D(zo, R1), and absolutely—uniformly on

each set C\ D(zp,71) for all Ry <11 < 00.

In particular, both series in (5.1.5) (simultaneously) converge absolutely-uniformly on each closed
annulus Ay, 7, = {z € C : r < |z — 20| < ro}, with Ry < r1 < ro < Ry. Furthemore, if
R < r < Ry, we have

1 f(w) 1

n=— — < —dw,neN", and b,=-— Flw)(w— 2z nfldw,nEN;
2mi 8D(zo,r) (w - Zo)n+1 2mi 0D (zo,r) ( )( )
(5.1.6)

where 0D (zg, 1) is traveled once and counterclockwise.

Proof. We will denote by ~, the path travelling dD(zp,r) once and counterclockwise, for every
r > 0. Define the functions fi : C\ D(zo, R1) — C and f5 : D(29, R2) — C by

1
fi(z) = / mdw, whenever |z — 29| > s, R1 < s < Ro, (5.1.7)
2 )y, w — 2
1
fa(z) == / de, whenever |z — zp| <7, Ry <1 < Rs. (5.1.8)
2 )y, w— 2

We need to verify that f1 (resp. f2) is well-defined in C\ D(zg, R1) (resp. D(zo, R2)), since for each
z € C\ D(z0, R1) (resp. z € D(zp, R2)) there are many s € (Ry, Ry) with |z — 29| > s (resp. many
r € (Ry, Ry) with |z — 29| < 7). For each 2 € C\ D(z0, R1) and Ry < s < 8’ < min{Ry, |z — 20},
let € > 0 be so that

Ri<s—e<s<s <s+e<min{Ry,|z— 2|},
and consider g, : As_y4:(20) — C given by g.(w) = Fw)  which is holomorphic, as f €

Ar.. re($7). By Lemma we have -

/ f(iu)dw:/ LQ_U)dw.

Thus, the value of fi(z) does not depend on the chosen s € (Ry, Ry) with |z — 29| > s. Similarly,
for z € D(zp, R2), and Ry < r’ <r < Ry with |z — z9| <1/, let £ > 0 be so that

max{|z — 20|, B} <1’ —e <7 <r<r+e< Ry,

and define h : Ay_. ;1-(20) = C given by h.(w) = f(i”), By Lemma we have that

w—=z

/ f(w) dw_/ f(w) dw,
W2 v WTE
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and fa(z) is well-defined. Also, we claim that

lim fi(z) = (5.1.9)

|z| =00

Indeed, if we fix some s € (R1, Ra), by (5.1.7)), we have

1 1
/ 7f(w) dw| < lim / LF(w)l |dw]
2mi Jy, w — 2 lz[=o0 21 [, [w — 2|

< lim 2ms sup{|f(w)| : |w — 20| = s}
|z| =00 2 ’Z _ Z()| — s

lim |f(2)] =

where we used that f is bounded in the compact set vs; recall Proposition [2.25
We now check that f; € H (C\ D(z0, R1)) and fo € H (D(z0, R2)). If z € C\ D(z0, Ry) there
exists € > 0 and s € (R, Rg) for which D(z,¢) C C\ D(z0,s). Then

S(w)
— d D
fl(g) 21 W — g w, 56 (2,8),
where the last integral defines a holomorphic function in § € D(z,¢), bu virtue Theorem
Thus f1 is holomorphic in a disk containing z, and we conclude that f; € H (C \ D(zo, Rl)) . An
identical argument permits to show that fo € H (D(zo, R2)) .
Now, define g : D(0, R1) — C by the formula

9(8) = {fl (Z” %) %f ¢ € D(0, Ry) \ {0}
0 if £=0

Because f1 € H (C\ D(z0, R1)) it is clear that g € H (D(0, Ry) \ {0}), and also that g is continuous
in all of D(0,Ry) due to (5.1.9). By Corollary we get that g € H(D(0, Ry)). By Theorem
4.39 and Corollary g1 can be written as a power series with radius of convergence R; around
0, that is

(n)

©=32 e cepo )
n=1 :

where the convergence is uniform in disks 5(0 t), with ¢ < R;. Also notice that the series begins
at n =1, as ¢1(0) = 0, Denoting b,, = —g ( )/n! for all n € N, the above implies that

fi(2) :—Z(Z_bzo)n, z € C\ D(z0, Ry), (5.1.10)
n=1

where the convergence is uniform in sets of the form C\ D(zp, s) with s > R;. On the other hand,
because fa € H (D(z9, R2)), Theorem and Corollary says that

= Zan(z —20)", z€ D(z,R2), an = J2 n(' 20) ,neN¥ (5.1.11)

and the convergence is uniform on each closed disk D(zg, ) with 7 < Ry. If we combine Theorem

with the definitions (5.1.7)—(5.1.8)) of fi; and fs, and the power series expansions ((5.1.10)—(5.1.11]),

we can conclude that

[e.e]

f(z) = falz Z zzon+zz_bzo), 2 € AR, ry(20), (5.1.12)

= n=1

with absolute-uniform convergence of both series in each closed sub-annuli of the form A, ,,(20) =
D(zp,7r2) \ D(z0,71), with Ry < r; < ro < Ra. It only remains to show formulae (5.1.5) for
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the coefficients a,,b,. Let r € (R1, R2) and n € Z. We can use (5.1.12)) and the fact that the
convergence of both series is uniform in the circle v, to write the equalities

/ (w{(zon‘f'l Zak/ —Z()kn 1dw+2bk/ w—ZO k_n_ld’w

) 2mian, ifn>0
) 2mib, ifn<0’

This shows the validity of formulae (5.1.5)). O

Definition 5.6 (Laurent Series and Principal Part). Let Ry € [0,400) and Ry € (0,+400] with
Ry < Ry, let zp € C, and let f : AR, r,(20) = C be holomorphic in Ar, r,(20). The Laurent Series

o0 o0 bn
Zan(z—zo)n+zm, z € AR, Rr,(20),
= n=1

from (5 in Theorem- 5.5 is called the Laurent Series of f at zy. This sem’es s unique, as the
coeﬁﬁczents {an}tnen+, {bntnen are uniquely determined by the formulae (5.1.6). Also, the series
Yoy (zbigo)n is called the principal part of the Laurent Series of f at zo

5.2 Isolated Singularities

The definition of an isolated singularity is as follows.

Definition 5.7 (Isolated Singularity). We say that zgp € C is an isolated singularity of f provided
that f : D(z0,7) \ {20} = C is holomorphic in D(zp,r) \ {20}

We will refer to D(zg,r) \ {20} as the punctured disk of center zy and radius r.
Example 5.8. Here are some examples of isolated singularities.

(1) The function f : C\ {0} — C given by f(z) = 1/z has an isolated singularity at 0, as f is
holomorphic in C\ {0}.

(2) The function f : C\ {0} — C given by f(z) = sin(1/z) has an isolated singularity at 0 as
well.

(3) The function f(z) = 1/sin(1/z) has an isolated singularity at every point of the form z; =
1/km, k € Z\ {0}. However, f does not have an isolated singularity at zy = 0. The reason
is that every punctured disk D(0,7) \ {0} contains (infinitely many) points z, at which the
function is not defined.

To classify the various types of isolated singularities, we look at the Laurent Series expansion
of the function; see Definition A particular case of Theorem [5.5] gives the following remark.

Remark 5.9. Let f : D(z0,7) \ {20} — C be holomorphic, that is, with an isolated singularity at
z9. By Theorem there are coefficients {a, }nez so that
= Zan(z —20)", 0<|z— 2| <r; (5.2.1)
neZ

with absolute-uniform convergence in annuli {z € C : ¢ < |z — 29| < s}, with 0 < ¢ < s < r. More
precisely, defining b,, := a_,, for all n € N, we can write

= an(z — 2) "+Z EED (5.2.2)
n=0

n=1
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where >°°° a,(z — 20)™ converges absolutely in D(zg,r), and absolutely—uniformly in D(zo, s) for
all 0 < s < r, and the principal part of the Laurent series >~ bn _ converge absolutely in
C\ {#0} and absolutely—uniformly on C\ D(zp,¢) for all € > 0.

(z—2z0)™

Definition 5.10 (Types of Isolated Singularity). Let f : D(zo,7) \ {20} — C be holomorphic in
D(zp,7) \ {20}, that is, with an isolated singularity at zo. Let {an}nez C C as in the Laurent
expansion (5.2.1) of f at zo, in the punctured disk D(zo,7) \ {z0}. We say that

e f has a removable singularity at zy if a, =0 for all n < 0.

o f has a pole at zy if there exists N € N with a_y # 0 and a, = 0 for all n < —N. More

precisely, in this case we say that f has a pole of order N at zy. Sometimes, poles of order
1 are called stmple poles.

o f has an essential singulartiy at zy if a,, # 0 for infinitely many n < 0.

Let us make some clarifications concerning the aspect of f depending on the various singulari-

ties.

Remark 5.11. Let f : D(zp,7) \ {20} — C with an isolated singularity at zp; that is f €

H (D(z0,7) \ {z0}) -
(1) If f has a removable singularity at zp, then by (5.2.1]), we have that

flz) = Zan(z —20)" 0<|z—2 <
n=0
Defining f(z9) := ag, we get that actually
flz) = Zan(z —20)", z€ D(zp,7);
n=0

where the series defines a holomorphic function, e.g., by Theorem [3.26] Thus, the definition
of the original f : D(zp,r) \ {20} — C can be extended to zy, obtaining a holomorphic
function in all of D(zp, 7).

For example, if f : C\ {0} — C is defined by f(z) = <=L for all z € C\ {0}, then f has a
removable singularity at zg = 0. Indeed, a power series expansion of f has the aspect

=1 >0 %7: -1 >0 %7: 2 s "
/) z z z ; n! T;) (n+1)! - \ {0}

The coefficients of the powers 2", for n < 0, in the Laurent Series are all equal to 0, confirming
that f has a removable singularity.

If f has a pole of order N € N at zp, then (5.2.1) becomes

4N O
fz) = (2 —20)V A

[e.e]
- + Zan(z —20)", 0<|z—z| <

Z pa—
n=0

And (Z‘i‘%w +-+ Za_—;O is the principal part of the Laurent series of f at zg in the annulus

0 < |z — zo| < r. Moreover, the function

oo
D(zp,7) 2> 2z — Z an(z — 20)"
n=0
is holomorphic in D(zp, 7).
The simplest example of a function with a pole of order N at 0is f(2) = —Lx, z € C\ {20}

(z—20)N>
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(3) For example, the function f : C\ {0} — C given by f(z) = e'/# has an essential singularity
at zp = 0. To see this, we can simply write the Laurent series of f at 0 :

00 1 1\" [es) 1
_ 1)z I _
n=0 n=1

where infinitely many (actually all) of the coefficients % of % are Non-zero.

5.2.1 Removable Singularities. The Riemann Criterion

The following theorem due to Riemann gives a simple characterization of removability of isolated
singularities.

Theorem 5.12 (Riemann’s Theorem). If f : D(zo,7) \ {20} — C is holomorphic, then f admits
an extension F : D(zp,r) — C holomorphic in all of D(z9,r) if and only if f is bounded in

D(zp,7) \ {z0}. In other words, f has a removable singularity at zo if and only if f is bounded in
the punctured disk D(zg,7) \ {20}

Proof. Let 0 < € < s < r and apply Theorem to f in the annulus Ag,(2p) to obtain

o fw) o1 fw)

27 OD(z0,5) W — 2 20 oD (z0,e) W — 2

dw, whenever €< |z— 2z <s. (5.2.3)

Z0,€

If we fix z € D(29,$) \ {20}, let 0 < e < |z — 2|, and note that then w € dD(zg,¢) implies
|lw—2z| > |z — 20| — |w— 20| = |2 — 20| — €.

Taking this into account and looking at the second integral of ([5.2.3)), we see that

/ f(w) dw| <[ S|4 < SRS 0] w € DG},
0D(z0,e)

w—z dD(20,¢) lw — 2| |z — 20| — €

Letting € — 07, the last term goes to 0, and so (5.2.3)) becomes

1
f(z) = / de, whenever 0 < |z — 2| < s. (5.2.4)
270 Jop(z,5) W — Z

Defining g : D(z9,s) — C by the formula g(z) = 5L faD(ZO 9 % dw, from Theorem |4.18| we get

that g € H(D(z0,s)). Thus, we can define F': D(0,r) — C by

Fz) = {f(Z) if 2 € D(z0,7) \ {20},

9(z0) if z = z0.

We get that F' = f in D(z0,7) \ {20}, and so F' € H(D(z0,7) \ {20}). And also F' = g on D(zy, s);
on which g is holomorphic. This shows that F' € H(D(zp,r)). O

Observe that Theorem improves Corollary since in that corollary we additional
required the function f to be continuous in all of D(zg,r).
5.2.2 Characterizations of Poles

Recall the Definition [4.42]of a zero of order N of a holomorphic function, and their characterization
from Proposition There is a similar characterization for poles of order NN.

Proposition 5.13. Let f : D(zo,7)\{z0} — C be holomorphic, and N € N. The following statements
are equivalent.
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(i) f has a pole of order N at z.

(i) There exists g € H(D(zo0,7)) with g(z9) # 0 and so that
9(2) = (2 — 20)V f(2), z€ D(20,7)\ {20} (5.2.5)

(i1i) The function 1/f admits a holomorphic extension ¢ : D(zg,s) \ {z0} — C in a disk D(zy, s),
so that @ has a zero of order N at zg.
Proof.

(i) = (ii) : By Remark[5.9)and the Definition of pole of order N, there are numbers {ay }n>_n C
C with a_px # 0 and so that

o
a_nN a_N+1 a1
f(z) = AL + o) +'”+z—zo +Zan(z—z0)", 0<|z—2z2 <
n=0

Therefore,

[e.e] [e.e]
(z—20)N f(2) = a_N+a_N+1(z—zo)+~--+a,1(z—zo)+2an(z—zo)"+N = Zan_N(z—zo)”,
n=0 n=0

(5.2.6)
for all 0 < |z — zg| < r. Since the last series converges for all z € D(zp,r), the function

g9(z) = Z%—N(?«’ —20)", z€ D(zo,7)
n=0

is holomorphic in D(zg,r) (see e.g. Proposition [3.20). By the definition of g, we have g(zg) =
a_n # 0. Moreover, by (5.2.6)), we have g(2) = (z — 20)N f(2) for all z € D(z9,7) \ {20}
(49) = (413) : Since g € H(D(zo,7)) and g(z0) # 0, there exists 0 < s < r with g(z) # 0 for all
z € D(zp, s). Thus the function

, 2 € D(z0,8);

is well-defined and holomorphic in D(zg, s). Moreover, by Proposition © has a zero of order
N at z. Also, by the expression (5.2.5)), we get that f(z) # 0 and ¢(z) = 1/f(2) for all z €
D(zp, ) \ {z0}. This shows (iii).

(i4i) = (i) : If pisasin (iii), then by Proposition[d.43] there exists h € H(D(z0, s)) with g(z0) # 0
and ¢(2) = (2 — 20)Vh(z) for all z € D(z, s). Moreover, replacing s with a smaller radius, we can
assume that h(z) # 0 for all zp € D(zp,s). Thus the function 1/h(z) is holomorphic in D(zo, s)
and thus there are coefficients {c;, }n>0 C C such that

1 oo
) = nzz:ocn(z —20)", z€ D(20,5);
where ¢p = 1/h(zp) # 0. But then,
05 PR S SR o PR S S RO R o SO
p(z) ~ (z—2)Vh(z) &= (z = 20)V z—z TR

for all 0 < |z — 29| < s. By the uniqueness of the Laurent series (of f at the point zp), and the fact
that cg # 0, we deduce that f has a pole of order N at z. O

Without specifying the order of the pole, we have a simpler characterization.
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Proposition 5.14. Let f : D(zo,7) \ {20} — C be holomorphic. The following statements are
equivalent.

(i) f has a pole at z.
(i) lim |f(z)| = co.

Proof.

(i) = (i7) : Since f has a pole of some order N € N at zy, by Proposition there exists
¢ : D(z0,5)\ {20} = Cin a disk D(zp,s), with ¢ =1/f in D(z0,s) \ {20} and so that ¢ has a zero
of order N at zp. In particular ¢ is continuous at zg and ¢(zg). Thus

. . 1
lim |f(z)|= lim —— =

Z— 20 Z—20 ’s@(z)‘

(i) = (4) : Since lim |f(z)| = oo, in particular there exists 0 < s < r so that f(z) # 0 for all
Z—20
z € D(zp,$) \ {z0}. We can then define

o(z) = {1/f(Z) if 2 € D(z0.s) \ {20}

0 if z = z.

Then, ¢ € H(D(z0,s)\{20}) and ¢ is continuous in D(zp,r) (including at z = zp) by the condition
lim |f(z)| = oco. By Corollary [4.35] we get ¢ € H(D(zp,s)). Because ¢(zy) = 0, we have that ¢

Z—20

has a zero of order N, for some N € N. By Proposition (see statement (iii) there), we may
conclude that f has a pole (of order N) at z. O

5.2.3 [Essential Singularities: The Casorati-Weierstrass Theorem

As concerns essential singularities, the following theorem provides a characterization.

Theorem 5.15 (Casorati-Weierstrass). Let f : D(zo,7) \ {z0} — C be holomorphic. Then, the
following statements are equivalent.

(i) f has an essential singularity at z.

(it) f(D(z0,5)\{z0}) = C for every 0 < s <r. That is, for every w € C there exists a sequence
{zn}n converging to zy, with z, # zy for alln € N, so that {f(z,)}n converges to w.

Proof.

(1) = (ii) : Suppose, for the sake of contradiction, that there exists 0 < s < r so that

f(D(z0,7) \ {20}) € C.

Then there exists w € C and € > 0 for which |f(z) — w| > € for all z € D(zp,s) \ {z0}. We can
then define

1
h(z) = o) —w’ z € D(z0,8) \ {20}
Then h € H(D(z0,s) \ {#z0}) and
1 1
|h(2)] < 7o) — | <2, ZE€ D(zp, ) \ {#0}-

That is, h is bounded in D(zp, s)\{20}. By Theorem there exists g : D(zp,s) — C holomorphic
in D(zp,s) with g = h in D(zo,s) \ {20}
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Now note that f = w+1/g in D(zo,s) \ {z0}. If we had g(z9) = 0, then by the continuity of g
at zg we would get that

L2
WA
9(2)
And Proposition would imply that f has a pole at zy, contradicting that the singularity of f
at zo is essential. Therefore, we must have g(zg) # 0. But then the continuity of g implies that
there exists § > 0 and 0 < s’ < s with [g(2)| > § for all z € D(zg, s"). Therefore
1 1

fR <|wl+ — < |wl+ =, 2z€D(z,5)\ {20}

P < ful + o <l + 5 (20,8) \ {20}
Thus f is bounded in D(zg, s") and Theorem says that f has a removable singularity at zg,
contradicting again that the singularity of f at zq is essential. Therefore, (ii) must hold.

lim |f(2)| = lim

Z—r20 Z—20

(i) = (4) : For the sake of contradiction, assume that f does not have a removable singularity at
zp. If the singularity is removable, then there exists g € H(D(zo,7)) with g = f on D(z0,7) \ {20},
and then

lim f(2) = lim g(2) = g(20)-

Z—20 Z—20

This contradicts (ii), taking any w € C with w # g(zp). And if the singularity of f at zj is a pole,
then Proposition [5.14] says that
lim |f(2)[ = oo,

Z—20

and this contradicts (ii) as well. O

5.3 Residues at isolated singularities

5.3.1 Definition and Calculus of Residues

Definition 5.16 (Residue of a function at a point). Let zo € C, r > 0 and f : D(z0,7) \ {20} = C a
holomorphic function. Let {an}n>0, {bn}nen be the unique sequences of complex numbers so that

o o0 bn
f(z) = Zan(z— zo)"—l-zm, 0 <[z —2z| <m;
n=0 n=1

see Theorem[5.5. We define the residue of f at zy as the complex number
Res(f, Zo) = bl.

Remark 5.17. If f : D(zp,7) \ {20} — C has an isolated singularity at zp, then Theorem says
that in fact

Res(f, z0) = / f(w)dw, forall 0<s<r.
0D(0,s)

On the other hand, if f has a removable singularity at zg, by Remark we get that
Res(f,z0) = 0.

Let us now compute residues for some functions whose singularities are poles.

Example 5.18 (Residues of rational functions). Consider the function f(z) = gg‘zg, with P,Q

polynomials in C. Naturally, f is holomorphic in C\ {z € C : Q(z) = 0}. Assume that zy is a
root of @ of multiplicity N € N and that P(zg) # 0. Then f has a pole of order N and Res(f, zo)
coincides with the coefficient of the term Z_lzo in the partial fraction decomposition of f.

Indeed, f has partial fraction decomposition of the form

A An_ A
N Nt A

+ h(2);

zZ— 29
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where h(z) is the sum of the remaining terms of the partial fraction decomposition of f. This
expression holds in some punctured disk D(zp,7) \ {20}. The function h consists of a sum of

fractions of the form (Za_jz’;‘)n (where z; is a root of @ and n € N), (possibly) plus a polynomial

(only when deg(P) > deg(Q)). In particular, h is holomorphic in a disk D(zg, s) (with s < r), and
so analytic at the point zy. Therefore, the expression for f becomes
AN AN—1 Ay

M e T T

+ Z an(z —20)"; 2z € D(2,5);

SO

for some coefficients {ay }n>0. The above sum is therefore the Laurent Series of f around zp. By
Definitions [5.10] and we get that f has a pole of order N at zp, and that

Res(f, Zo) = Al.
Let us look at a concrete rational function. Define
2
24+ 2
f(z) =

2 —22—z41
The roots of Q(z) = 22 — 22 — 241 are 1 (with multiplicity 2) and —1 (with multiplicity 1). So, by
the previous discussion, f has a pole of order 2 at zp = 1 and a pole of order 1 (also called simple

pole) at zp = —1. To calculate the residues at those points, decompose f into partial fraction
decomposition
2 2
z5+2 242 3/2 1/4 3/4
&)= 3—73 = 2 :/2+/+/'
2—=22—z+1 (z2—-1)2(z+1) (2-1) z—1 z+41

By the previous discussion,
Res(f,1) = %, Res(f,—1) = -.
The following two propositions are useful when dealing with functions which have simple poles.
Proposition 5.19. Let g, h : Q@ — C holomorphic functions and zy € ). Assume that:
e g(z0) #0, and
e h(z9) =0 and h'(z) # 0.

Then [ := % has a simple pole (pole of order 1) at zy and

9(%0)
R = .
es(f, ZO) h,(ZO)
Proof. The second condition says that h has a zero 1 at zg. So, by Proposition (1) <= (1))
and the fact that g(zo) # 0 (and thus g(z) # 2o in some disk D(z, s)), we know that f has a pole
of order 1 at 2. To calculate Res(f, z9), we use Proposition to write

h(z) = (z — 20)h(2), z € D(z20,5), h € H(D(z20,5)), h(z) #0, for all z € D(z, s).
9(2)

Writing ¢(z) = m for all z € D(zp, s), we get that ¢ € H(D(z0,s)) and hence
z
L o~ o™ (20) n_ 920 o ¢™(0) n-1
@) = o X Gt = ) T )T e Dleoss)

Therefore Res(f, z0) = ¢(20). To compute ¢(z0), note first that h’'(z9) = h(zq), and then

B 9(20) _ 9(20)
o)== W)
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Proposition has the following generalization.

Proposition 5.20. Let g,h : Q@ — C holomorphic functions, zg € 2, and m € N. Assume the
following two conditions:

e g has a zero of order m — 1 at zy (in the case m = 1, this simply means that g(zo) # 0).

e h has a zero of order m at zp.

9

Then f := N

has a simple pole (pole of order 1) at zy and
mg(m—l)(ZO)
h(m)(Z())

Proof. By Proposition we can find functions ¢, ¢ € H(Q) with 1(zp) # 0 and ¢(zp) # 0 and
such that

Res(f, z0) =

9(2) = (2 = 20)"'(2), h(z) = (2 —20)"p(2), z€Q
A simple computation shows that 1(zp) = (m — 1)!g(™~(2g) and that p(z0) = m!h("™ (z;). Then,
the formula for f becomes
9(2) _ (z—=)" () _  Y(2)
h(z) — (z=20)mp(2) (2= z0)p(2)
The functions ¢ and z — @(2) = (2 — 20)p(2) satisfy the assumptions of Proposition and

thus
Res(f, z0) = 2120)_ _ (o) _ (m = Dig™D(z0) _ mg™(z0)

(©)(20)  ¢(20) mlh(™(z) k(M (z)

O]

Example 5.21. Let us apply Proposition to the calculus of residues of two concrete examples.

1
(1) Consider f(z) = AT The denominator has the roots
z
51 ST

. Arg(—1) T s .37 .
(V-1) ={e' — :k=0,1,2,3} ={z0:=¢€"4, 21 ::el%,zQ =e'4, z3:=¢€"1 }.

The function f then has an isolated singularity at each zy, k = 0,1, 2, 3. Moreover, if g(z) := 1
and h(z) := z* + 1, clearly

g(zk) #0, h(z) =0, W (z) =423 #0, k=0,1,2,3.

By Proposition [5.19] we get that f has a simple pole at each zp, with

glz) 1
Res(f,z1.) = -~ k=0,1,2,3
es(f Zk) h/(Zk;) 4zk
. sin z . .
(2) Consider f(z) = T cons" The equation cosz = 1 has solutions {z; := 27k : k € Z}.
—cos z

This is easily checked by observing that cosz = 0 if and only if e?®* — 2¢%* 4 1 = 0; where
e?? —2¢* +1 = (e** —1)2. And recall from Theorem that e = 1 if and only if w € 27Z.
Therefore f has an isolated singularity at each zy, k € Z. Towards applying Proposition [5.20]
define g(z) := z and h(z) =1 — cos z, and compute:

g(zx) =sin(zx) =0, ¢'(2x) = cos(zx) # 0, h(z) = h'(2) =0, b (2x) = cos(zx) # 0,

for all £ € Z. Thus we can apply Proposition [5.20| at each zj, to infer that f has a pole of
order 1 at zg, with

29'(2k) _ 2cos(zk)

Res(f, z) = n(z) o cos(zk)

=2, kel
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We next prove criteria for some functions to have a pole of order 2, together with the value of
the corresponding residue.

Proposition 5.22. Let g, h : Q — C holomorphic functions and zy € Q. Assume that:

e 9(20) # 0, and

o h(z0) = h'(20) =0 and h''(z0) # 0 (that is, h has a zero of order 2 at zp).

Then f = % has a pole of order 2 at zy and

_2¢'(20)  29(20)h" (20)
ReS(f,Z(]) - h//(20> 3 (h”(Z()))Q :

Proof. By Proposition we can write
h(z) = (z — 20)%¢(2), z€ D(20,7), @€ H(D(2,7)), @(2)#0forall ze D(z,r).

Therefore the function 1» = g/¢ is holomorphic in D(z, ), and so it coincides with its Taylor
series at zg. Thus we have

1 z 1 > ™ (7
= 9():(2_20)2;)1/1 ng 0)(Z—zo)n

P(z0) | V(20) | =™ (20) _ w2 ¥(20) | ¥(20) | ~= " ()
7+ +Z n! (2= 20) 2_(2—20)2+z—zo+ (n+2)! (2

_'ZO)na

n=2 n=0

for all z € D(zp,r). This tells us that f has a pole of order 2 at 2, and that

Res(f.20) = /(0 = & C02(0) = 9G0)¢'(z0) _ 9'(z0) _ g(z0)¢(20)

((20))* p(z0)  (o(20))?

To express p(z9) and ¢'(29) in terms of h, we look that the expression h(z) = (2 — 20)%¢(z) and
differentiate:

h//(z)

20(2) +4(2 — 20)¢’ (2) + (2 — zo)2<p”(z), and so, h"(z0) = 2p(20),
h”/(z) / /

60 (2) +3(2 — 20)¢” (2) + (2 — 20)%¢"(2), and so, h"(z) = 6¢(20).

We conclude
/

Res(f, 20) = 9'(20)  9(20)¢'(20) _ 29'(20) 2 g(20)h" (20)

p(20)  (p(z20)° M) 3 (W(x))®

Proposition 5.23. Let g, h : 0 — C holomorphic functions and zy € §). Assume that:
e g(z0) =0, ¢'(20) # 0 (that is, g has a zero of order 1 at 2),

o h(z9) =h'(20) = h'(20) =0 and h'"'(29) # 0 (that is, h has a zero of order 3 at z).

Then f := % has a pole of order 2 at zy and

_3¢"(20) _ 34'(20)h™ (20)
Res(f, ZO) - h/”(ZO) 9 (h/”(ZO))2 :
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Proof. By Proposition u we can find functions G.h € H(Q) with 5(20),E(z0) # 0 and so that
9(2) = (2 — 20)g9(2) and h(z) = (z — z9)h(z) for all z € Q. Thus, for z € Q\ {2},

o0& G-2)i) _ Ge) @) g
fe) h(z) (2= 20)%h(z) (z—20)2h(z) ¢(2) p(2) = g(2), ¥(2) = (2 = 20)"(2).

We have that ¢(z9) # 0 and that ¥(z0) = 1(z0) = 0, " (20) # 0. By Proposition we have

2¢'(20)  2p(20)¢"(20)
V(z0) 3 (¥"(20))°

But noticing that g(z) = (z—20)¢(2z) and h(z) = (z—20)1(z) for all z € Q, we get (by differentiating
up to four times or by comparing the Taylor Series at zp) that

g (20) = ¢(20), g"(20) = 2¢/(20), K" (20) = 20 (20), I (20) = 30" (20), B (20) = 49" (20).

We then get

Res(f, ZU)

2¢'(20)

0(20)¢" (20) 39" (20) 34 (200" (20)
Y (20) '

(W"(z0))>  W'(0) 2 (W"(20))

2
Res(f, ZO) - g
O]

Example 5.24. Let us employ Proposition (perhaps in combination with Proposition [5.20)) to
the calculus of residues.

(1) Consider f(z) = PR The denominator has zeros {z := 27wk : k € Z}. Define the
—cos z

functions ¢g(z) := 1+ z and h(z) = 1 — cos z, and compute:
g(zk) =1+ 2, #0, h(zk) =h'(2) =0, K (21) = cos(zx) #0, forall keZ.
By Proposition applied to each zp, we get that f has a pole of order 2 at z, with

29'(zk)  2g(z)h™(zr) _ 2 2(14z)(—sin(z))
W' (zk) 3 (R (z1))? cos(zr) 3 cos?(z)

Res(f, zr) = =2, keZ.

z
2 id = —
(2) Consider f(z) T oonz

the functions g(z) := z and h(z) = 1 — cos z, and compute:

. Again, the denominator has zeros {zj := 2wk : k € Z}. Define

9(zk) = 2k #0,  h(z) = W (2x) =0, h(2x) = cos(z) #0, forall ke Z\{0}.
So, for every k € Z \ {0}, Proposition implies that f has a pole of order 2 at zj, with

29'(zk)  29(ze)h"(ze) 2 2(1+z)(—sin(z)
Res(f,24) = W'(zk) 3 (W'(z))®  cos(zk) 3 cos?(z) =2 keZ\{0}

However, for zg = 0, we have that
g(20) =0, ¢'(20) =1#0, h(z) =h(20) =0, h"(29) = cos(zg) # 0.
By Proposition for m = 2, we obtain that f has a pole of order 1 at zg = 0 with

24'(0)

h”(O) =2.

Res(f,0) =

If we a priori know the order of a pole of f, the following proposition gives an alternate way
to compute the residue.
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Proposition 5.25. Let f : D(zp,7)\ {20} — C be holomorphic in D(zy,r)\ {z0} with a pole of order
N €N at zyg. Then

1 av! N
Res(f, ZO) = ZILIEO (N — 1)' dzN-1 ((Z - ZO) f(Z)) :
Proof. The Laurent Series of f at zg is
o0
a_nN G_N+1 a— n
- - —2)", z€ Dz, .
f(2) (Z_ZO)N+(Z_ZO)N+ +Z_20+ngoan(z 20)", 2z € D(20,7) \ {20}
By the definition of residue at zg, we have Res(f, 20) = a_1. Multiplying by (z — 29)", we get
o
(z—20)Nf(2)=a_n+a_n(z—2)+ - +a_1(z—2)V 1+ Z an(z — 20)" .
n=0

The term in the right-hand side defines a holomorphic function g in D(zg,7), and its (N — 1)-
th derivative at zg is (N — 1)!a_;. But since such a function g coincidies with (z — zo)"V f(z) in
D(zp,7) \ {20}, we get that

N-1
(N—-1)la_; = lim LN (z— 20)N f(2).

Z—r20

In particular, if f has a pole of order 1 at 2y, by Proposition [5.25] one has

Res(f, z0) = ZILIE (z —20)f(2).

5.3.2 The Cauchy Global Theorem

The following theorem is known as the Cauchy Homological Theorem or the Cauchy Global Theo-
rem. The amazingly short and elegant proof we include here is due to John D. Dixon [2], published
in 1971.

Theorem 5.26 (Cauchy Global Integral Formula). Let Q@ C C be open and 7y : [a,b] — Q a closed
and piecewise C'-path in Q so that W (~,z) =0 for all z ¢ Q. Then, if f : Q — C is holomorphic
in €, one has

1 9]

Wy, 2)f(z) = i) i d¢, forall zeQ\~" (5.3.1)
v

Proof. Denote U := {z € C\v* : W(v,z) = 0}. As we saw in the proof of Proposition [1.26iii) (or
actually as a consequence of Proposition [4.26((iii)), the function C\ 7* 3 z = N,(z) := W (v, 2) is
continuous and only takes integer values. Thus

U= N7'({0}) = Ny ((~=1/2,1/2))

is the preimage of an open interval by a continuous function in the open set C \ +*, and thus U is
open; see Proposition We next define, for each w € €2, the function g,2 — C as

f(w):g(ﬁ) if ¢ £w

F(w) if € =w.

Because f is holomorphic in 2, we immediately get that g,, is continuous in €2 for all w € 2. Thus
we can define a new function h : C — C by the formula

fygw(§ d¢  if weQ

)
Lg%@ if weU.

gw(f) =

(5.3.2)
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First of all, we need to verify that h is well defined. Let w € QNU. Then, w ¢ v* and W (v, w) = 0,
and in particular £ # w for all £ € v*. Thus, looking at the definitions of g,,, we see that

ng(§)—Lde—_f( )27 W (v, w /f ‘/@fi@

Thus the two branches of definition of h agree, and h is well-defined. Also, notice that h is defined
in all of C, by the assumption C\ Q C U.

Now, since f is holomorphic in €2, by the Differentiation Under the Integral Sign Theorem |4.18
we get that h is holomorphic in £\ 7, as well as in U. Therefore, we have that h is holomorphic in
C. Let us now show that lim |h(w)| = 0. Indeed, since v* is a compact set, there exists r > 0 so

|w|—o0
that v* € D(0,r), Thus, if |w| > 27, then w is in the unbounded connected component of C \ v*.
By Proposition we get that W(’y,w) =0, and so w € U. Thus, for |w| > 2r we can estimate

sup{|f(§)] : £ € v*} - length(y)
lw| =7 '

w) = a\ |5|

Since the supremum and the length above are finite, letting |w| — oo gives ‘ l‘im |h(w)| = 0. By
w|—00

the continuity of h, this implies that h is bounded in C. Hence, Liouville’s Theorem [4.45] tells us
that h is constant, and actually constantly equal to 0, due to lim |h(w)| = 0. Therefore, for any

|w|—o00

z € Q\ v*, we have that

0= = [atyae = [ L1 4¢
Y v

=16 [ Ee+ [ Lo omisowin [ g

which yiels (5.3.1)). O]

Theorem should be compared to Theorem where we assumed that €2 is convex. It is
not difficult to show that all closed piecewise C''-paths in a convex domain 2 satisfy the property
that W(v, z) =0 for all z ¢ Q. Therefore Theorem generalizes Theorem

The following corollary of Theorem [5.26[is one of the key ingredients in the next subsection.

Corollary 5.27 (Cauchy Global Theorem). Let Q@ C C be open and v : [a,b] — Q a closed and
piecewise Ct-path in Q so that W(v,z) =0 for all z ¢ Q. Then, if f: Q — C is holomorphic,

/7 £(€)dg = 0.

Proof. If f: Q — C is holomorphic, we fix a point zg € Q \ 7v*, and define g(z) = f(2)(z — zg) for
all z € Q. Clearly g € H(Q2) and we can apply Theorem [5.26) m to g at the point zg to obtain

0 =W(~,20)9(20 27”/5205 /fg — de = /f

5.3.3 The Cauchy Residues Theorem
In the proof of Cauchy Residues Theorem [5.29] below, the following lemma is crucial.

Lemma 5.28. Let f : D(zo,7) \ {20} — C be holomorphic in D(zp,r) \ {20}, and denote by fy :
C\ {20} — C the principal part of f at zg. Then, if v : [a,b] — Cis a closed and piecewise C*-path
with zo ¢ v*, we have

/ fo(z)dz = 2mi Res(f, z0)W (7, 20).-
.
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Proof. Since ~* is compact and zp ¢ ~*, there exist 0 < ¢ < R < 400 so that v* C D(z0,R) \
D(zo,¢) \ {20}. By Remark we can write

o0

foe) = 3 2 2 €\ s

with absolute—uniform convergence in the annulus {z € C : € < |z — 29| < R}, which contains v*.
Here {by, }neny C C, and by = Res(f, z9). Therefore

dz
)dz = by, =b = 2mib .
/fo z = Z / z—zo) 1/72—20 mi b1 W (7, 20)

In the second equality we used Theorem to each z — (z—20) "™ with n > 2, as these functions
have primitives ﬁ(z — 20)'7". The last equality is just the Definition of winding number. [

n=1

Theorem 5.29 (Cauchy Residues Theorem). Let f : Q\{z1,...,25} — C be a holomorphic function
in Q except at N distinct points {z1,...,z2ny} C Q, at which f has isolated singularities. Let
vt la,b) = Q\ {z1,...,2n} be a closed and piecewise C*-path with W(vy,z) = 0 for all z ¢ Q.
Then, we have

/f )dz = QWZZRGS fyzi)W (v, zk)- (5.3.3)
k=1
Proof. Since the singularity of f at each zj is isolated and {z1,..., 2y} is finite, by Remark
r > 0 so that we can write

f(z) =gx(2) + fx(z), forall ze€ D(z,r),k=1,...,N; (5.3.4)

where g € H(D(zg, 7)) and the principal part fi of the Laurent Series of f at zj is holomorphic
in C\ {2} for all k = 1,..., N. Because {z1,...,zy} is finite and v* is a compact subset of
Q\{z1,...,2n}, we can assume (by taking a smaller r in (5.3.4)) if necessary) that

N
D(z;,2r)N D(z,2r) =0, if jyke{l,....N},j#k; and ~*CQ\ U D(zg,7). (5.3.5)
k=1

We define a function h :  — C in the following manner
gk(z)_zévzld;ékf](z) leGD(Zk,’I") k6{17aN}
h(z) = N (5.3.6)
f(z) = 2255 fi(2) if z € Q\Uk 1 D(zx,7/2).

By the first part of ([5.3.5) -, we get that the first branch of definition of A is consistent. Also, if z €
a\ Uk 1 (zk, r/2) and at the same time z belongs to D(zy,r) for some (unique) k € {1,..., N},

then 4)) implies that
=g(2)— Y. fi(2);

Zf] ‘|‘fk
j=1,j#k

showing that h is well defined in €. Moreover, since fj € 7—[ ((C \ {#;}) and g;, € H(D(zk, 7)) for all
J, k, it is clear that h is holomorphic in Q. Furthermore, says that v Q\UY pe1 D (2, ) C

Q\ Ur_, D(z,7/2), and so h = f — Z — fjin A%, accordlng to . Applying Theorem
to h and Lemma- 5.28 to f (and its prln(:lpal part f;) at each z; glves

0= / Bz ds = / f@dz—zl / fi(z)dz = / f(Z)dz—z;%iReS(f,Zj)W(%Zj);

which of course yields (5.3.3). O

N

uMz
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Example 5.30. For f(z) = cot z = $2Z, we evaluate the integrals

/ f(z)dz,/ f(2) dz,
aD(0,1) 0D(0,4)

using Theorem [5.29] The circles are traveled once and counterclockwise. The function f has an
isolated singularity at each zy := km, k € Z. Defining g(z) = cosz and h(z) = sin z, we see that
g(zr) = (=1)* # 0, and h(z,) = 0, W' (2x) = cos(z) = (—1)¥ # 0. By Proposition f has a
pole of order 1 at z; with
9(zx)
es(f7 Zk) h/(Zk) )

For the first integral, note that only the singularity zop = 0 is contained in the inside of 9D(0,1).
Hence, the Cauchy Residues Theorem applied to 0D(0,1) gives

/ f(z)dz =2miRes(f,0)W(y,0) = 2mi.
aD(0,1)

For the latter integral, observe that the singularities that are contained in the inside of 9D(0,4)
are {—m,0,7}. Theorem tells us that

/ﬂ sz)dz::2w¢(R£qf,—w)wqy,—w)+-R£qf4»vvp%0)4-Reqj;nnwxyﬂa)::6w¢
8D(0,4)

5.3.4 Evaluation of Integrals via the Cauchy Residues Theorem

Theorem 5.31 (Evaluation of Trigonometric Integrals). Let R(u,v) be a rational function of two
variables such that the function [0,27] > 6 — R(cosf,sinf) is bounded in [0,2x]. Consider the

function
1 1 1 1 1
0= (5(+2) 5 (-2))
and denote Poles(f) := {z € C : f has a pole at z} and D = D(0,1) the open unit disk. Then,

2m
R(cos6,sin0) df = 2mi Z Res(f, 2).

0 ze€DNPoles(f)

Proof. Let ~(t) = €', t € [0,27]. Then

/ﬂ)d—/%ﬂ”)”M—/%lle 0y LY L (en— L)Y ietag
. zZ)az = ) e e = ) ieie 5 (& ei9 ,22 (& eie (&
2m

0 —i0 0 __ ,—if 27
= / R <6 e , —— > df = R(cos,sin @) df.
0 2 21 0

On the other hand, if 2 = C, then v* C © and W (v, z) = 0 for all z ¢ Q (vacuously). Because the
mapping [0,27] 2 6 — R(cosf,sinf) is bounded, if we denote R = P/Q, with P, @ polynomials
of two variables, then the possible isolated singularities of f are at zop = 0 and at those z € C for

which
Q (1 (z+ 2_1) 1 (z — z_1)> =0
2 " 26 '
But there are only finitely many possible solutions in z € C\ {0} for this equation. Moreover, since
P, Q are polynomials, clearly the singularities of f are all poles; see Example[5.18] But none of these
poles are contained in v* = 9D(0,1), because if § € [0,2x], then f(e?) = —ie"®R(cos#,sin0),
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which is continuous in 6 € [0, 27]. In other words, none of the singularities of f are contained in
~*. By Theorem [5.29] we get that

/f(z) dz = 2mi Z Res(v, 2)W (v, z) = 2mi Z Res(f, z).
.

z€Poles(f) zeDNPoles(f)

Example 5.32. Let us evaluate the integral

/27r do
0 2—sinf’

via Theorem Consider the rational function R(u,v) = ﬁ and

1 /1 1\ 1 1 1 1 —2
:*R - - — —_ — = — =
f@) =7 <2<Z+z>’2i<z z)> 22— L(z-1) 2 —diz+1

Writing 22 —4iz +1 = (2 — 2i)2 +5 = (2 — (2 — V5)i)(z — (2 + V/5)i), we see that f has isolated
singularities, which are poles of order 1, at the points (2 — v/5)i and (2 4+ v/5)i. But the latter
pole (2 ++/5)i is not contained in D(0,1), as [(2 4+ v/5)i| = 24+ /5 > 1. The first pole (2 — v/5)i is
contained in D(0,1). By Theorem [5.31]

o de . .
/0 ———— = 27iRes (f, (2 — \/5)2> )

2 —sinf
To calculate Res ( f(2— \/5)1), we can decompose % into partial fractions, and look at the
coefficient of the fraction m Alternatively, we can write
—2 9(2)

f(z) = g(2) = =2, h(z) = 22 — diz + 1,

2 —diz+1 h(z)’

and apply Proposition to deduce

N_e@-vB) _ 2 2 1
Res (2. V90) = 30— VR ~ 2 (= va) —ai ~ —avEi VA

Thus,

| 5=~ 2miRes (2= VB)) 22 =

We now turn our attention to improper integrals of the type fj;o f(z)dz, where f : R - R
is continuous in R. In particular, the holomorphic extension f to an open set containing R has no
singularities in R. Recall that such improper integral (more precisely, its principal value) is defined
by the limit

pv/+oof(a:)dx = lim /I;f(a:)dx.

o R—+o00

We next establish some methods that are very helpful in a large number of those cases.

Theorem 5.33 (Integrals of Continuous Functions in R, ver. I). Denote H := {z € Q : Im(z) > 0}
the upper half-plane and let @ C C be open with H C Q. Let f be a function with the following
conditions:

e f is holomorphic in ) except at finitely many singularities z1,...,zN € §2.
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o 21 ¢ R (that is, Im(z;) #0) for allk=1,...,N.
o For the paths yg : [0,71] — C defined by yr(t) = Re', t € [0,7], R > 0, there holds that

f(z)dz| =0.

lim
R—+o00

TR

Then, we have

pv/_ f(z)dz = 2mi Z Res(f, k).

{k:Im(z)>0}
Proof. Let R > 0 be large enough so that R > max{|z1|,...,|zn|}, and define the paths
LR = [_Rv R]7 ’YR(t) = Reitv te [07 ﬂ-]? Ir:= LR *YR-

I'g is a closed and piecewise C'-path with I'l, € Q (because v}, C H) and by the choice of R, it is
clear that z, ¢ I', for all k = 1,..., N. Thus, by Theorem we have

N
f( dz = 27TZZRGS fyze)W (TR, 2x) = 27TiZRes(f, 2k)- (5.3.7)
k=1
The path-integral of f along I'g is
R
f(z)dz = f(z)dz +/ f(z)dz = / f(z)dx +/ f(z)dz; (5.3.8)
I'r Lr TR -R YR
where, by Proposition and the third assumption of this theorem,
£(2)dz| < length(yg) sup |£(2)| < 7R sup T = "
z)dz| < length(yg) sup 7R sup =——.
TR zZEVF, zEvh |Z|p MRp—1
Therefore,
li dz| = 0.
| s
Inserting this back into (5.3.8]) and ([5.3.7)), and letting R — oo, we get
—+o00
pV/_Oo f(@) Rirfoo/ fla R—1>r—lr-loo( FRf(Z) z 'mf(Z) Z)
= lim / f(z)dz = hm QFZZRGS ) —2mZRes fs2k)-
R—+o00 I'r 1

Let us look at particular situations where the third condition in Theorem [5.33| is satisfied.

Corollary 5.34. Denote H := {z € Q : Im(z) > 0} the upper half-plane and let Q@ C C be open with
H C Q. Let f be a function with the following conditions:

o f is holomorphic in ) except at finitely many singularities z1,...,zN € §2.
o 2 ¢ R (that is, Im(z;) #0) for allk=1,...,N.
o There are constants M, Ry > 0, p > 1 such that |f(z)| < % for all z € Q with |z| > Ry.

Then, we have

pv /OO f(z)dz = 2mi Z Res(f, k).

{k:Im(z)>0}
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Proof. By Proposition and the third assumption of this corollary,

s
z)dz| <length(yg) sup |f(2)| < TR sup — = ————.
[ 1) (1) sup ) < 7R up (5 = i
Therefore,
li dz| = 0.
| o
We then have all the assumptions of Theorem [5.33] O

Remark 5.35. Observe that the third condition in Corollary is fulfilled for example when f is
a rational function f = P/Q; with P, @ polynomials satisfying

deg(Q) > deg(P) + 2.

Let us see how to apply the above in a concrete example.

+o0o 1,2
pv/ — dz,
o l+at

Example 5.36. We evaluate

using Theorem 5.33 (actually Corollary and Remark . Define f(z) = lj%, which is
holomorphic in C except in the set

<\4/—1> ={z:= €T, 29 1= e"%ﬂ, z3 =€ 4, 24 = ei%ﬁ}.

Note that z; ¢ R for k = 1,2,3,4, with Im(z1),Im(z2) > 0 and Im(z2),Im(z4) < 0. By Theorem

[5.33] we have

400 2 +oo
pv/ ﬁ dr = / f(z)dz = 2mi (Res(f, 2z1) + Res(f, 22)) .

—00 —00

To calculate Res(f,w) for w = 21, 22, we can decompose % in partial fractions and look at the

coefficient of ﬁ But we can also apply directly Proposition for g(2) = 22 and h(z) = 1+ 24,
where

g(z1) =24 # 0, g(22) =25 #0, h(z1) = h(z2) =0, h(z1) =42/ #0, h'(22) = 423 #0,

and then () ) () )
g(z1 27 1 g(22 27 1
R = =—=— R = = —=—
es(f, Zl) h’(zl) 42;’ 42:1 ’ es('ﬂ ZQ) h/(ZQ) 425’ 42’2

We may conclude

pv /+OO idw = 2mi (Res(f, 21) + Res(f, 22)) = m <1 + 1)

oo 142t 4 \z1 2z

To evaluate integrals of mixed rational-trigonometric functions, it is convenient to use a second
version of Theorem We first need the following estimate due to Jordan.

Lemma 5.37 (Jordan’s Lemma). Let r > 0 and v, : [0,7] — C the path v,.(t) = re', t € [0,7].

Then, we have
/ 6||dz] < .
Yr
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Proof. For each r > 0, we can write

7r ) ) ™ )
Z| = € " rie = re .
¢ 1d Re(ire*)|,.. it dt —rsint 34

Yr 0 0

But since sin(t) = sin(m — t), we have that f;r/z re TSt dr = OW/Q re~ st dt, and so the last
integral above equals

7T/2 . TI'/2 2r 2r
2/ re’”smtdt§2/ T€77tdt:ﬂ'<1—€775) :77(1—6*7’) < .
0 0

We have used that sint > 2t/x for all ¢ € [0,7/2], that is, ¢ — sint is concave in the interval
[0, 7/2]. O

Theorem 5.38 (Integrals of Continuous Functions in R, ver. II). Denote H := {z € Q : Im(z) > 0}
the upper half-plane and let Q@ C C be open with H C Q. Let f be a function with the following
conditions

e f is holomorphic in ) except at finitely many singularities z1,...,zN € §.
o 2 ¢ R (that is, Im(z;) #0) for allk=1,...,N.

e There are constants M, Ry > 0, p > 0 such that |f(z)| < % for all z € Q with |z| > Ryp.

Then, for all a > 0, if g(2) := f(2)e"%*, z € Q, we have
+o0 .
pv/ f(z)e'* do = 2mi Z Res(g, 2x).
> {k:Tm(z;)>0}

Proof. Let us verify the assumptions of Theorem for g (instead of f). The first two bullet
conditions of Theorem [5.33] are immediate from the first two of the current theorem. Now, let
vr(t) == Re, t € [0, 7], with R > Ry, and use Lemma to estimate

M M

. M ‘ .
g(z)dz| < / F@)lle]dz] < 2L / o ldz) = 2 [ jei#)jde) < T
[m YR RP J, . aRP J, » aRP

and the last term tends to 0 as R — oco. Thus, the third condition of Theorem holds, and our
statement follows from that theorem. O

Remark 5.39. Theorem [5.38) can be also employed when evaluating integrals of the type

+00 +oo
pv f(z) cos(ax) dx, pv/ f(z)sin(az) dz,

— 00

assuming that f(R) C R. Indeed, in this case, those integrals are respectively the real and
imaginary part of the integral

+o0 )
pv/ f(x)e** de.
—0oQ
Also notice that the third condition of Theorem is fulfilled for example when f = P/Q, where
P, Q) are polynomials satisfying
deg(Q) > deg(P) + 1;

compare to Remark
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Example 5.40. Let us evaluate the integral

+o0 xeim
—— dz.
v /_oo 2?2 +1

Writing f(z) = 557 and g(z) = f (2)e**, and, for example, 2 = C let us verify the assumptions
of Theorem The singularities of f are +i, which are not in R. Also, for |z| > 1, we have the

bounds

|| || 1
£ 1T+ 22| = 2z]2 2|7

All the conditions of Theorem [5.38| are satisfied, and so

+o00 xeim
pv/ 1 dz = 2miRes(g,1).
—0o

It only remains to find Res(g,i). But since ze** does not vanish at i, i2 4+ 1 = 0 and 2i # 0, by
Proposition [5.19] we have that

ot 00 iz :
Res(g,1) = Z; = 50 and so / %dx -
i e o0 T e

The evaluation of improper integrals when the pertinent function is unbounded around a point
is a bit more delicate. Let us recall a definition from Calculus I.

Definition 5.41 (Principal Value of an Integral). Let f : R — C be a function that is unbounded on
intervals around real points r1 < xo < -+ < xn. The principal value of fj;o f(x)dx by

pv/_:of(a:)dx = El_igﬁ (/_Z_Ef(x)dx+[vfi;€f(x)dx+...+/;":6f(x)dx+/$:zf(m)dx),

Theorem 5.42 (Integrals with Real Singularities). Denote H := {z € Q : Im(z) > 0} the upper
half-plane and let Q2 C C be open with H C Q. Let f be a function with the following conditions

o f is holomorphic in () except at a finite set of singularities S.
o Ifze RNS (that is, Im(z) =0), then f has a pole of order 1 at z;

o For the paths vg : [0,7] — C defined by yr(t) = Re', t € [0, 7], R > 0, there holds that

lim =0.

R—+o00

f(z)dz

TR

Then, we have

pv /—oo f(z)dz = 2mi Z Res(f,z) + mi Z Res(f, z).

{z€8:Im(z)>0} {2€8:2€R}

Proof. The proof is almost the same as that of Theorem [5.33] except that we need to additionally
estimate some integrals along certain small semi-circles. Denote by S the set of all singularities of
fin Q, and let {x1 < z9 < --- < x,} be those that are contained in R. Since the singularity of f
at each z; is a pole of order 1, and there are only finitely-many, by (for example) Remark we

can write
B Res(f, x;)

Z—ﬂjj

f(2) + fi(2), z€D(x;,0)\{z;}, j=1,....,m (5.3.9)
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where each f; is holomorphic in an open disk containing ﬁ(:):j, 9). In particular, simply by conti-
nuity, there exists M > 0 so that

sup{|f(w)| : w € D(x;,8)} <M, forall j=1,...,n. (5.3.10)
Let R > 0 be large enough to that R > max{l + |z| : z € S} and € > 0 small enough so that
<6, —R<z1—¢ xn+e<R, zj1+e<zj—e, j=2,...,n
Define the paths
Yr(t) := Re™, t € [0, 7], 0je(t) =z — e telo,n], j=1,...,n,
then
NRe = [—R,x1 —€|*x o1 x[x1+ 6,00 — €] x 09 %+ K [Xn_1 + &, Ty, — €| *k Ope * [Tn + €, R,

and finally I'r . := nr x yr- We get that I'r . is a closed and piecewise Cl- path with I'y, . C €,
and by the choice of R and € > 0, it is clear that SNI'};;, . = (. By Theorem we have

f(z)dz =2mi > Res(f,2)W([re,2) =2m Y Res(f,2). (5.3.11)
I're 2€S8 {z€8 :Im(z)>0}
Note that we used that W(I'r,2;) = 0 for all j = 1,...,n, as these singularities are in the outside

of I'r .. But the path-integral of f along I'r . is

f(z)dz = f(z)dz+ f(z)dz

Tr,e TR NR,e

Tr1—¢€ n Tj—€ R
mf(z)dz—l—/ f(ac)dx+2/ f(x)dx—&—/xnﬁf(:r)dx—i—z .7 f(z)dz.

—R j:2 xj,1+£

If £ > 0 is fixed (but satisfying the original conditions), and we let R — 400 in the above, the
third bullet point condition implies that
n

dm [ g [y [ fwans [ " dx+z )

—00 ]:2 j—1+5 nte €

(5.3.12)
Now, let us find lim f _f(z)dz. Note first that

e—0t

/ ]':{es(f’xj)dZ:Res(fjgjj)/ﬂ-m_,itdt:—ﬂ'l'RGS(f,$j).
o 0

— . . —it _ .
pe z IL’] CCJ ge SC]

Then we can use (5.3.9) and ([5.3.10|) to obtain

/ f£i(2) dz

which tends to 0 as ¢ — 0. Combining this together with (5.3.12)) and (5.3.11]) yields

xr1—E€ To—E Tp—E 400
El_l)r(l]l_‘_ </OO f(z) dx+/xl+€ f(z) dx—i—-~-—|—/ﬂ£n1+€f(a:)da:+/xn+€ f(z) dx)

(e [, 003

e—=0t FRE —1 U]s

z)dz + miRes(f, zj) < sup{|fj(w)| : w € D(z;,¢)}Hength(c;.) < Mne;

= 2mi Z Res(f, z —|—7TZZR€S frxj).

{z€S8 :Im(2)>0} j=1
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Remark 5.43. For example, we can use Theorem in the particular case where f = P/Q with
P, Q) polynomials satisfying
deg(Q) > deg(P) + 2.

And, as we did in Theorem [5.38] we can consider integrals of the form
“+o0o

pv f(x)e®™ dz, a > 0;
oo

with f possibly having poles of order 1 in the real line.
Let us see a concrete example.

Example 5.44. We want to evaluate

+oo
X
v —— dz,
P /_OO z3+1

via Theorem To do so, define f(z) = where f is holomorphic in C except in

Z
pas g
(V—-1)= {e*’%, e%, —1}.

These singularities satisfy Im(e™*3) < 0, —1 € R, and Im(e’3) > 0, so we only need to look at
z0=—1and z; = €'3. At zg = —1, the numerator and denominator have zg #0,23+1=0, and
3z(2) # 0. By Proposition f has a pole of order 1 at zg = —1, and

20 1
R = — = ——,
es(f7 Z'O) 3Z§ 3

For the same reasons, f has a pole of order 1 at z; = €3, with

Al 1
Res(f,21) = 55 = P
1 [

Since deg(2® + 1) = 2 + deg(z), we can apply Theorem m (see Remark [5.43)), to conclude

pv /Z f(x)dz = 2mi Res(f, €'5) + mi Res(f, —1) = % (2cos(%F) — 2isin(&F) — 1) = —.

%ﬂ

5.4 Exercises

Exercise 5.1. Find the Laurent Series expansions of the following functions in the indicated annuli
(and center), and identify the corresponding Principal Part.

(a) #Lin 2 € C\ {0}, at 2 = 0.

(b) 7 in{z€C:0<]z—i] <2}, at 20 =1.

(c¢) sin(1) in z € C\ {0}, at 20 = 0.

(d)ﬁ in{zeC:0<|z4+1 <1}, at zp = =1; and in {z € C : |z| > 1}, and in
{zeC :0<|z| <1} and at zp = 0.

(e) 75 in C\{-1}, at zp = —1.

(f) S in C\ {0}, at 2 = 0.

(9) mm{ze(c:o<]z\<l} and in {z € C : 1 < |z| < 2}, both at zp = 0.
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Exercise 5.2. Find the isolated singularities and classify them (into removable, poles, or essential)
for the following functions. In the case of poles, indicate the order of those.

COS 2 e — z e® sin z e* —1)2 e®
O 0 o T 9" G oy wG
. cos(z—1) L1 1 e*(z—3) oS z z
) 22 7) 22 -1 k) cos (1) 2 (z=1)(2—5) m) 1—2 ") (e —1)(e* —2)°

Exercise 5.3. Calculate the residues of the following functions at the indicated points zg € C :

) e 1 ) e? 1 ) cosz —1\? 0 d) 22 .
a z20 = 20 = C _— zn = —_— 20 =1
. 1’ 0 (22—1)27 0 > s <0 2'4—1’ 0
e —1 1 z+2 e +1
—0 2 =0 —TS =0 h)S— =0
6) sin 2 y 20 f) 62_1720 g) 22_22720 ) A , 20

Exercise 5.4. Find the isolated singularities, classify them (including the order in the case of poles),
and calculate the residues at all those singularities.

1 1 1 1 e?
) —— S ) . B
er —1 )z3(z+4) C)z2+2z+1 )23—3 e)z(l—z)3

a)
Exercise 5.5. Let E be a set with no accumulation points, that is, E' = 0. Let f : C\ E — C be
holomorphic and bounded in C\ E. Prove that f is constant.

Suggestion: Riemann’s Criterion Theorem [5.13 is vital. If you are not too familiar with topo-
logical concepts, assume first that E is finite.

Exercise 5.6. Let f : D(zo,7) \ {20} — C be holomorphic. Prove that f and f? have the same type
of singularity (removable, pole, or essential) at zy. This amounts to show that:

o [ has a removable singularity at zg <= f? has a removable singularity at z.

o f has a pole at zg <= f? has a pole at z.

o f has an essential singularity at zo <= f? has an essential singularity at zo.
Suggestion: Riemann’s Criterion Theorem [5.13 and Proposition[5.14 are very helpful.

Exercise 5.7. For every n € NU {0}, evaluate the integral

/ 2"el/* dz;
aD(0,1)

where 0D(0,1) is traveled once and counterclockwise.

Exercise 5.8. Prove that -
1 1
etz dz = 2mi _— .

Exercise 5.9. For the ellipse y(t) = {acost +ibsint : t € [0,27]}, a,b > 0, evaluate

2
672
/ 5 dz.
N 2
Exercise 5.10. Using Theorem[5.29, evaluate the following path-integrals, always travaled once and
with the counterclockwise orientation.

(a) fvﬁdz, where v = OD(0,7), n <13 <n+1,n€N.

z2 __
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(b) fvﬁdz, where 7y is the ellipse x° —xy +y?> +x +y = 0.

(c) f,y C;S(_a) dz, where «y is the ellipse 2%/9 4+ y%/4 = 1.
(d) [, 545 A2, where v = 0D(0,1).

(e) [, ﬁdz, where v = 0D(1,1/2).

(f) f7 (:;7_53 dz, where v = 0D(0,4).

(9) [, sne—gy dz, where v = 9D(0,3/2).

h) [, 1tz dz, where v = 0D(0,7).

1—cosz

Exercise 5.11. Find a holomorphic function f in D(0,1) so that

21 = / 1) dz, forall neN.
aD(0,1/2) 2"

The circle 0D(0,1/2) is traveled once and counterclockwise.

/27r do
o H+4cosh’

Exercise 5.13. Find a closed formula (in terms of the parameter a) for the following the integral

/QW de
0 a+sinf’

Exercise 5.12. Evaluate the integral

when a > 1, and also when a < —1.
Exercise 5.14. Show that
/’T de o
o 1+sin?6 2

Exercise 5.15. For a,b > 0, with a # b, evaluate the integral

/+°° CcoS T e
PV o @t a0

Exercise 5.16. For a > 0, evaluate the integral

/+°° Ccos T d
v ——d=z.
PV o 2 ta)?

Exercise 5.17. Fvaluate the integral

/+oo dx

pv —_.
oo T2 —2x+4
Exercise 5.18. Prove the identity

+o0 d
PV/ S T n € N.

oo 1422 msin(g-)’

Exercise 5.19. Fvaluate the integral

/*oo sinz d
'V ———— AdT.
L N P
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Exercise 5.20. Fvaluate the integral

/+°° x3sinz d
' ——dx.
P oo (224 1)2

Exercise 5.21. Prove the identity

+o00 ; 1
pV/OO zflifi dx = me V2sin (%) .
Exercise 5.22. FEvaluate the integral
+oo el
pv/ 3 5 dz,
oo X242 —2
and then
/+°° coS T d
pv €L,
oo TP =222 4 — 2
Suggestion: Read carefully Theorem [5.44 and Remark [5.43
Exercise 5.23. Fvaluate the integral
/+°° sin x d
\4 ———dx.
P oo (22 —1)
Suggestion: Read carefully Theorem[5.49 and Remark[5.43
Exercise 5.24. Fvaluate the integral
+o00 T
e
— _da,
pv/_oo a(w—wo)?
where wg € C is so that Im(wg) > 0.
Exercise 5.25. Fvaluate the integral
27 641'0
| oo
o 24cosf
and then deduce the value of
27
46
/ <0s(40) 45
o 24cosf
Exercise 5.26. For each a > 1, evaluate the integral
T de
/ ——df
o (a+cosh)?
Exercise 5.27. Prove the identity
+o0 3
pv/ <smx> do —
oo x
Exercise 5.28. Prove the identity
/+°O ST, T
\ ——dr = ——.
p oo ¥+ eT em/2 4 e~ /2

Exercise 5.29. Prove the identity

/+°° e " d 1
A4 — - dr = .
PV |  1feom 2sin(1)
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Chapter 6

Fourier Series and Differential Equations

This chapter serves as a brief introduction to elementary Fourier Analysis, which we will applied
to solve some special cases of differential equations. Our main reference is [3, Chapter 13].

6.1 Elements from Fourier Analysis

A trignometric polynomial is any function P : R — C of the form
N
P(x) = Z e, x eR;
n=—N

where {c,})_ € C and N € NU {0}. We can refer to the largest number M € N U {0} so
that one of the coefficients of e!M* =M% are nonzero as the degree of P. Notice also that P is
2m-periodic:

P(z+27) = P(x), forall ze€]0,2n].

Moreover, by ([1.5.1]), one can also express P as

N N N
P(z) = Z €T = CO+Z an, cos(na:)+z by sin(nx), ap := cp+c_p, by :=i(cp—c_p),n € N.
n=—N

n=1 n=1

Our of the main goals in Fourier Analysis is to approximate a sufficiently regular function f :
[0,27] — C by trigonometric polynomials. Those polynomials associated with f are the Fourier
sums of f, which we define now.

6.1.1 Fourier Coefficients and Sums. The Bessel’s Inequality

We will work from now on with Riemann-integrable functions A : [0, 27) — C, which we assume to
be extended to all R by 2mw-periodicity. This means that

h(xz +27) = h(z), forall ze€R.

Note that then this 27-periodic function h is continuous in all of R if and only if h(0) = h(27) and
h is continuous in [0, 27). Moreover, it is not difficult to see that

2 a+2m
/ h(t)dt = / h(t)dt, forall aeR. (6.1.1)
0 a

Indeed, it suffices to find the unique k£ € Z for which a € [2(k — 1)m,2k7), split the integral
appropriately and use that h is 2m-periodic. That is, the integral of A is the same on each interval
of length 27r. This is very convenient, since sometimes it is easier to examine integrals over [—m, 7]
rather than on [0, 27]. Below is the key definition of this chapter.
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Definition 6.1 (Fourier Coefficients and Sums). Let f : [0, 2] — C be a Riemann-integrable function
in [0,27], and let n € Z. We define the n™-Fourier coefficient of f as

R 1 2

f(n) = — f(t)e ™ dt. (6.1.2)

:27T0

Also, if N € NU {0}, the N*'-Fourier sum of f is the function Sy(f) : [0,27] — C given by

N
Sn(f)(@) = > fn)e™, zelo,2q]. (6.1.3)
n=—N

Finally, the Fourier series of f is the series of functions
+o0 N
swmwzzgwwm:1Z%RMW%=gg§Mﬂm=§g%§%ﬂmw% x € [0,27].
However, we cannot claim whether or not this series converges for a general function f.
Remark 6.2. Let us make some immediate observations from Definition
(1) Define, for each m € Z, the function e,, : [0,27] — C by
em(x) =™ € 0,2n].

Then we have

1 ifn=
em(n) = Omn = 1n m’ for all n€Z.
0 ifn#m

Indeed, this follows by just looking at the definition of Fourier coefficient.
(2) f X e C, and f,g:[0,27] — C are Riemann-integrable, then
(M + 9)(n) = Af(n) + §(n), forall neZ.
This means that the operation “taking Fourier coefficients” is a C-linear operation.

(3) Let P(z) = Zﬁ/lsz €™ be a trigonometric polynomial, where M € NU{0}. Then, by the
linearity we have seen in (2), and the fact that é,,(n) = 0, we get that

M :
_ L if n| < M
TS S

" 0 if |n| > M.

In particular,

Sn(P)(x) = P(x) forall N>M,ze€R, and S(P)(x)=P(x) forall zeR.

(4) Writing down all the terms in the sum defining Sy, we obtain

N . N 1 27 . . N 1 [27 ,
Sn(t) = Z f(n)e™ = Z 27r< ; f(s)e ds> et = Z 27r/0 f(s)e™t =) ds.
n=—N n=—N n=—N
(5) The 0*"-Fourier coefficient of an integrable f : [0,27] — R is
N 1 2
fo) = 5= [ ryar

that is, the averaged integral of f in [0, 27].
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Example 6.3. Let us now find the Fourier sums of some concrete 2m-periodic functions.

(1) Let f(x) = =z, x € [0,27]. We could re-define f at 27 by setting f(27) = 0(= f(0)), so that
we obtain a function that admits a 27-periodic extension to all of R. But for the computation
of the Fourier coefficients, this will not make any difference. We begin by computing the Fourier

~

coefficients f(n) when n € Z\ {0}. We can use Integration by Parts to obtain:

21 —intt=2m 2m _—int .

. e e 211

/ te—mt dt = [t . :| _ / —dt = —_—,
0 —in +=0 0 —in n

that is ]?(n) = % Now, for n = 0, we have that

To summarize,

—~ _{77 if n=0,
T =\ ez (o).

The N*-Fourier sum of f is the trigonometric polynomial

N N . N
~ e , sin(nx)
VD@ = 3 Fmem =ae 3T ey T
n=—N n=—N,n#0 n=1
for all z € [0, 27]. The Fourier series of f would be
+oo %

SH@ =+ Y =

n=—o00, n#0

We can already see that this series does not converge to f(0) = 0 at x = 0. For = € (0,27), the
series converges, for example, by Picard’s Criterion but we do not know whether it converges
to f(x). We will go back to this in Example below.

(2) Let g(z) = 2% — 272, € [0, 27]. Since we know already the Fourier coefficients an sums of f as
in (1), we only need to examine = — 2, since by Remark (2), we would obtain the information
about g by linearity. So, if h(x) = 22, note that for n # 0,

2w ) e—z’nt t=2m 21 e—int
/ t2e~ Mt 4t = [t2 : } — / 2t —— dt.
0 —in =0 0 —in

2mi
n ?

Recycling computations from (1), we know that f027r te~™t dt =

2T 2z
‘ 4 4
/ 2emintgp = -0 4 2T
0

and consequently

n n2
Therefore
(n) 271 2 9 7 2
n)=-"—4+ " 975 = —,
g n n? n2
And
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(3) Let h(z) = cosz, x € R. To calculate h(n), we can of course look at the definition, but Remark
6.2(3) tells us that if h is written as a trigonometric polynomial, then the coefficients of the
polynomial are precisely the Fourier Coefficients. So, we write

eix + efi:v 1

A 1 .
—e "4 —e" zeR,;

h(z) =cosz = 5 =5 5

from which we get that

1 ; _ _
/f;(n): 5 ifn=—-lorn=1
0 if n#-1,1.

Therefore Sy(h)(z) = 0 and Sy(h)(z) = 37 + Le®® = h(z) for all N € N. Then obviously
S(h)(x) = h(x) = cosz for all x € R.

Theorem 6.4 (Bessel’s Inequality). Let f : [0,27] — C be a function so that f? is Riemann-
integrable in [0,27]. Then, for every N € N,

N R 2 1 2m
> |fof <5 [ lrPa
T Jo
n=—N
Consequently,

S |Fmf <o [ i0Rar

n=—oo

Proof. For every N € N, we can write

2m 2m N R )
/O () — S () di = /0 (f(t)— 3 f(n)e““>< 2 Fm m)

n=—N

—/0 Z Z f(n /ﬂemte_imtdt

—Nm=—N
- > fm) f(t)e‘””tdt— o ) [ fBeta
m=—N 0 n=—N 0
= / )+ 2n Z Z fln
0 N —

B Z m 27 t _zmtdt Z f / )e*mtdt
m=—N 0

N

27 N2 N =
= [C1roP 2 3 [Fw)l —2m Y Fnfom) - 2n 30 Fonfn
0 n=—N m=—N

o N o2
:/o ]f(t)|2—27r Z ‘f(n)) .
n=—N

In the third equality, we used Remark ( And in the fourth 1nequahty, simply that dt

I
027T h(t)dt for every Riemann-integrable h : [0,27] — C; see in Definition But the

conclusion from the above chain of equalities is that

[ e - %niv ool = [0 - swto ar >

which yields our theorem. O
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A consequence of Theorem [6.4] is the following corollary.

Corollary 6.5. Let f: [0,27] — C be a function so that f? is Riemann-integrable in [0,27]. Then,
lim ‘f(n)‘ -
[n]—o0

Proof. By Theorem the series

Z\f(n)f = Jim Z Fin \ §2/2W|f(t)|2dt

nez

converges, whence lim ’ f(n ) O
[n]—o0

6.1.2 Convergence of Fourier Series for Lipschitz Functions

In the following theorem, we show that functions with a Lipschitz-type condition at a point have
Fourier Series convergent at that point. The proof we give here is due to Paul R. Chernoff [IJ.

Theorem 6.6. Let f : R — C a piecewise continuous and 2m-periodic function, and let zo € [0, 27]
be a point so that there are € > 0 and C > 0 with

|f(z) — f(zo)| < Clx — x|, forall x€ (xog—-e,z9+¢).

Then, we have that
S()(xo) :=  Mm Sy (f)(wo) = f(zo)-

—+00
In particular, if f : R — C is a piecewise continuous and 27w-periodic function, and f'(xo) exists
at some xg € [0,27), then S(f)(zo) = xo.

Proof. We define a new function

hz) = I +;f)__1f(x°) if 2 € (0,2r)

1 if z=0;

where the value h(0) = 1 is playing no role. We can extend h to all of R with 27-periodicity. Then
h is bounded on an interval around 0. Indeed, first notice that
e —1
lim
z—0 T

=1,

as the derivative of t — e at t = 0 is equal to 7. Thus, there exists § > 0 such that |e®* — 1] >
Hlzl)i| = M whenever |z| < 4. Letting r = min{d, }; where € > 0 is the one from the assumption,

we have for those |z| < r that

|f(x + x0) — f(20)] < Clz|

A < 2C.
’6”—1’ ’eza:_1|

|h(2)| =

Since h is bounded and has finitely many discontinuities at [0, 27], we have that h is Riemann-
integral. The two functions

(0,27) 3 2+ gi(z) := f(z + x0) — f(z0), (0,27) D x> go(x) := h(x)(e™ — 1)

agree on (0,27), and so they have the same Fourier coefficients. For the first function, those
coefficients are, for n € Z \ {0},
1 27

o

~ 1

27
Gi(n) = — /0 (F(t + 20) — f(zp)) e dt =

o f( ) —in(t—xo) dt = m:rof\(n)’



and §1(0) = f(0) — f(zo) in the case n = 0. And for the second function g, the coefficients are

1 2 ‘ N 1 2m ) N N
B(n) = — / cith(t)e ™ dt — h(n) = — / h(®)e= D4t — Ti(n) = hin — 1) — hin).
2w 0 2w 0

Thus we can write, for all N € N,

N R ' N N
Sn(£) (o) = flmo) = D> F)e™™ — flz) = > Giln)= > Gln)
n=—N n=—N n=—N
N
-y (ﬁ(n 1) - ﬁ<n)) — h(—N —1) — h(N).

Now h? is integrable, because h is bounded and piecewise continuous (and so is h?). By Corollary

we know that 1‘1m ‘h ‘ = 0. Thus, the previous chain of equalities says that
N|—o0
Jim (S (£)(@o) = f(wo)| = Jim_|A(=N —1) = h(N)| = 0,
as desired. O

We now apply Theorem to find some interesting facts.
Example 6.7. Let us get back to the functions from Example [6.3]

(1) Let f(z) =z for = € [0,27), and extend it to R by 2m-periodicity. As we saw in Example [6.3)
the Fourier Series S(f)(0) at xp = 0 does not converge to f(0) = 0. However, if = € (0, 27),
the function f is differentiable at z, and, by Theorem we get that S(f)(z) converges to
f(x). We conclude

N ,L'einx
r=f(r)=m+ Z — z € (0,2m).
n=—N,n#0

(2) Let g(x) = 2% — 2wz, x € [0,27]. This function satisfies the assumption of Theorem at
xg = 0, since

lg(z) — g(x0)| = |2* — 27z| = |z||]z — 27| < 3n|z| = 3n|z — xo|, forall z € (—m, m).

Thus the Fourier Series S(g) of g converges at xo = 0 and S(g)(0) = ¢g(0) = 0. But recall the
formula for S(f) we derived in Example [6.3{2):

0= 9(0) = S(g)(0) = -2 1y
- g - g 3 n2
n=1
Rearranging the terms, we get the identity:
P) - —.
=n 6

An easy consequence of Theorem is the following Identity Principle for Lipschitz functions.
If EC Risaset, and h : £ — C is a function, we say that h is Lipschitz in F if there exists a
constant L > 0 so that

|h(x) — h(y)| < Llx —y|, forall z,ye€E.

Corollary 6.8. Let f,g : R — C two piecewise continuous and 2m-periodic functions that are
Lipschitz in (0,2m), and so that f(n) = g(n) for alln € Z. Then f = g in (0,27).
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Proof. Both f and ¢ satisfy the conditions of Theorem for all zy € (0,27), and therefore,
S(f)(x) = f(z) and S(g)(z) = g(z) for all x € (0,27). But since f and g have the same Fourier
coefficients, obviously S(f)(xz) = S(g)(x), and so f(x) = g(x), for all z € (0, 2m). O

In connection with Theorem we next examine the coefficients of derivatives functions.

Proposition 6.9. Let f be a 2mw-periodic and continuous function in R, which is differentiable in
(0,27), with f Riemann-integrable in [0, 27]. Then,

]?’(TL) = m]?(n) for all n € Z.

Proof. If n = 0, note that the Fundamental Theorem of Calculus gives

R 21
Py =— [ f) = f@m) - 1(0) = 0 = inf(n).

- 2w 0
If n € Z \ {0}, then Integration by Parts, using that f(0) = f(27), we get

= 2 2

Qﬂ fe ™ dt = [f(t)e ™) ) — f(t)(—ine™™) dt = in / f(t)e™ ™t dt;
0

0 0

~

and therefore f’(n) =inf(n).

6.1.3 The Dirichlet and the Féjer Kernels

We now define two sequences of functions that are essential to understand the convergence of
Fourier Series.

Definition 6.10 (Dirichlet and Féjer Kernels). If N € NU {0}, define the function Dy : R — C by
N .
Dy(z) = Z et zelR
n=—N

The sequence of functions { Dy} nenuqoy 18 called the Dirichlet Kernel.
Also, if N € N, and we define a new function Ky : R — C by the formula

N-1 N-1 n

Ky(z) = Do($)+D1($);...+DN1(I‘) Z%ZDn(w) _ % Z Z ehT g e R;

the sequence of functions {Kn}nen is called the Féjer Kernel.
Remark 6.11. Let us make some observations regarding the kernels in Definition

(1) Clearly Dy is a trigonometric polynomial of degree N with Dy(0) = 2N + 1 for all N €
NU {0}. In addition, Dy(z) = Dy (—=) for all x € R. Also, the Fourier coefficients are

— 1 if [n|] <N
Dy(n) = -
~(m) {0 if |n| > N.

Let us now derive the following useful formula for Dy :

sin ((N + %)x)

sin(%) ’

Dy(z) = for all x € (0,27). (6.1.4)
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Indeed, calculating the geometric sum that defines Dy, we get that

Dugls) = i\f: e _ (i(N+1)z _ ,~iNz _ N+ D)z _ —i(N+1)e _ sin (N + %)x)
et elr _ 1 61:1:/2 _ 6711/2 sin(%)
Also, 5 2” Dy (t)dt = 1, because
21 N 27 ) 27
= Z / e~ dt = / dt = 2.
0 N 70 0

(2) For every integrable function f : [0,27] — C,

2
S(f)@) = 5-

Indeed, it suffices to observe that

Dn(z —t)f(t)dt, z€0,27], N € NU{0}.

2 N

or N )
i DN(x—t)f(t)dt:/O n:ZNem(“ Z} / e () dt = 2 Z

(3) Concerning the Féjer Kernel { Ky} nen, we have that each K is a trigonometric polynomial
of degree N — 1, with Kx(0) = N. And again, Ky (z) = Kn(—z) for all z € R. Also,

NEES o

n=0 k=—n
=N+ (N _ 1) (eix +e—iz) + (N _ 2) (621'30 +e—2i:r:) N (eiNx +e—iN:c)
N
= 3 (V= |n)e™,
n=—N

and consequently

Kn(z) = i ( —’;\‘]) ez eR.

n=—N

But since the Fourier coefficients of a trigonometric polynomial are precisely the coefficients
of that polynomial, we infer from the above that

— n\)+ 11— i <N -1
K =(1——) :=
v () < N 0 if |n| > N.

We can derive an expression similar to (6.1.4)) for K. Indeed, we have

sin(5)

To see this, we sum all the geometric series:

- 2
Kn(@) = — (Sm(N?)> . forall e (0,2m). (6.1.5)

N-1 i(nJrl)m _ e~ inx N-1 i(n+1)z

NKN Eze Z e _ 1 = e ] —
=0

lTL.’E
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from which (6.1.5) follows.

Finally, we mention that

1 2

1Nl1 o 1N—1
— Kny(t)dt = — — D,(t)dt = — 1=1.
I RSCLES D=y REICEES DY

S

6.1.4 Approximation by Trigonometric Polynomials

The Féjer Kernel { Ky }nen from Definition enables us to approximate continuous functions
by trigonometric polynomials. First we need to see the following essential property.

Lemma 6.12. For every § € (0,1), the sequence of functions { Kn}nen converges uniformly to 0 in
the set [—m,m| \ [0, ].

Proof. Recall the each Ky (z) = Ky(—x) for all z € R. Thus, the identity (6.1.5)) for points of the
interval [—m, 71| becomes

2
)> , forall ze (—m )\ {0}
But then, if 0 < 0 < 1, we can estimate this identity, for all § < |z| < 7 :

1 1 1 1
Kn@) € w57 < v o5
Nsin?(%) ~ Nsin?(3)
and the last term goes to 0 as N — oo. This proves the lemma. O
Theorem 6.13. Let f : R — C a 27w-periodic function, integrable in [0,2x], and so that f is
continuous at some x € [0,2x]. Then
2

lim L fO)Kn(x—t)dt = f(x).

And if f is continuous at all points x € [0, 2], then the convergence is uniform in [0, 2m].

Proof. Let ¢ > 0. By the continuity of f at x and Lemma we can find 6 € (0,1) and Ny € N
(depending on § and €) so that

|f(x —t) — f(x)] < e whenever |t|<J, and sup Kny(t) <e, whenever N > Nj.
s<t|<m

Using this estimates, we can write, for all N > Ny,

2T

2m
; FOEN(x —t)dt — f(z)

27 27
" soks—a- [ f<x>KN<t>dt]

-|[ w0 - sanEa a

27
/0 (Fla— 1) — f(2)Kn(t) dt

< [ W0 rwiE s [ -0 - @i

o<|t|l<m
™

<e KN(t)dt+5<27r]f(m)|+/ |f(a:—t)|dt> < <27r+27r|f(:z)\+/

—Tr —Tr —Tr

™ ™

\f(t)|dt> €.

The term between parentheses is a real number, and so we have proved the first part of the theorem.

Now, if f is continuous a every x € [0, 27|, then f is actually uniformly continuous on [0, 27].
Thus, in the proof above the parameter § € (0,1) can be taken independent of z, and the final
bound with |f(x)| can be replaced with max{|f(z)| : = € [0,27]}. The convergence is therefore
uniform in [0, 27]. O



150

If f is continuous in [0, 27], then, for every N € N,

1 2 1 27 N-1 ‘
Pyn(z) : = or fOKy(x—t)dt = o £(t) Z Ky (n)em=0 gt
n=—(N-1)
Nl 1 2m N-1
= T inx —int 14 _ NI inx
= Y Kn(ne or fe ™dt= 3" f(n)Ky(n)e™.
n=—(N-1) n=—(N—1)

Thus {Pn}nen is a sequence of trigonometric polynomials which, according to Theorem
approximates uniformly f in [0, 27].

Moreover, we can make the identity principle (Corollary valid for general continuous func-
tions.

Corollary 6.14. Let f,g: R — C be 2w-periodic and continuous functions with f(n) =g(n) for all
n € Z. Then f =g in R.

Proof. By Theorem and the subsequent comment, we know that

N—-1 N—-1
flw) = Jim_ __(ZN_I)f( WEN()e™ and g(r) = lim DI

for all z € R. But the two limits are the same because f(n) = g(n) for all n € Z, and we can
conclude that f =g in R. O

6.1.5 The Fourier Transform

In this section we consider integrable functions f : R — C and define the Fourier Transform fof
f. By saying that f is integrable in R, we mean that

+00 R
/ |f(x)|dz := lim |f(x)|dz < co.

—00 R—+00 R

Definition 6.15 (Fourier Tra/psform). For every integrable function f : R — C, Fourier Trans-
form of f is the function f: R — C given by

:/f(x)e_mgdx = lim f( Je % dz, £ eR.
R

R—+00 R

Note that if f is integrable, then, for every £ € R :

lim / f(z)e ™ dx

R—+o00

o] =

R—400

< lim y()ue—w&\dx— tim / 2)| < .

That is, for each £ € R, the function R > z + f(z)e ¢ is integrable in R, and so fA(f) eC.

Let us look at a fundamental example: the Fourier Transform of the Gaussian Functions, which
we calculate with the help of Cauchy Theorem; see Corollary

Theorem 6.16. For each a > 0, define h, : R — R by hy(x) = e‘“‘”2, x € R. The Fourier transform

of hq is
P 2
ha(£) i= \/Ze—ia, ¢ eR.

2
Therefore, if go(x) := \/ge*“mz, we have that §,(&) = e for all £ € R.
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Proof. For every a > 0, h, is integrable in R. Now, we fix £ € R and begin by writing

_ +oo ) +oo ) 2 2 [+oo .
ha(§) = / e~ e gy = / e_a(x“%fe_%a do=e i / e_a(x“%f dz. (6.1.6)

. 2
Now we look at the last integral, that is, for every R > 0, fFR e~(®+155)" dz. We define the path
Tpi=[-RR*[RR+E]«[R+ L R+ E]x[-R+ £, —R]

This is closed and piecewise C'-path, and the function f(z) = e%* 2 € C,is holomorphic in C.
For example, by the local Cauchy Theorem (Corollary , we get that

0= f(z)dz

Ir
R 1 ) . -R ) 1 ] .

:/ e da:+/ ema(R)" 18 dt+/ ea($+5§z)2dx+/ eal(-RiEa-n)” (L) 4,
-R 0 2a R 0 2a
R 1 . - R , 1 . :

z/ e~ dx+/ el i)’ dt—/ emol(wt35)° da:—/ e—a(R+iE-1)" € gy
-R 0 2a -R 0 2a

(6.1.7)

Now, we bound the second and the fourth integral, for which we observe first that if s € (0, 1),
and R > 0, then

. 2
o (4 )") e 88+ ) =

Thus, we estimate the second integral as follows (recall that |e*| = eRe() for all w € C):

1 . . 1
/ e—a(R-&-%t)Qg dt' < / e
0 2a 0

And notice that the last term goes to 0 as R — +oo (the numbers £ € R and a > 0 are constants
in this argument). Similarly the fourth integral of (6.1.7)) converges to 0, as R — oo. We may
therefore conclude from (6.1.7]) that

1 £2t2 52
dt = @ e’ 1a qt < ’2€|e4ae_aR2.

—o(re50" 6| gy
2a 2a J a

R i€ \2 R 2
lim e o(7+3) dz = lim e da,
R——+o0 R R—+o0 R
Inserting this into (6.1.6)) gives
- ¢? R ;€2 2 R
he(§) = e 4 lim e (oti5:) dy = e % lim e " dy
R— 400 R R—+o00 -R
¢2 +o0 1 €2 +00 T €2
:e_4a/ e dg = e_4a/ e dr = —e da;
oo Vva oo a
where the last integral is calculated with standard Calculus IT methods. O

Now we prove a version of Corollary for the Fourier Transform.

Proposition 6.17. Let f : R — C be integrable in R, and differentiable in R with lim |f(z)| =0

|z| =400

and ' : R — C integrable in R as well. Then

~ -~

f1(&) =igf(§), forall &eR.
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Proof. For every & € R and every R > 0, we apply integration by parts in the Riemann integral:

/—Ij{ f(x)e " dx = [e_mgf(f’?)}z RR +ig /_}; fx)e™ ™ da. (6.1.8)

And observe that

< lim (f(B)]+f(-R))) =0,

lim
R—+o00

=R
r=

(e £ ()]

-R

by the assumption. Thus, taking limits as R — 400 in (6.1.8)), we get that f’(f) = iff(g).
]

Corollary 6.18. Let f : R — C be of class C™(R), with each &) being integrable and satisfying
lim [f®) ()| =0 for all k=0,...,m. Then

|z| =400

— ~

fom(E) = (€)™ f(€),  forall € €R.
Proof. 1t follows from applying Proposition [6.17] m times. O

Corollary is useful to treat certain Differential Equations involving derivatives of second
order (or higher). For example, let us briefly look at the Heat Equation in the real line:

0%u ou
@(x,t) - E(x,t) =0, z€R, te(0,+00), and wu(z,0)=h(z), zecR.
one can denote fy(x) := wu(x,t), for each ¢ > 0, and consider the Fourier Transforms # of f.

Assuming that w is sufficiently good so as to satisfy

ot ot’
and so that each f; satisfy the assumptions of Corollary for m = 2, the Heat Equation becomes:
-~ 0F Y
(iz)?f — (‘TJ? =0, thatis, 2%f + 7]? =0,

and also fg) = g. This equation is now easier to solve, for example, we can multiply by the integrating
factor e'*” in both sides, obtaining,
0 [ 122
—le z,t) =0.
8t ( ft) ( Y )

This shows that then ﬁ(:c) = 1" (), for some differentiable function ¢ : R — R. Letting t = 0,
we get h = ¢, and so we have found out that

fi@) = e " h(z), (2,t) € R x [0,400).

A Fourier Inversion procedure would lead us to the solution for f; in terms of the Fourier Inverses
of h and e~®°. The first would be simply h, and the second one would be the application of
Theorem to gq, with a = 1/4t, leading us to the function

1 o2
e
Vart

We will elaborate more on this function and the Heat Equation in Subsection [6.2.4]

Finally, in the same spirit as in Corollary for the Fourier Series, we obtain the following for
the Fourier Transform.
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Corollary 6.19. Let f : R — C be integrable in R, and differentiable in R with lim |f(z)] =0

|z| =400

and f' : R — C integrable in R as well. Then

Jfim (F©I=0

Proof. As we observed right after Definition [6.15] one always have that

R o0
()] < / |f/(x)|dx :=C, forall &e€R.

—00

By Corollary and this inequality, one has

lim |f(¢)]= lm 7€)

f < lim — =
|a|»+oo’ |00 (€] €| —+o00 [€]

6.2 Differential Equations

6.2.1 The Dirichlet Problem in the Disk. The Poisson Kernel

Throughout this section we will follow the notation for the unit disk and circle.
D:= D(0,1), T =0D(0,1)

The Dirichlet Problem in the disk with boundary data a continuous function g : T — R consists
of finding a function u : D — R continuous in D and of class C?(D) so that

Au=0 on D,
(6.2.1)

u=4g on T.
Recall that the Laplacian D(x,y) 35— Au(x,y) is defined by
0%u 0%u
AU(IL‘,y) = @(xvy)—i_aiyg(xay)a (xvy) eD.
Observe that any fuction u satisfying (6.2.1]) must be harmonic in D, according to Definition m
If g : R — R is 2w-periodic and continuous, and the Fourier Series of g at 6
N

S gm)e™ = lim Sy(9)(@) = lim Y Gn)e™

N—+ N—+
neL o0 e n=—N

converges, then, a Theorem due to Abel (see Exercise |3.15) says that then

N

lim E gn)r™e™ .= lim  lim E G(n)rinlem? = g G(n)em?.
r—1- r—1— N—+o0
nez n=—N nez

In the same way each Sy(g) can written in terms of certain integral formula involving Dy and g
(see Remark |6.11{(2)), it is natural to also try to write

S Gyl e fo,1),

ne”

as integral formulas involving functions of the form 3=, ., r!"e™? r € [0,1), and g. Those functions
form the Poisson Kernel.
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Definition 6.20 (Poisson Kernel). For every r € [0,1) define the function P, : R — [0,4+00) by the
formula
Pr(0) = rl"le™? heR.
nez

The family of functions {P,},c[01) is called the Poisson Kernel.

Among other observations, in the following remark we confirm that the functions P,(6) take
only real nonnegative values.

Remark 6.21. For every r € [0,1) and 0 € R, we have

P.(0) := Z rilem? — 1 4 Z r" (eme + eiine) =1+2 Z r" cos(nf),
n=1

nel n=1

and in particular P.(6) € R. But on the other hand, for every z = re? € D, we have

1+ 2 0 00 00
1 :(1+Z)Zz”:1+2§:z":1—1—227""6”9,
—z
n=0 n=1 n=1

and looking at these two formulas, we deduce that

e 1 760 1 )
P(f) =1+ 2;7“" cos(nf) = Re <1+:29> = Re (1 i z> . z=re? €D. (6.2.2)

Looking at the term of the second equality we find that

1+re®  (14re?) (1 —re7®) 1—r24+7r (e —e®) 1124 2ising

1—rei®  (1—re®)(1—re®) 1412 —7r(e?+e®) 1—2rcosf+r2

But then this equality and (6.2.2)) give

0 .2 < o3 2
P.(6) = Re (Hre> ~ Re < Lot 2 Sme) Lo forall §eR. (6.2.3)

1 —reif 1—2rcos0+r2)  1—2rcosf+r2’
Since cosf > —1, we have that

P0) > 1—r2 _(17T)(1+T‘)_1+T>

= = 0.
—1-2r+12 (1—1r)? 1—7—

This confirms that P, takes values only on [0, +00).
We continue make observations on the Poisson kernel.
Proposition 6.22. The Poisson kernel {P:},cjo,1) has the following properties.
(i) Each function P, : R — R is 2mw-periodic with P,(0) = P.(—0) for all 6 € R.
(ii) o= [T Po(t)dt =1 for all T € [0,1).
(ii1) If 0 < &6 < |0| < =, then P.(0) < P,(0) for all r € [0,1).
(iv) For every 0 < 6 <, one has
lim sup P.(6)=0.
r—=17 s<|0|<r

Proof.
(i) This follows immediately from the expression (6.2.3) for P,.
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(ii) For every 0 <r < 1, the series ) rinlei? converges uniformly on 6 € R, and so

2m 2m 2m 2m
/ P.(t)dt = / Z rilet 4 = Z rinl / e dt = 7‘0/ dt = 2.
0 0 0 0

neZ neL

(iii) If 0 < 6 < |0] < 7, then formula (6.2.3]) gives

1—r? 1—r?
F(0) = = P.(6).
() 1—2rcos¢9+r2<1—2rcos(5+7~2 »(9)
(iv) For every 0 < 6 < m, and r € [0, 1), we can apply (iii) to obtain
I P(f) < lim P.(5) = li Lo 0
im su im = lim =0.
r—1= 5§\9|F;7r e r—>1- 1 —2rcosd + r?

We are now ready to solve the Dirichlet Problem (6.2.1)) in the disk.

Theorem 6.23 (Sﬁolution to Dirichlet’s Problem). Let g : T — R be a continuous function. Define
the function u : D — R in polar coordinates by the formula

- 1
0
Z)::Qﬂ

2m )
u(re / P.(60 —t)g(e)dt, forall re[0,1),0cR. (6.2.4)
0

and ‘ '
u(e®) == g(e), for all 0cR.

Then u is continuous in D and harmonic in D, with u = g in T, that is, u is a solution to problem
(6.2.1)).

Proof. We define the compl