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Chapter 1

Cauchy Global Theory

In this chapter, we expand the content of [5, Subsection 5.3.2] on the Cauchy Global Theory, where
we consider cycles instead of the closed paths. We also establish the corresponding improved
version of the Cauchy Residues Theorem. These theorems are formulated for arbitrary open
sets, but we however must consider a restriction on the cycle or path along which we integrate,
namely, that the cycle should be null-homologous. While the proofs are almost identical to those
from [5, Subsections 5.3.2, 5.3.3], it will be very convenient to review them in detail, so as to
refresh some of the elementary (but fundamental) theorems in complex analysis. We will see
that simply connectedness implies the validity of the Cauchy Global Integral Formula/Theorem,
without restriction on the pertinent paths. Further implications, such as the existence of primitives
or holomorphic logarithms will be studied a well. Another consequence of the Cauchy Homological
Theorem is a representation theorem for holomorphic functions in compact sets, via an integral
along a cycle consisting only of line segments. Then, we define the crucial class of symply connected
domains, as those whose closed paths are all null-homotopic.

1.1 The Cauchy Local Theorems

We remind the Cauchy Local Theorems and Formulae, and also global theorems for convex do-
mains. A fully detailed proof can be found in [5, Sections 4.2–4.3]. We begin with the Cauchy
local formulae for the the function and its derivatives.

Theorem 1.1 (Local Cauchy Integral Formulae). Let Ω ⊂ C be open and f : Ω → C holomorphic.
Then, for all n ∈ N, the nth derivative f (n) : Ω → C exists and is holomorphic in Ω. Moreover, for
every open disk D with D ⊂ Ω, the following formula holds:

f (n)(z) =
n!

2πi

∫
∂D

f(w)

(w − z)n+1
dw for all z ∈ D, n ∈ N ∪ {0}. (1.1.1)

Proof. See [5, Corollary 4.32].

In a disk, it is enough to have continuity up to the boundary.

Corollary 1.2 (Cauchy Integral Formula in a disk). Let f : D(z0, r) → C be continuous in D(z0, r)
and holomorphic in D(z0, r). Then,

f(z) =
1

2πi

∫
∂D(z0,r)

f(w)

w − z
dw, for all z ∈ D(z0, r); (1.1.2)

where the integral is along the circle ∂D(z0, r) traveled counterclockwise once.

Proof. See [5, Corollary 4.29].
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Theorem 1.3 (Cauchy Formulae in Convex Domains). Let Ω ⊂ C be open and convex, γ : [a, b] → Ω
a closed piecewise C1-path, and f : Ω → C holomorphic. Then, the following formulae holds:

W (γ, z)f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw for all z ∈ Ω \ γ∗, n ∈ N ∪ {0}. (1.1.3)

Proof. See [5, Corollary 4.33].

It is then immediate to obtain the following Cauchy Global Theorem for convex domains.

Corollary 1.4 (Cauchy Theorem in a Convex Domain). Let Ω ⊂ C be open and convex. Then, for
every closed piecewise C1-path γ : [a, b] → Ω, one has∫

γ
f = 0.

Proof. It suffices to fix z0 ∈ Ω, define g(w) = f(w)(w − z0), and apply formula (1.1.3) with the
function g, the point z = z0, and n = 0.

1.2 The Cauchy Homological Theorem

We are instered in formulating a theorem like Theorem 1.3 for arbitrary open sets Ω, and for unions
of closed paths instead of single paths. These are precisely the cycles.

1.2.1 Cycles and Homology Classes

Definition 1.5 (Cycle). A cycle Γ is a finite sequence of closed piecewise C1-paths in C, that
is,

Γ := γ1 + · · ·+ γn := {γj}nj=1,

where γj : [aj , bj ] → C is a piecewise C1-path, for each j ∈ {1, . . . , n}, and n ∈ N. Also, the trace
of the cycle Γ is the union

Γ∗ :=
n⋃

j=1

γ∗j ,

of the traces γ∗j .
In addition, if A ⊂ C is a set, and the trace γ∗j of γj is contained in A for all j ∈ {1, . . . , n},

then we say that Γ above is a cycle in A.

It is important to notice that the paths γj forming the cycle must be closed paths. Also, observe
that the set Γ∗ is compact, as the union of finitely many compact subsets of C. We now define the
winding numbers and the integration associated with cycles, as the sum of those over each of the
paths.

Definition 1.6 (Integration with respect to Cycles). Let Γ = {γ1, . . . , γn} be a cycle and let f :
Γ∗ → C be a continuous function in Γ∗. The integral of f along Γ is defined by∫

Γ
f(z) dz :=

n∑
j=1

∫
γj

f(z) dz. (1.2.1)

And if z /∈ Γ∗, the winding number of Γ at z is defined by

W (Γ, z) :=
1

2πi

∫
Γ

dw

w − z
=

1

2πi

n∑
j=1

∫
γj

dw

w − z
=

n∑
j=1

W (γj , z). (1.2.2)

The second identity is by (1.2.1), and the third one by the definition of winding numbers for closed
paths.
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Consequently, the winding numbers of cycles satisfy the following properties.

Remark 1.7. Let Γ = {γ1, . . . , γn} be a cycle. Recall that, for each closed and piecewise C1-path
γ, the winding number

C \ γ∗ ∋ z 7→W (γ, z) ∈ Z,

is a well-defined continuous function, taking only integer values; see [5, Proposition 4.26]. Moreover,
W (γ, z) = 0 for each z lying in the unbounded connected component of γ. The function W (Γ, ·),
being the sum (see (1.2.2)) of integer-valued and continuous functions, satisfy the following:

• W (Γ, z) ∈ Z for all z ∈ C \ Γ∗.

• The function C \ Γ∗ ∋ z 7→W (Γ, z) is continuous in the open set C \ Γ∗.

• Consequently, the value W (Γ, ·) is constant on each connected component of C \ Γ∗.

• If Cj denotes the unbounded connected component of C \ γ∗j , for all j ∈ {1, . . . , n}, then
W (Γ, z) = 0 for all z ∈

⋂∞
j=1Cj . In particular, we can find r > 0 so that Γ∗ ⊂ D(0, r) and

also W (Γ, z) = 0 for all z ∈ C with |z| ≥ r.

The third bullet point follows from the fact that if A ⊂ C is a connected set, and h : A → C is
continuous, then h(A) must be connected as well. But the only nonempty connected subsets of C
that are contained in Z are precisely the singletons. The fourth point is obvious from (1.2.2).

Concerning integration along cycles, the linearity and differentiation under the integral sign
theorems work as in the integration over paths.

Remark 1.8. Let Γ = {γ1, . . . , γn} be a cycle. If f, g : γ∗ → C are continuous on γ∗, and λ ∈ C,
one has ∫

Γ
(f + λg) =

∫
Γ
f + λ

∫
Γ
g.

This follows from the linearity of the complex path-integral, and the definition (1.2.1). Recall that
for each closed and piecewise C1-path γ : [a, b] → C, and h : γ∗ → C continuous, the path-integral
of h along γ is ∫

γ
h(z) dz =

∫ b

a
h(γ(t)) · γ′(t) dt.

On the other hand, recall the differentiation under the integral sign theorem [5, Theorem 4.18] for
the path-integral

Theorem 1.9 (Differentiation Under the Integral Sign). Let Ω ⊂ C be open, γ a piecewise C1-path
(not necessarily closed), and φ : γ∗ ×Ω → C a continuous function such that for every w ∈ γ∗ the
function Ω ∋ z 7→ φ(w, z) is holomorphic in Ω, and γ∗ × Ω ∋ (w, z) 7→ ∂φ

∂z (w, z) is continuous in
γ∗ × Ω. Then, the function F : Ω → C given by

F (z) =

∫
γ
φ(w, z) dw, z ∈ Ω,

is holomorphic in Ω and

F ′(z) =

∫
γ

∂φ

∂z
(w, z) dw, z ∈ Ω.

The same results holds if we replace a piecewise C1-path γ with a cycle Γ, due to formula
(1.2.1).

We define a fundamental equivalent relationships between cycles.



8

Definition 1.10 (Homologically Equivalent Cycles). Let Ω ⊂ C be open and Γ1,Γ2 be two cycles in
Ω. We say that Γ1 and Γ2 are homologous in Ω, and express it by Γ1 ≃ Γ2 in Ω, if

W (Γ1, z) =W (Γ2, z), for all z ∈ C \ Ω.

We will say that a cycle Γ in Ω is null-homologous in Ω, and express it by Γ ≃ 0 in Ω, if

W (Γ, z) = 0, for all z ∈ C \ Ω.

Let us see an easy example.

Example 1.11. Denote by D the open unit disk. Then, for each r ∈ (0, 1), the paths γr(t) = reit,
t ∈ [0, 2π] are all null-homologous in D, that is γr ≃ 0 in D.

However, if Ω := D \ {0}, then γr is not null-homologous to 0 in Ω for every r ∈ (0, 1). The
reason is that 0 ∈ C \ Ω, but W (γr, 0) = 1 ̸= 0, for all r ∈ (0, 1). Nevertheless, for this Ω, one has
that γr and γs are homologous in Ω, that is, γr ≃ γs in Ω, for each r, s ∈ (0, 1).

Observe that the relation Γ1 ≃ Γ2 is a reformulation of Γ ≃ 0.

Remark 1.12. Let Ω ⊂ C be open and Γ1,Γ2 be two cycles in Ω. If Γ2 is the sequence of paths
{γ1, . . . , γn}, we can consider the cycle Γ−

2 = {γ−1 , . . . , γ−n } consisting of the reverse paths of Γ2.
Defining a new cycle in Ω by Γ := Γ1 ∪ Γ−

2 , the sequence of the paths that form Γ1 and Γ−
2 , we

have, using (1.2.2), that

W (Γ, z) =W (Γ1, z) +W (Γ−
2 , z) =W (Γ1, z)−W (Γ2, z), for all z ∈ C \ Ω.

We have also used that W (γ, z) = −W (γ−, z) for every closed piecewise C1-path γ and z ∈ C \γ∗.
The above shows that then

Γ1 ≃ Γ2 in Ω ⇐⇒ Γ := {Γ1,Γ
−
2 } ≃ 0 in Ω.

Also notice that if Γ1,Γ2, and Γ are as above, then Γ∗ = Γ∗
1 ∪ Γ∗

2, and by (1.2.1) we deduce that∫
Γ
f(w) dw =

∫
Γ1

f(w) dw −
∫
Γ2

f(w) dw,

for every continuous function f : Γ∗ → C.

1.2.2 The Cauchy Global Formulae and Theorem

We now prove the Cauchy Integral Formula in a general open set, with the proof of John. D.
Dixon [4]. A similar formula holds for the derivatives.

Theorem 1.13 (Cauchy Global Integral Formulae). Let Ω ⊂ C be open, and f : Ω → C be holomor-
phic. If Γ ≃ 0 in Ω, then

W (Γ, z)f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw, for all z ∈ Ω \ Γ∗, and (1.2.3)

W (Γ, z)f (n)(z) =
n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw, for all z ∈ Ω \ Γ∗, n ∈ N. (1.2.4)

Proof. Let us begin with (1.2.3). Define U := {z ∈ C \ Γ∗ : W (Γ, z) = 0}. By Remark 1.7, the
function C \ Γ∗ ∋ z 7→ NΓ(z) :=W (Γ, z) is continuous and only takes integer values. Thus

U = N−1
Γ ({0}) = N−1

Γ ((−1/2, 1/2))
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is the preimage of an open interval by a continuous function in the open set C \ Γ∗, and thus U is
open. We define the two-variable function φ : Ω× Ω → C by the formula

φ(w, z) =


f(z)− f(w)

z − w
if z ̸= w

f ′(w) if z = w.

(1.2.5)

We will later consider an integration of φ over Γ, and we need to verify the assumptions of Theorem
1.9. Let us first show that φ is continuous in Ω × Ω. Indeed, let (w, z) ∈ Ω × Ω and a sequence
{(wn, zn)}n ⊂ Ω×Ω converging to (w, z). In the case where w ̸= z, then for some n0 ∈ N we have
wn ̸= zn for all n ≥ n0, and it is clear from the continuity of f that

lim
n→∞

φ(wn, zn) = lim
n→∞

f(zn)− f(wn)

zn − wn
=
f(z)− f(w)

z − w
= φ(w, z).

And in the case where z = w, then we can find δ > 0 and n0 ∈ N so that D(w, 2δ) ⊂ Ω and
zn, wn ∈ D(w, δ) for all n ≥ n0. For those n ≥ n0 such that wn = zn, one has, by the continuity of
f ′ (because f is holomorphic)

φ(wn, zn) = f ′(wn) −→ f ′(w) = φ(w,w), as n→ ∞.

And if wn ̸= zn, we apply the Fundamental Theorem of Calculus for the path-integral (see [5,
Corollary 4.16]) on the line segment [wn, zn], and we get that

|φ(wn, zn)− φ(w,w)| =
∣∣∣∣f(zn)− f(wn)

zn − wn
− f ′(w)

∣∣∣∣ = ∣∣∣∣f(zn)− f(wn)− f ′(w)(zn − wn)

zn − wn

∣∣∣∣
=

∣∣∣∣∣ 1

zn − wn

∫
[wn,zn]

(
f ′(ξ)− f ′(w)

)
dξ

∣∣∣∣∣ ≤ sup
ξ∈[wn,zn]

|f ′(ξ)− f ′(w)|.

Since f is holomorphic in Ω, we know that f ′ is continuous, and so the last term tends to 0 as n
goes to infinity. This shows the continuity of φ in Ω×Ω. We next claim that, for each w ∈ Ω, the
function Ω ∋ z 7→ φ(w, z) is holomorphic in Ω with

∂φ

∂z
(w, z) =


f(w)− f(z)− f ′(z)(w − z)

(w − z)2
if z ̸= w

1
2f

′′(w) if z = w.
for all (w, z) ∈ Ω× Ω. (1.2.6)

Indeed, if we fix w ∈ Ω, for those z ∈ Ω with z ̸= w, a simple computation from the definition of
φ (1.2.5) shows the formula for ∂φ

∂z (w, z) in the first line of (1.2.6). And when z = w, looking at
the definition of φ in (1.2.5) we have

∂φ

∂z
(w,w) = lim

ξ→w

f(ξ)−f(w)
ξ−w − f ′(w)

ξ − w
= lim

ξ→w

f(ξ)− f(w)− f ′(w)(ξ − w)

(ξ − w)2
=

1

2
f ′′(w);

where the last equality can be justified, for example, using that f is of class C∞ (as a holomorphic
function), and so Taylor’s theorem applies for any order of smoothness in a disk around w. This
shows (1.2.6). Repeating the arguments we used for the continuity of φ, we now show the continuity
of ∂φ

∂z in Ω × Ω. Indeed, let (w, z) ∈ Ω × Ω and a sequence {(wn, zn)}n ⊂ Ω × Ω converging to
(w, z). In the case where w ̸= z, then for some n0 ∈ N we have wn ̸= zn for all n ≥ n0, and it is
clear from the continuity of f and f ′ that

lim
n→∞

∂φ

∂z
(wn, zn) = lim

n→∞

f(wn)− f(zn)− f ′(zn)(wn − zn)

(wn − zn)2

=
f(w)− f(z)− f ′(z)(w − z)

(w − z)2
=
∂φ

∂z
(w, z).
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In the case where z = w, then we can find δ > 0 and n0 ∈ N so that D(w, 4δ) ⊂ Ω and zn, wn ∈
D(w, δ) for all n ≥ n0. For those n ≥ n0 such that wn = zn, one has, by the continuity of f ′′

(because f is holomorphic)

∂φ

∂z
(wn, zn) = f ′′(wn) −→ f ′′(w) =

∂φ

∂z
(w,w), as n→ ∞.

And if wn ̸= zn, note that wn ∈ D(zn, 2δ) ⊂ D(w, 3δ) and we can use the analyticity of f as
follows:∣∣∣∣f(wn)− f(zn)− f ′(zn)(wn − zn)

(wn − zn)2
− 1

2
f ′′(zn)

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=3

f (k)(zn)

k!
(wn − zn)

k−2

∣∣∣∣∣
≤ |wn − zn|

∞∑
k=3

|f (k)(zn)|
k!

|wn − zn|k−3 ≤ |wn − zn|
∞∑
k=3

sup{|f(ξ)| : ξ ∈ D(w, 3δ)}
(3δ)k

|wn − zn|k

≤ |wn − zn| sup{|f(ξ)| : ξ ∈ D(w, 3δ)}
∞∑
k=3

1

(3δ)k
(2δ)k−3

= |wn − zn| sup{|f(ξ)| : ξ ∈ D(w, 3δ)}(2δ)−3
∞∑
k=3

(2/3)k;

and the last term converges to 0 as n→ ∞. This and the continuity of f ′′ imply∣∣∣∣∂φ∂z (w, z)− ∂φ

∂z
(w,w)

∣∣∣∣ ≤ ∣∣∣∣f(wn)− f(zn)− f ′(zn)(wn − zn)

(wn − zn)2
− 1

2f
′′(zn)

∣∣∣∣+ ∣∣12f ′′(zn)− 1
2f

′′(w)
∣∣

converges to 0, as n→ ∞.
To summarize, since Γ is a cycle in Ω, we have shown that φ satisfies the assumptions of

Theorem 1.9 for the cycle Γ, and so the function Ω ∋ z 7→
∫
Γ φ(w, z) dw is holomorphic. We

introduce a new function h : C → C via the formula

h(z) =


∫
Γ φ(w, z) dw if z ∈ Ω∫
Γ

f(w)
w−z dw if z ∈ U.

(1.2.7)

First of all, we need to verify that h is well defined. Let z ∈ Ω∩U. Then, z /∈ Γ∗ and W (Γ, z) = 0,
by the definition of U. In particular w ̸= z for all w ∈ Γ∗. Thus, looking at the definition of φ(w, z)
in (1.2.5), we see that∫

Γ
φ(w, z) dw =

∫
Γ

f(w)− f(z)

w − z
dw = −2πif(z)W (Γ, z) +

∫
Γ

f(w)

w − z
dw =

∫
Γ

f(w)

w − z
dw.

Thus the two branches of definition of h agree, and h is well-defined. Also, notice that h is defined
in all of C, by the assumption C \ Ω ⊂ U. As we conclude right before (1.2.7), the first branch of
definition of h is a holomorphic function. Also, since f is holomorphic in Ω, by Theorem 1.9, we
get that also h is holomorphic in U. Therefore, we have that h is holomorphic in C. Let us now
show that lim

|z|→∞
|h(z)| = 0. Indeed, by Remark 1.7, there exists r > 0 so that Γ∗ ⊂ D(0, r) and

W (Γ, z) = 0 for all |z| ≥ r. Thus, assuming |z| ≥ 2r and writing Γ = {γ1, . . . , γN}, we can estimate

|h(z)| =
∣∣∣∣∫

γ

f(w)

w − z
dw

∣∣∣∣ ≤ N∑
j=1

∫
γj

|f(w)|
|z − w|

|dw| ≤ sup{|f(w)| : w ∈ Γ∗}
|w| − r

N∑
j=1

length(γj).

Since the supremum is finite, letting |w| → ∞ gives lim
|w|→∞

|h(w)| = 0. By the continuity of h, this

implies that h is bounded in C. Hence, Liouville’s Theorem tells us that h is constant, and actually
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constantly equal to 0, due to lim
|w|→∞

|h(w)| = 0. Therefore, for any z ∈ Ω \ Γ∗, we have that

0 = h(z) =

∫
Γ
φ(w, z) dw =

∫
Γ

f(z)− f(w)

z − w
dw

= f(z)

∫
Γ

dw

z − w
+

∫
Γ

f(w)

w − z
dw = −2πif(z)W (Γ, z) +

∫
Γ

f(w)

w − z
dw;

which yields formula (1.2.3).
Now we prove (1.2.4). Writing Γ = {γ1, . . . , γN}, where each γj is a closed and piece-

wise C1-path, integrating by parts immediately implies, for g, h : Ω → C holomorphic, that∫
γj
h(w)g′(w) dw = −

∫
γj
g(w)h′(w) dw and therefore∫

Γ
h(w)g′(w) dw = −

∫
Γ
g(w)h′(w) dw.

If z ∈ Ω \ Γ∗, applying (1.2.3) for f (n) and then repeatedly the above formula, we get

W (Γ, z)f (n)(z) =
1

2πi

∫
Γ

f (n)(w)

w − z
dw =

1

2πi

∫
Γ

f (n−1)(w)

(w − z)2
dw =

2

2πi

∫
Γ

f (n−2)(w)

(w − z)3
dw

= · · · = (n− 1)!

2πi

∫
Γ

f ′(w)

(w − z)n
dw =

n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw.

As a consequence of Theorem 1.13 is the Cauchy Homological Theorem.

Corollary 1.14 (Cauchy Homological Theorem). Let Ω ⊂ C be open and Γ1,Γ2 two cycles in Ω.
Then, the following statements are equivalent

(i) Γ1 ≃ Γ2 in Ω.

(ii) For every f : Ω → C holomorphic in Ω, one has∫
Γ1

f(w) dw =

∫
Γ2

f(w) dw.

Also, if Γ is a cycle in Ω, then

Γ ≃ 0 in Ω ⇐⇒
∫
Γ
f(w) dw = 0 for every holomorphic function f : Ω → C.

Proof. By Remark 1.12, it suffices to show the part concerning null-homology. Assume first that
Γ ≃ 0 in Ω. If f : Ω → C is holomorphic, we fix a point z0 ∈ Ω \Γ∗, and define g(z) = f(z)(z− z0)
for all z ∈ Ω. Clearly g ∈ H(Ω) and we can apply Theorem 1.13 to g at the point z0 to obtain

0 =W (Γ, z0)g(z0) =
1

2πi

∫
Γ

g(w)

w − z0
dw =

∫
Γ

f(w)(w − z0)

w − z0
dw =

∫
Γ
f(w) dw.

Conversely, assume
∫
Γ f(w) dw = 0 for every holomorphic function f : Ω → C. Then, for each

z ∈ C \Ω, define the function f(w) = 1
w−z for all w ∈ Ω. Clearly f ∈ H(Ω), so, by the assumption

0 =

∫
Γ

dw

w − z
= 2πiW (Γ, z),

implying that W (Γ, z) = 0. Since z ∈ C \ Ω is arbitrary, this shows that Γ ≃ 0 in Ω.
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As we will see in Theorem 1.19, the validity of the Cauchy Homological Theorem is closely
related to the existence of primitives in the pertinent domain. On the other hand, the following
elementary example illustrates the equivalence in Corollary 1.14.

Example 1.15. Consider the open set Ω := C \ {0}, and the path γ(t) = eit, t ∈ [0, 2π], which
is the unit circle traveled once and in the positive direction. Then γ is a closed path which is
null-homologous in Ω, that is, γ ≃ 0 in Ω. And the function f(z) = 1/z is holomorphic in Ω, with∫

γ
f(w) dw =

∫ 2π

0

ieit

eit
dt = 2πi ̸= 0.

However, if we consider g(z) = 1/z2, z ∈ Ω, we see that g has a primitive in Ω (for example
Ω ∋ z 7→ −1/z), and the Fundamental Theorem of Calculus for the Complex Path-Integral implies
that

∫
Γ g = 0 for any cycle Γ in Ω.

1.2.3 Holomorphic Primitives, Logarithms, and Roots

We now derive some relevant consequences of the Cauchy Homological Theorem; Corollary 1.14.
In order to construct certain primitives, we will use polygonal lines within a domain.

Definition 1.16 (Polygonally Connected Sets). If A ⊂ C is a set, a polygonal line in A is a
piecewise C1-path γ that is also piecewise affine. Therefore the trace γ∗ of γ is a finite union of
oriented line segments L1, . . . , LN such that the end point of Lj coincides with the initial point of
Lj+1 for each j = 1, . . . , N − 1.

We say that a set A ⊂ C is polygonally connected if for every two points z, w ∈ A we can
find a polygonal line γ : [0, 1] → A in A so that γ(0) = z and γ(1) = w.

In the next proposition, we show that the notions of connectedness and polygonal connectedness
are the same in the case of open sets.

Proposition 1.17. Let Ω ⊂ C be an open connected set. Then Ω is polygonally connected.

Proof. Fix a point z0 ∈ Ω and define

A = {z ∈ Ω : there exists a polygonal line ℓ : [0, 1] → Ω with φ(0) = z0, φ(1) = z}.

Obviously z0 ∈ A, and so A ̸= ∅.
Let us check that A is open. If z ∈ A, we can find δ > 0 with D(z, δ) ⊂ Ω, as Ω is open.

Also, there exists a polygonal line ℓz0,z : [0, 1] → Ω joining z0 to z. And given w ∈ D(z, δ), the line
segment [z, w] is contained in D(z, δ), and so in Ω. Thus, composing ℓz0,z and [z, w], we obtain a
new polygonal line γz0,w : [0, 1] → Ω with γz0,w(0) = z0 and γz0,w(1) = w. This shows that w ∈ A,
and since w ∈ D(z, δ) is arbitrary, that D(z, δ) ⊂ A.

Let us now check that A is also closed relative to A. Let {zn}n ⊂ A be a sequence convergent
to z ∈ Ω. Again there is δ > 0 with D(z, δ) ⊂ Ω, and by the convergence, we can find n so
that zn ∈ D(z, δ). In particular the line segment [zn, z] is contained in Ω. Since zn ∈ A, there is
a polygonal line ℓz0,zn : [0, 1] → Ω joining z0 and zn. Composing ℓz0,zn with [zn, z], we obtain a
polygonal line γz0,z : [0, 1] → Ω with γz0,z(0) = z0 and γz0,z(1) = z. Therefore z ∈ A.

We have shown that A is a nonempty subset of Ω, with A both open and closed relative to Ω.
Since Ω is connected, this implies that A = Ω, as desired.

Abstract logarithms and square roots of functions are defined as inverses of the exponential
and square functions, respectively.
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Definition 1.18 (Holomorphic Logarithms and Square Roots). Let f : Ω → C be a holomorphic
function with f(z) ̸= 0 for all z ∈ C.

We say that g : Ω → C is a holomorphic logarithm of f if

g ∈ H(Ω) and eg(z) = f(z) for all z ∈ Ω.

Also, if n ∈ N, a function h : Ω → C is a holomorphic nth root of f if

h ∈ H(Ω) and (g(z))n = f(z) for all z ∈ Ω.

In the case n = 2, such function h is called a holomorphic square root of f.

The following theorem is one of the most important results of the chapter. It provides different
types of characterizations for the Cauchy Homological Theorem.

Theorem 1.19. For an open set Ω ⊂ C, the following statements are equivalent.

(i) Γ ≃ 0 in Ω for all cycles Γ in Ω.

(ii)
∫
Γ f(w) dw = 0 for all functions f ∈ H(Ω), and cycles Γ in Ω.

(iii) Every f ∈ H(Ω) has a primitive in Ω.

(iv) Every f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, has a holomorphic logarithm in Ω.

(v) Every f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, has a holomorphic nth root in Ω, for all n ∈ N.

(vi) Every f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, has a holomorphic square root in Ω.

Proof. The equivalence (i) ⇐⇒ (ii) was proven in Corollary 1.14. Let us prove the other
implications.

(ii) =⇒ (iii): Let f : Ω → C be holomorphic. We can write Ω as a disjoint union of its connected
components Ωj . Since Ω is open, each Ωj is open, and so it suffices to find a primitive Fj of f on
each Ωj , and then just define F = fj on Ωj , for all j, giving a primitive of f in all of Ω. Moreover,
since (ii) holds for Ω, then it also holds for each of Ωj . Therefore, we may and do assume that
Ω is connected. Then Proposition 1.17 implies that Ω is polygonally connected. If we fix a point
z0 ∈ Ω and, for each z ∈ Ω we can define

F (z) =

∫
γz0,z

f(w) dw;

where γz0,z is a polygonal line in Ω joining z0 and z. Let z ∈ Ω and let us show that F is complex-
differentiable at z with F ′(z) = f(z). Given ε > 0, the continuity of f at z gives a δ > 0 so that
D(z, δ) ⊂ Ω and

|ξ − z| < δ =⇒ |f(ξ)− f(z)| ≤ ε.

If w ∈ D(z, δ), and γz0,w is a polygonal line in Ω joining z0 and w, then we can form a closed piece-
wise C1-path Γ as the union of γz0,w, the line segment [w, z] (contained in D(z, δ) by convexity),
and the reverse path γ−z0,z. By our assumption,

0 =

∫
Γ
f(ξ) dξ =

∫
γz0,w

f(ξ) dξ +

∫
[w,z]

f(ξ) dξ −
∫
γz0,z

f(ξ) dξ = F (w)− F (z)−
∫
[z,w]

f(ξ) dξ.

This equality permits to write∣∣∣∣F (w)− F (z)

w − z
− f(z)

∣∣∣∣ =
∣∣∣∣∣
∫
[z,w] f(ξ) dξ − (w − z)f(z)

w − z

∣∣∣∣∣ =
∣∣∣∣∣
∫
[z,w] f(ξ) dξ −

∫
[z,w] f(z) dξ

w − z

∣∣∣∣∣
≤ 1

|w − z|

∣∣∣∣∣
∫
[z,w]

(f(ξ)− f(z)) dξ

∣∣∣∣∣ ≤ sup
ξ∈[z,w]

|f(ξ)− f(z)| ≤ ε.
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(iii) =⇒ (iv): As we did in the proof of (ii) =⇒ (iii), we may assume that Ω is connected, as,
otherwise, we can construct holomorphic logarithms gj of f on each connected component of Ωj ,
and then define g = gj on each Ωj , thus obtaining that g is a holomorphic logarithm of f in Ω.

If f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, the function f ′/f is holomorphic in Ω, and by (iii)
there exists H ∈ H(Ω) with H ′ = f ′/f in Ω. But the function fe−H is also holomorphic in Ω, and
its derivative is

(fe−H)′ = f ′e−H − fe−HH ′ = f ′e−H − e−Hf ′ = 0.

Thus, since Ω is assumed to be connected, there exists a constant w0 ∈ C\{0} with f(z) = w0e
H(z)

for all z ∈ Ω. Writing w0 = elog |w0|+iArg(w0), we get that

f(z) = elog |w0|+iArg(w0)+H(z), z ∈ Ω.

Thus the function g(z) := log |w0|+ iArg(w0) +H(z) is a logarithm of f in Ω.

(iv) =⇒ (v): If n ∈ N, and f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, by (iv) we can find g ∈ H(Ω)
with f = eg in Ω. Define

h(z) := e
g(z)
n , z ∈ Ω.

We have that (h(z))n = eg(z) = f(z) for all z ∈ Ω, thus f has a holomorphic nth root in Ω.

(v) =⇒ (vi): This implication is obvious.

(vi) =⇒ (ii): Let Γ be a cycle in Ω and let z ∈ C \Ω. The function f(w) = w− z, w ∈ Ω is never
zero at Ω, and so (v) tells us that there is g1 ∈ H(Ω) with g21 = f in Ω. But g1 is also never zero
at Ω, and again by (v) we can find g2 ∈ H(Ω) with g22 = g1, whence g

4
2 = f, in Ω. Iterating, we get

a sequence of holomorphic functions {gn}n in Ω that never vanish in Ω and g2
n

n = f in Ω for every
n ∈ N. Differentiating the identity g2

n

n = f, we get that

1

w − z
=
f ′(w)

f(w)
= 2n · g

′
n(w)

gn(w)
, w ∈ Ω.

Using Exercise 1.4, we get that, for each n ≥ 2, the number

2−n

2πi

∫
Γ

dw

w − z
=

1

2πi

∫
Γ

g′n(w)

gn(w)

is an integer, which we call mn ∈ Z. Thus for all n ∈ N, we have that,

W (Γ, z) =
1

2πi

∫
Γ

dw

w − z
= 2nmn

and since mn ∈ Z, we have that necessarily mn = 0 for some n large enough. Thus W (Γ, z) = 0,
which implies that Γ ≃ 0 in Ω because z ∈ C \ Ω was arbitrary.

We record also the following useful criteria for the existence of primitives of concrete functions,
in arbitrary open sets.

Proposition 1.20. Let Ω ⊂ C be open, and f : Ω → C holomorphic. The following statements are
equivalent.

(i) There exists F ∈ H(Ω) with F ′ = f in Ω.

(ii) For every closed piecewise C1-path γ in Ω, one has
∫
γ f = 0.

Proof. The implication (i) =⇒ (ii) is a consequence of the Fundamental Theorem of Calculus for
the Complex Path-Integral: if γ : [a, b] → Ω is closed and piecewise C1, then∫

γ
f(w) dw =

∫
γ
F ′(w) dw = F (γ(b))− F (γ(a)) = 0.

The proof of the implication (ii) =⇒ (i) can be copied verbatim from the proof of Theorem
1.19(ii) =⇒ (iii).
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1.2.4 Integral Representation in Compact Sets

Closely related to Theorem 1.13 is an integral representation formula for holomorphic maps in
compact sets, as an integral over finitely-many segments. This will be essential in the approximation
theorems of Chapter 6. We examine first some easy examples.

Example 1.21. Given Ω ⊂ C open and K ⊂ Ω compact, we try to write f in K, with f holomorphic
in Ω, as a finite sum of integrals over oriented line segments contained in Ω \K.

(1) Let Ω = C and K ⊂ C a compact set. Let Q be a square with K ⊂ int(Q) and give ∂Q
the positive orientation. Then ∂Q can be seen as a cycle Γ := {L1, L2, L3, L4}, with 4 line
segments. Note that Γ∗ ⊂ Ω \K. For any f : Ω → C, we may apply Theorem 1.13 (or just
the version for convex domains; Theorem 1.3) for this Γ to obtain

f(z) = f(z)W (Γ, z) =
1

2πi

∫
Γ

f(w)

w − z
dw =

1

2πi

4∑
j=1

∫
Lj

f(w)

w − z
dw, for all z ∈ K.

(2) Let Ω = C \D(0, 1) and K = S(0, 3), the circle centered at the origin with radius 3. Let Q1

be a closed square centered at 0 and surrounding K, and give to ∂Q1 the positive orientation.
Let Q2 be a closed square centered at 0, and so that Q2 is contained in the open disk D(0, 3);
and give ∂Q2 the negative orientation. Construct the cycle Γ := {∂Q1, ∂Q2}, with the
mentioned orientations, and observe that Γ∗ ⊂ Ω \K and Γ ≃ 0 in Ω. Denote by {Lj}8j=1,
the 8 oriented line segments that are the edges of ∂Q1 and ∂Q2. Applying Theorem 1.13, for
any f ∈ H(Ω), we have

f(z) = f(z)W (Γ, z) =
1

2πi

∫
Γ

f(w)

w − z
dw =

1

2πi

8∑
j=1

∫
Lj

f(w)

w − z
dw, for all z ∈ K.

Example 1.21 shows that the integral representation depends very much on the shape of Ω and
K. The following construction works for all cases.

Theorem 1.22 (Integral Representation in Compact Sets). Let Ω ⊂ C be open, and K ⊂ Ω a
nonempty compact set. There are oriented line segments L1, . . . , Lm ⊂ Ω \K such that for every
f : Ω → C holomorphic, we have

f(z) =
1

2πi

m∑
j=1

∫
Lj

f(w)

w − z
dw, for all z ∈ K. (1.2.8)

Proof. If Ω = C, we know how to prove the theorem by virtue of Example 1.21(1). Since K
is nonempty, we have that δ = 1

2 dist(K,C \ Ω) > 0. Decompose C in a mesh of squares, with
mutually disjoint interiors, and all of them with side length equal to δ. Since K is bounded, only
finitely many of those squares intersect K, so let F := {Q1, . . . , Qn} those squares in the grid that
intersect K. First we claim that each Qj is contained in Ω. Indeed, otherwise there exist z ∈ Qj \Ω
and w ∈ K ∩Qj , and therefore

2δ = dist(K,C \ Ω) ≤ |w − z| ≤ diam(Qj) =
√
2 δ,

a contradiction. This shows that Q1, . . . , Qn ⊂ Ω. We now give to each closed path ∂Qj the
positive orientation, and consider the collection of all the resulting line segments S := {ℓkj : k =

1, 2, 3, 4, j = 1, . . . , n}. We now select from S only those ℓkj ∈ S whose reverse segment (ℓkj )
− /∈ S,

and we denote this new collection by {L1, . . . , Lm}. In other words, we have removed from S those
segments that are common edges to two adjacent squares from {Q1, . . . , Qn}. None of the segments
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Lj , j = 1, . . . ,m intersect K, as otherwise K would intersect some Lk that is a common edge of
two squares Qj , Ql ∈ F , contradicting the choice of the segment Lk. We have thus shown that

L1, . . . , Lm ⊂ Ω \K.

This proves the very first part of the theorem. Also, observe from the selection of the segments
L1, . . . , Lm, that for every continuous function φ :

⋃m
j=1 ∂Qj → C one has

n∑
j=1

∫
∂Qj

φ(w) dw =
n∑

j=1

4∑
k=1

∫
ℓkj

φ(w) dw =
m∑
j=1

∫
Lj

φ(w) dw, (1.2.9)

because the segments we discarded from S to obtain {L1, . . . , Lm} are precisely couples of the form
γkj , (γ

k
j )

−, over which the integrals cancel out.

Now let f : Ω → C be holomorphic. Observe that if z ∈
⋃n

j=1 int(Qj) then actually z belongs
to a unique int(Qk), and we can use Theorem 1.13 for each cycle Γ := ∂Qj to deduce that

1

2πi

∫
∂Qk

f(w)

w − z
dw = f(z)W (∂Qk, z) = f(z),

∫
∂Qj

f(w)

w − z
dw = f(z)W (∂Qj , z) = 0 for all j ̸= k.

In combination with (1.2.9), the above shows that

f(z) =
1

2πi

n∑
j=1

∫
Lj

f(w)

w − z
dw, for all z ∈ A := K ∩

m⋃
j=1

int(Qj). (1.2.10)

To extend the validity of (1.2.10) to all points of K, observe that the mapping

K ∋ z 7→ g(z) :=
1

2πi

n∑
j=1

∫
Lj

f(w)

w − z
dw.

is continuous in K, as per Exercise 1.10. But also K ∋ z 7→ f(z) is continuous in K, and, by
(1.2.10), f = g in the set A ⊂ K; which is clearly dense in K, as the interior of each closed square
is dense in the square. Therefore, we may conclude that f = g in all of K, which gives (1.2.8).

1.3 Homotopy of Paths. Simply Connected Domains

Our goal here is to introduce a special class of domains for which one (and so all) of the properties
of Theorem 1.19 hold true. For this purpose, we need to define rigorously the idea of continuously
deforming one curve into another. This can be achieved via the definition of homotopy.

Definition 1.23 (Homotopy of Paths). Let A ⊂ C be a subset, and γ0, γ1 : [a, b] → Ω two continuous
and closed curves. We say that γ0 and γ1 are homotopic in A, express it as γ0 ∼ γ1 in A, when
there exists a continuous mapping H : [a, b]× [0, 1] → A such that

• H(t, 0) = γ0(t) for all t ∈ [0, 1],

• H(t, 1) = γ1(t) for all t ∈ [0, 1], and

• H(a, s) = H(b, s) for all s ∈ [0, 1].

Such a function H is called an homotopy between γ0 and γ1 in A.

Also, if γ : [a, b] → A is homotopic to a constant path γ0 : [a, b] → Ω, γ0(t) = w0 for all
t ∈ [a, b], then we say that A is null-homotopic in A, and express it as γ ∼ 0 in A.
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Looking that Definition 1.23, note that, for each s ∈ [0, 1], the function [a, b] ∋ t 7→ γs(t) :=
H(t, s) defines a continuous closed curve in A. Thus, this homotopy H provides us with a family
{γs}s∈[0,1] of continuous closed curves in A, the initial one being γ0, and the final one being γ1.
The curve γs is the deformation of γ0 to γ1 at the instant s ∈ [0, 1].

In addition, the following remark is pertinent.

Remark 1.24. If A ⊂ C is a subset, then the relation“∼ in A”between paths defines an equivalence
relation. Indeed, γ ∼ γ in A for each continuous curve γ : [a, b] → A, because we can define the
trivial homotopy H(t, s) = γ(t) for all (t, s) ∈ [a, b]× [0, 1]. So the reflexivity holds. Also, if γ0 ∼ γ1
in A, and H is an homotopy as in Definition 1.23, then we can define H̃(t, s) = H(t, 1− s) for all
(t, s) ∈ [a, b]× [0, 1], and clearly H̃ is an homotopy between γ1 and γ0 in A, therefore γ1 ∼ γ0 in A,
showing the property of symmetry. To prove the transitivity, let γ0 ∼ γ1 in A via some homotopy
H0 and γ1 ∼ γ2 in A via some homotopy H1. If we define H : [a, b]× [0, 1] → A by formula

H(t, s) :=

{
H0(t, 2s) if (t, s) ∈ [a, b]× [0, 1/2]

H0(t, 2s− 1) if (t, s) ∈ [a, b]× [1/2, 1];

and clearly H defines an homotopy between γ0 and γ2 in A, that is γ0 ∼ γ2 in A.

Moreover, by considering re-parametrizations, we may assume that all the curves involved are
defined in [0, 1], instead of a general closed interval [a, b].

The simply connected domains are those on which every closed curve can be continuously shrunk
to a point, where the deformation is always within the domain.

Definition 1.25 (Simply Connected Domains). Let Ω ⊂ C be open and connected. We say that Ω
is simply connected if every continuous closed curve γ : [a, b] → Ω is null-homotopic in Ω.

An interesting particular example is as follows.

Example 1.26. A set A ⊂ C is called star-shaped if there exists z0 ∈ A so that all segments [z0, z],
z ∈ A, are entirely contained in A. An open star-shaped open set Ω is simply connected. Indeed,
if γ : [a, b] → Ω is continuous and closed, then we can define H : [a, b]× [0, 1] → C by formula

H(t, s) = sz0 + (1− s)γ(t), (t, s) ∈ [a, b]× [0, 1].

Since for each t ∈ [a, b], the line segment [γ(t), z0] is contained in Ω, we see that H takes values
only in Ω. It is also immediate to verify the properties of homotopies for H; see Definition 1.23.
We have shown that γ ∼ 0 in Ω, and thus Ω is simply-connected.

Note that every convex set is star-shaped, and so simply connected as well.

Our next goal is to prove that two homotopic paths are always homologous. The following
lemma is very helpful for that purpose.

Lemma 1.27. Let γ0, γ1 : [a, b] → C two closed and piecewise C1 paths. Assume there exists z ∈ C
so that

|γ1(t)− γ0(t)| < |z − γ0(t)|, for all t ∈ [a, b]. (1.3.1)

Then W (γ0, z) =W (γ1, z).

Proof. First note that the the condition (1.3.1) implies that z /∈ γ∗0 ∪ γ∗1 . Thus we can define a new
closed and piecewise C1-path γ : [a, b] → C by

γ(t) =
γ1(t)− z

γ0(t)− z
, t ∈ [a, b].
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Then precisely by (1.3.1), we see that γ∗ is contained in the open disk D(1, 1), and so the origin 0
belongs to the unbounded connected component of C \ γ∗. Thus W (γ, 0) = 0. But calculating this
winding number, we see that

W (γ, 0) =
1

2πi

∫ b

a

γ′(t)

γ(t)
dt =

1

2πi

∫ b

a

γ′1(t)

γ1(t)− z
dt− 1

2πi

∫ b

a

γ′2(t)

γ2(t)− z
dt =W (γ1, z)−W (γ2, z),

thus obtaining W (γ0, z) =W (γ1, z).

As we mentioned above, the notion of homotopy equivalence is stronger than homology equiv-
alence.

Theorem 1.28. Let Ω ⊂ C be open, and γ0, γ1 : [a, b] → Ω two closed piecewise C1-paths in Ω that
are homotopic in Ω. Then γ0 ≃ γ1 in Ω, that is,

W (γ0, z) =W (γ1, z) for all z ∈ C \ Ω.

In particular, if γ is a closed and piecewise C1-path that is null-homologous in Ω, then γ is null-
homotopic in Ω.

Proof. By Remark 1.24, and because winding numbers are stable under reparametrizations, we
may assume that [a, b] = [0, 1]. Let H : [0, 1] × [0, 1] → Ω an homotopy between γ0 and γ1 in Ω
as in Definition 1.23. Fix a point z ∈ C \ Ω. By the continuity of H, the set H([0, 1] × [0, 1]) is
compact subset of Ω, and so there exists ε > 0 so that

|z −H(t, s)| > 2ε, for all (t, s) ∈ [0, 1]× [0, 1]. (1.3.2)

And again by the continuity of H, we can find n ∈ N so that

|H(t, s)−H(t′, s′)| ≤ ε, whenever |t− t′|+ |s− s′| ≤ 1

n
, (t, s) ∈ [0, 1]× [0, 1]. (1.3.3)

Now, for every k = 0, . . . , n consider the polygonal line γk : [0, 1] → C given by

σk(t) = H
(
j−1
n , kn

)
(j−nt)+H

(
j−1
n , kn

)
(nt−(j−1)) on each t ∈

[
j−1
n , jn

]
, j = 1, . . . , n. (1.3.4)

Notice that σk is continuous in [0, 1]. Also,

σk(0) = H(0, kn) = H(1, kn) = σk(1),

and σk is a closed piecewise C1-path. Now observe that the definition (1.3.4) and the estimate
(1.3.3) imply

|σk−1(t)− σk(t)| ≤
∣∣∣H ( j−1

n , k−1
n

)
−H

(
j−1
n , kn

)∣∣∣ (j − nt) +
∣∣∣H ( j

n ,
k−1
n

)
−H

(
j
n ,

k
n

)∣∣∣ (nt− (j − 1))

≤ ε(j − nt) + ε(nt− (j − 1)) = ε, whenever t ∈
[
j−1
n , jn

]
, k = 1, . . . , n;

(1.3.5)

and similarly∣∣σk(t)−H
(
t, kn
)∣∣ ≤ ∣∣∣H ( j−1

n , kn

)
−H

(
t, kn
)∣∣∣ (j − nt) +

∣∣∣H ( j
n ,

k
n

)
−H

(
t, kn
)∣∣∣ (nt− (j − 1))

≤ ε(j − nt) + ε(nt− (j − 1)) = ε, whenever t ∈
[
j−1
n , jn

]
, k = 1, . . . , n.

(1.3.6)
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In the particular cases k = 0 and k = n, (1.3.6) tells us that

|σ0(t)− γ0(t)| ≤ ε and |σn(t)− γ1(t)| ≤ ε, t ∈ [0, 1]. (1.3.7)

But then, by (1.3.2) and (1.3.6), we deduce

|z − σk(t)| ≥
∣∣z −H

(
t, kn
)∣∣− ∣∣H (t, kn)− σk(t)

∣∣ > 2ε− ε = ε, t ∈ [0, 1], k = 0, . . . , n. (1.3.8)

The lower bound (1.3.8) in combination with (1.3.7) and (1.3.5) gives the inequalities

|γ0(t)− σ0(t)| < |z − σ0(t)|, |σk−1(t)− σk(t)| < |z − σk(t)|, |γ1(t)− σn(t)| < |z − σn(t)|,

for all t ∈ [0, 1] and k ∈ {1, . . . , n}. Applying Lemma 1.27 for the paths γ0, σ0, . . . , σn, γ1, we
conclude

W (γ0, z) =W (σ0, z) =W (σ1, z) = · · · =W (σn−1, z) =W (σn, z) =W (γ1, z).

Theorem 1.28 can be now combined with Theorems 1.13 and 1.19 to derive the following prop-
erties for holomorphic maps in simply-connected domains. These properties actually characterize
the simple connectedness, as we will see in Chapter 4, Corollary 4.44.

Corollary 1.29. Let Ω ⊂ C be open and simply-connected. The following statements hold.

(i) Γ ≃ 0 in Ω for all cycles Γ in Ω.

(ii) For every f ∈ H(Ω) and every cycle Γ in Ω, one has

W (Γ, z)f (n)(z) =
n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw, z ∈ Ω \ Γ∗, n ∈ N ∪ {0}.

(iii)
∫
Γ f(w) dw = 0 for all functions f ∈ H(Ω), and cycles Γ in Ω.

(iv) Every f ∈ H(Ω) has a primitive in Ω.

(v) Every f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, has a holomorphic logarithm in Ω.

(vi) Every f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω, has a holomorphic nth root in Ω, for all n ∈ N.

Proof. By definition of simple connectedness, we have that γ ∼ 0 in Ω for all continuous closed
curves in Ω. By Theorem 1.28 we have that all closed piecewise C1-paths are null-homologous, and
so Γ ≃ 0 in Ω for all cycles in Ω. This proves (i), then Theorem 1.13 gives (ii), and Theorem 1.19
implies the rest (iii)–(vi).

1.4 Exercises

Exercise 1.1. Let D(z0, r0) ⊂ C be an open disk and f : D(z0, r0) → C be continuous. Prove that

f(z0) = lim
r→0+

1

2πi

∫
∂D(z0,r)

f(z)

z − z0
dz,

where the circles ∂D(z0, r) are traveled once and with the positive orientation.

Exercise 1.2. Let Ω be open and convex, and f : Ω → C holomorphic in Ω with Re(f ′(z)) > 0 for
all z ∈ Ω. Show that f is injective in Ω.
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Exercise 1.3. Let Ω ⊂ C open, f : Ω → C holomorphic and γ : [a, b] → Ω a closed piecewise
C1-path. Prove that if n ∈ N ∪ {0} and z0 /∈ γ∗, then∫

γ

f ′(z)

(z − z0)n
dz = n

∫
γ

f(z)

(z − z0)n+1
dz.

Exercise 1.4. Let Ω ⊂ C be open, f : Ω → C holomorphic and γ : [a, b] → Ω a piecewise C1-path
with f(z) ̸= 0 for all z /∈ γ∗ and f(γ(b)) = f(γ(a)). Show that

1

2πi

∫
γ

f ′(w)

f(w)
dw ∈ Z.

Exercise 1.5. Let γ be the ellipse {z ∈ C : |z−2|+ |z+2| = 10} traveled once and counterclockwise.
Use the Cauchy Integral Formulae to find∫

γ

ez
2
sin z

(z − πi)2
dz.

Exercise 1.6. Define, for each r > 0, the path γr : [0, π/4] → C by γr(t) = reit. Prove that

lim
r→+∞

∫
γr

e−z2 dz = 0.

Then, integrate the function e−z2 over the paths Γr := [0, r] ⋆ γr ⋆ [re
iπ
4 , 0], r > 0, to show that∫ ∞

0
sin(x2) dx =

∫ ∞

0
cos(x2) dx =

√
2π

4
.

Suggestion: For the limit part, take into account the inequality cos(2t) ≥ 1− 4
π t for all t ∈ [0, π4 ].

Exercise 1.7. Given n ∈ N, with n ≥ 3, consider the closed path γ given by the n-polygon whose
vertices are the nth-roots of unity, and traveled counterclockwise. Show that W (γ, 0) = 1.

Exercise 1.8. Use the Cauchy Homological Theorem (Corollary 1.14) to prove that∫
∂D(0,1)

(z + 1)e1/z

z2
dz = 2πi.

Suggestion: Compare with the same integral over circles of radius r > 1, and let r → ∞.

Exercise 1.9. Let Ω ⊂ C be open with the property that Γ ≃ 0 in Ω for all cycles Γ in Ω. Let
f, g : Ω → C be two holomorphic functions such that f2 + g2 = 1 at all points of Ω. Prove that
there is a holomorphic function φ : Ω → C in Ω with

f = cos(φ), g = sin(φ), in Ω.

Suggestion: First find a holomorphic logarithm for the function f + ig.

Exercise 1.10. Let A ⊂ C be a set, γ : [a, b] → C a piecewise C1-path, and φ : γ∗ × A → C a
continuous mapping. Then the function f : A→ C given by

f(z) =

∫
γ
φ(w, z) dw, z ∈ A,

is continuous in A.
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Exercise 1.11. Let n ∈ N, Ω ⊂ C open and connected, and f ∈ H(Ω). Let g : Ω → C be a
holomorphic function with gn = f in Ω. Show that if f is not identically zero in Ω, then the

functions {g, ξg, . . . , ξn−1g} are all the holomorphic nth-roots of f ; where ξ = e
2πi
n .

Exercise 1.12. Consider the function f : C \ {−1, 1} → C given by

f(z) =
1

z2 − 1
, z ∈ C \ {−1, 1}.

First verify that Ω := C \ {−1, 1} does not satisfy the property “Γ ≃ 0 in Ω for all cycles in Ω”.
Then show that the f does not have a primitive in C \ {−1, 1}. Finally prove that, however, f has
a primitive in the smaller domain C \ [−1, 1].

Suggestion: For the last part, show first that
∫
γ f = 0 for all closed paths γ in C \ [−1, 1]. Then

proceed as in Theorem 1.19 (ii) =⇒ (iii).
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Chapter 2

Meromorphic Functions

A complex function f has an isolated singularity at a point z0, when f is holomorphic in some
punctured disk around z0. We classify the type of isolated singularities (removable, pole, essential)
by looking at the terms of the Laurent Series of f at z0. Characterizations of these singularities
are also provided by Riemann’s Criterion and by Casorati-Weierstrass Theorem. The residue of
f at z0 is the coefficient of term (z − z0)

−1 in the Laurent Series, which can be recovered with a
Cauchy-type integral formula in a disk. In combination with the Cauchy Homological Theorem,
we will use this formula to deduce the homological version of the Cauchy Residues Theorem. Then
we define the meromorphic functions as those functions that are holomorphic except for isolated
singularities, all of which are poles. The Argument Principle for meromorphic functions f and
a closed path γ states that the number of times that f ◦ γ travels around the origin coincides
with the number of zeros of f minus the number of poles of f within the inside of γ, and counted
with multiplicity. Rouché’s Theorem is an useful criteria for localizing the zeros of a holomorphic
function in a domain. Finally Hurwitz’s theorem states that the number of zeros of a locally
uniformly convergent sequence of holomorphic functions is essentially stationary.

2.1 Isolated Singularities

Definition 2.1 (Isolated Singularity). Given z0 ∈ C, we say that a complex function f has an
isolated singularity at z0 if there exists r > 0 so that f : D(z0, r) \ {z0} → C is holomorphic in
the set D(z0, r) \ {z0}.

Let us examine the Laurent Series expansion at isolated singularities. We refer the reader to
[5, Chapter 5] for explanations on the Laurent Series expansions on annuli.

Remark 2.2. Let z0 ∈ C and let f be holomorphic in D(z0, r) \ {z0} → C. Using [5, Theorem 5.5]
we find a sequence {an}n∈Z so that

f(z) =
∑
n∈Z

an(z − z0)
n, 0 < |z − z0| < r; (2.1.1)

with absolute-uniform convergence in annuli {z ∈ C : t ≤ |z − z0| ≤ s}, with 0 < t < s < r. More
precisely, defining bn := a−n for all n ∈ N, we can write

f(z) =

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

, (2.1.2)

where
∑∞

n=0 an(z− z0)
n converges absolutely in D(z0, r), and absolutely–uniformly in D(z0, s) for

all 0 < s < r, and the principal part of the Laurent series
∑∞

n=1
bn

(z−z0)n
converge absolutely in

C \ {z0} and absolutely–uniformly on C \D(z0, ε) for all ε > 0.
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On the other hand, the residue of f at z0 is the coefficient b1 = a−1 in the series expansions
(2.1.1)–(2.1.2). The residue is also given by an integral formula, see [5, Theorem 5.5] for a proof:

Res(f, z0) =
1

2πi

∫
∂D(0,s)

f(w) dw, for all 0 < s < r.

We now classify the isolated singularities.

Definition 2.3 (Types of Isolated Singularity). Let f : D(z0, r) \ {z0} → C be holomorphic in
D(z0, r) \ {z0}, that is, with an isolated singularity at z0. Let {an}n∈Z ⊂ C as in the Laurent
expansion (2.1.1) of f at z0, in the punctured disk D(z0, r) \ {z0}. We say that

• f has a removable singularity at z0 if an = 0 for all n < 0. Note that then Res(f, z0) = 0.

• f has a pole at z0 if there exists N ∈ N with a−N ̸= 0 and an = 0 for all n < −N. More
precisely, in this case we say that f has a pole of order N at z0. Sometimes, poles of order
1 are called simple poles.

• f has an essential singulartiy at z0 if an ̸= 0 for infinitely many n < 0.

Let us now state useful criteria for the type of singularity. For removable singularities, we use
the following Riemann’s theorem.

Theorem 2.4 (Riemann’s Criterion). If f : D(z0, r) \ {z0} → C is holomorphic, then f admits
an extension F : D(z0, r) → C holomorphic in all of D(z0, r) if and only if f is bounded in
D(z0, r) \ {z0}. In other words, f has a removable singularity at z0 if and only if f is bounded in
the punctured disk D(z0, r) \ {z0}.
Proof. See [5, Theorem 5.12]

We can characterize poles with or without specifying the order of the pole.

Proposition 2.5. Let f : D(z0, r) \ {z0} → C be holomorphic, and N ∈ N. The following statements
are equivalent.

(i) f has a pole of order N at z0.

(ii) There exists g ∈ H(D(z0, r)) with g(z0) ̸= 0 and so that

g(z) = (z − z0)
Nf(z), z ∈ D(z0, r) \ {z0}. (2.1.3)

(iii) The function 1/f admits a holomorphic extension φ : D(z0, s)\{z0} → C in a disk D(z0, s), so
that φ has a zero of order N at z0. This means that φ can be written as φ(z) = (z−z0)Nψ(z),
where ψ is a holomorphic function with ψ(z) ̸= 0 for all z ∈ D(z0, s).

And, in general, without specifying the order of the pole, the following statements are also equiva-
lent.

(i) f has a pole at z0.

(ii) lim
z→z0

|f(z)| = ∞.

Proof. See [5, Propositions 5.13 and 5.14].

Concerning essential singularities, the criterion is given by Casorati-Weierstrass theorem.

Theorem 2.6 (Casorati-Weierstrass). Let f : D(z0, r) \ {z0} → C be holomorphic. Then, the
following statements are equivalent.

(i) f has an essential singularity at z0.

(ii) f (D(z0, s) \ {z0}) = C for every 0 < s ≤ r. That is, for every w ∈ C there exists a sequence
{zn}n converging to z0, with zn ̸= z0 for all n ∈ N, so that {f(zn)}n converges to w.

Proof. See [5, Theorem 5.15].
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2.1.1 Holomorphicity and Singularities at Infinity

Definition 2.7 (Holomorphicity at Infinity). We say that a function f is holomorphic at ∞ if
there exists r > 0 so that the function g(z) = f(1/z) is holomorphic and well-defined in D(0, r)\{0}
and g admits a holomorphic extension to all of D(0, r).

Also, if n ∈ m∪{0} and g has a zero of order m at 0, then we say that f has a zero of order
m at ∞.

For example the function f(z) = 1
zm , m ∈ N, has an isolated singularity at ∞, as g(w) =

f(1/w) = wm is holomorphic in a disk around 0.

Actually, this definition can be seen as a particular case of the following singularities at infinity,
in the case where they are removable.

Definition 2.8 (Singularity at Infinity). A function f has an isolated singularity at ∞ if the
function 7→ g(w) := f(1/w) has an isolated singularity at 0.

Moreover, if f has an isolated singularity at ∞, we say that f has a removable singularity, a
pole of order N ∈ N, or an essential singularity at ∞ if the function above g has respectively
a removable singularity, a pole of order N , or an essential singularity at 0.

We have the following interpretation from the topological point of view. The extended complex
plane C∞ := C ∪ {∞} is equipped with the collection of sets

TC∞ := {U ⊂ C : U is open}
⋃

{V ∪ {∞} : V = C \K, with K compact in C} .

This family defines a topology in C∞, and the space (C∞, TC∞) is a compact topological space, called
the Alexandroff-compactification of C. Moreover, this space is metrizable, as can be shown using
the spherical distance in C∞, which is the Euclidean distance in S2 composed with the inverse of the
stereographic projection; see [5, Section 1.7]. Therefore, sets of the form Ω∞ := C∞ \D(0, R) are
open neighbourhoods of ∞ with this topology, and if f has an isolated singularity at ∞, we can say
that f is holomorphic in some neighbourhood Ω∞ of ∞, except at ∞, that is, f ∈ H (Ω∞ \ {∞}) .

Let us see some easy examples.

Example 2.9. If f(z) = a0 + a1z + · · ·+ amz
m is a polynomial of degree m ∈ N, then f has a pole

of order m at infinity, as the function g(w) = f(1/w) is

g(w) = a0 +
a1
w

+ · · ·+ am
wm

,

which clearly has a pole of order m at 0.

Also, if f(z) is any the functions sin z, cos z, ez, then f has an essential singularity at ∞,
because g(w) = f(1/w) is (respectively) sin(1/w), cos(1/w), e1/w, with isolated singularities at 0.

Alos, let us look at the Laurent Series of a function at infinity.

Remark 2.10. If f has an isolated singularity at ∞, then for some r > 0 we have the Laurent Series
expansion of g(w) = f(1/w):

g(w) =

∞∑
n=0

anw
n +

∞∑
n=1

bn
wn

, for 0 < |w| < 1/r.

Therefore,

f(z) =
∞∑
n=0

an
zn

+

∞∑
n=1

bnz
n, for |z| > r,

and according to Definition 2.8, we have the following.
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(i) If f has a removable singularity at ∞, then bn = 0 for all n ∈ N, and

f(z) =
∞∑
n=0

an
zn
, for |z| > r.

(ii) If f has a pole of order N ∈ N at infinity, then bN ̸= 0 and bn = 0 for all n > N, and

f(z) =

∞∑
n=0

an
zn

+

N∑
n=1

bnz
n, for |z| > r.

(iii) If f has an essential singularity at infinity, then bN ̸= 0 for infinitely many n ∈ N.

Proposition 2.11. If f : C → C be holomorphic, the following hold.

(i) If f has a removable singularity at ∞, then f is constant.

(ii) If f has a pole of order m ∈ N at ∞, then f is a polynomial of degree m.

Proof. Since f : C → C is holomorphic, there are unique numbers {cn}n≥0 ⊂ C so that

f(z) =
∞∑
n=0

cnz
n, z ∈ C,

and so the function g(w) = f(1/w) can be written as

g(w) = c0 +
∞∑
n=1

cn
wn

, w ∈ C \ {0}.

Looking at the Laurent Series of g in Remark 2.10, and bearing in mind that the Laurent Expan-
sions are unique, we see that if g has a removable singularity at 0, then cn = 0 for all n ∈ N, and
f is constant.

And by the same argument, if f has a pole of order m at infinity, then g has a pole of order m
at 0, implying that cm ̸= 0 and cn = 0 for all n > m.

2.1.2 The Cauchy Residues Theorem

In this subsection we will state results for an open set Ω, and a function f holomorphic in Ω except
in a set S ⊂ Ω, where f has isolated singularities. The precise meaning of this sentence is the
following dichotomy:

(1) If z ∈ Ω \ S, then there exists ε > 0 with D(z, ε) ⊂ Ω and f is holomorphic in D(z, ε).

(2) If z ∈ S, then there exists ε > 0 with D(z, ε) ⊂ Ω, f is holomorphic in the punctured disk
D(z, ε) \ {z}, and D(z, ε) ∩ S = {z}.

Before the Cauchy Residues Theorem, let us make some topological observations. In this section,
for a subset A ⊂ C, we will denote by A′ the set of accumulation points of A. Recall that z ∈ A′

if and only if there exists {zk}k ⊂ A with zk ̸= z for all k ∈ N, and lim
k→∞

zk = z.

Proposition 2.12. Let Ω ⊂ C be open, and S ⊂ Ω a subset with S′ ∩ Ω = ∅. The following hold.

(i) S is countable.

(ii) Ω \ S = Ω \ S is an open set.
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(iii) If Γ is a cycle in Ω with Γ ≃ 0 in Ω, and Γ∗ ∩ S = ∅, then the set

S0 := {z ∈ S : W (Γ, z) ̸= 0}

is finite.

(iv) If, in addition, Ω is connected, then Ω \ S is connected too.

Proof.

(i) For every z ∈ Ω, there exists rz > 0 so that D(z, rz) ⊂ Ω. The intersection S ∩ D(z, rz)
must be finite, as otherwise, by Bolzano-Weierstrass, this set would have an accumulation point
z ∈ S′ ∩D(zn, rn) ⊂ S′ ∩Ω, a contradiction. The disks {D(z, rz)}z∈Ω form an open covering of Ω,
and so there exists a countable subcovering {D(zn, rn)}n∈N. Therefore

S = S ∩ Ω = S ∩

(⋃
n∈N

D(zn, rn)

)
=
⋃
n∈N

S ∩D(zn, rn),

which is a countable union of finite sets, and thus S is countable.

(ii) We can write S = S ∪ S′, from which

Ω \ S = Ω \
(
S ∪ S′) = (Ω \ S) ∩

(
Ω \ S′) = Ω \ S.

This proves the identity between sets. Moreover, since Ω \ S = Ω ∩
(
C \ S

)
is intersection of two

open sets, we get that Ω \ S.

(iii) By Remark 1.7, there exists r > 0 such that Γ∗ ⊂ D(0, r) and W (γ, z) = 0 for all z ∈
C \D(0, r). This clearly implies that S0 ⊂ D(0, r), whence S0 is bounded. Suppose, for the sake
of contradiction, that S0 is infinite. Since S0 is also bounded, there exists z ∈ S′

0 ⊂ C, that is,
there is a sequence {zk}k ⊂ S0 convergent to z ∈ C, with zk ̸= z for all k ∈ N. This point z does
not belong to Ω, because otherwise we would have z ∈ S′ ∩ Ω, contradicting that S′ ∩ Ω = ∅.
Thus z ∈ C \ Ω, and therefore W (Γ, z) = 0. Moreover, since Γ∗ is compact and contained in Ω,
and z /∈ Ω, we can find ε > 0 such that D(z, ε) ∩ Γ∗ = ∅. But D(z, ε) is a connected subset of
C \ Γ∗, and we know that W (Γ, z) = 0, implying that W (Γ, w) = 0 for all w ∈ D(z, ε). But this is
a contradiction because there is zk (actually infinitely many zk’s) contained in that disk, for which
we had that W (Γ, zk) ̸= 0.

(iv) By Proposition 1.17, given any two points z, w ∈ Ω \ S, let γ be a polygonal line contained
in Ω that joins z and w. The trace γ∗ is a compact subset of Ω, and so ε := dist(γ∗,C \ Ω) > 0.
Letting δ = ε/100, we have that the compact set K := {z ∈ Ω : dist(z, γ∗) ≤ δ} contains γ∗ and is
contained in Ω. Since S′ ∩Ω = ∅, the set K contains at most finitely many points of S. Therefore,
since the endpoints of γ are not in S, it is clear that the segment lines of γ can modified to obtain
a new path γ̃ contained in K, and joining z and w. Thus, Ω \ S is connected.

Proposition 2.13. Let Ω ⊂ C be open, and f be holomorphic in Ω except in the set S ⊂ Ω consisting
only of isolated singularities that are not removable. Then S has no accumulation points in S, that
is, S′ ∩ Ω = ∅.

Proof. Assume, towards a contradiction, that there is z0 ∈ S′ ∩ Ω. Let {zk}k ⊂ S be a sequence
convergent to z0 with zk ̸= z0 for all k ∈ N. There exists δ > 0 so that D(z, δ) ⊂ Ω. Given
0 < ε < δ, there exists zk ∈ D(z0, ε) \ {z0}, and so f cannot be holomorphic in D(z0, ε) \ {z0}, as
the singularities {zk} for f are not removable. This means that f is not holomorphic in any of the
punctured disks D(z0, ε) \ {z0}, with 0 < ε < δ. In other words, f has a singularity at z ∈ Ω that
is not isolated, contradicting that S is the set of all singularities of f.
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Theorem 2.14 (Cauchy Residues Theorem). Let Ω ⊂ C be open, and f : Ω\S → C be holomorphic,
where S ⊂ Ω is the set of isolated singularities of f. If Γ is a cycle with Γ∗ ⊂ Ω \ S, and Γ ≃ 0 in
Ω, then W (Γ, z) ̸= 0 for at most finitely-many z ∈ S and∫

Γ
f(w) dw = 2πi

∑
z∈S

W (Γ, z)Res(f, z).

Proof. We may and do assume that all the points of S are poles or essential singularities (not
removable), as Res(f, z) = 0 when the singularity z is removable. By Propositions 2.13 and 2.12,
we know that S′ ∩ Ω = ∅, that Ω \ S is open, and that the set

S0 = {z ∈ Z : W (Γ, z) ̸= 0}

is finite. So, let S0 = {z1, . . . , zn} and δ > 0 be such that the closed disks {D(zk, δ)}nk=1 are
contained in Ω, and are mutually disjoint. Denoting by γk the circular path ∂D(zk, δ/2) traveled
once and counterclockwise, for each k ∈ {1, . . . , n}, we define a new cycle Γ0 by setting

Γ0 :=
n∑

k=1

W (Γ, zk)γk := {W (Γ, zk)γk}nk=1.

The integer W (Γ, zj) ∈ Z in front of γk simply means that γk is repeated W (γ, zj) times in Γ0,
with positive or negative orientation depending on the sign of W (Γ, zj).

Our next claim is that Γ ≃ Γ0 in Ω \ S. Indeed, if z /∈ Ω \ S, then either z /∈ Ω, or z ∈ S \ S0,
or z ∈ S0. In the first two cases, we use either the assumption Γ ≃ 0 in Ω or the definitions of S0
and the γk’s to write

W (Γ, z) = 0, W (Γ0, z) =

n∑
k=1

W (Γ, zk)W (γk, z) = 0,

thus W (Γ, z) = W (Γ0, z). And in the case where z ∈ S0, we have that z = zj for some j ∈
{1, . . . , n}. Since the disks {D(zk, δ)}nk=1 are disjoint, we see that

W (γk, z) =

{
1 if k = j

0 if k ̸= j.

Therefore, the winding numbers of Γ and Γ′ satisfy

W (Γ0, z) =W (Γ0, zj) =
n∑

k=1

W (Γ, zk)W (γk, zj) =W (Γ, zj) =W (Γ, z).

We have shown that Γ ≃ Γ0 in Ω \ S, over which we can apply the Cauchy Homological Theorem
(Corollary 1.14), for the holomorphic function f in Ω \ S :∫

Γ
f(w) dw =

∫
Γ0

f(w) dw =

∫
∑n

k=1 W (Γ,zk)γk

f(w) dw =

n∑
k=1

W (Γ, zk)

∫
∂D(zk,δ/2)

f(w) dw.

By Remark 2.2, the last term coincides with

2πi
n∑

k=1

W (Γ, zk)Res(f, zk) = 2πi
∑
z∈S

W (Γ, z)Res(f, z),

and the last equality is due to the definition of S0.



29

2.2 Meromorphic Functions

Definition 2.15 (Meromorphic Function). Let Ω ⊂ C be open. We say that a function f is mero-
morphic on Ω if f is holomorphic in Ω except (possibly) for isolated singularities in Ω, all of
which are poles. We denote by M(Ω) the set of all holomorphic functions on Ω.

Also, we denote the poles of f in Ω by PΩ(f), or sometimes simply by P(f), when we are
considering only one open set Ω.

A meromorphic function may have finitely or infinitely many poles, and all holomorphic func-
tions are meromorphic.

Example 2.16. (1) If f : C → C is a polynomial, then f is meromorphic in C. Indeed, writing
f = P/Q with P,Q : C → C polynomials, the singularities of f (some of them possibly
removable) are the roots of Q. This is a finite set, and in particular, all the singularities of
f are isolated. Moreover, if z0 is a roots of order m ∈ N of Q, then z0 is either removable
(when z0 is a root of P of order at least m), or a pole (then the order of z0 as a zero of P is
smaller than m), as

lim
z→z0

|f(z)| = lim
z→z0

|P (z)|
|Q(z)|

∈ R ∪ {∞}.

(2) The function f(z) = 1
sin z is meromorphic in C. Indeed, the singularities of f is the set

{nπ : n ∈ Z}. This singularities are all isolated, and they are actually poles, as

lim
z→nπ

∣∣∣∣ 1

sin z

∣∣∣∣ = ∞.

2.2.1 Operations and Properties

Proposition 2.17 (Properties of Meromorphic functions). If Ω ⊂ C is a nonempty open set, the
following properties hold.

(i) If f ∈ M(Ω), then P(f) is countable, P(f)′ ∩ Ω = ∅, the set Ω \ P(f) is open, and f ∈
H(Ω \ P(f)).

(ii) If f, g ∈ M(Ω), and λ ∈ C, then f + λg ∈ M(Ω).

(iii) If f, g ∈ M(Ω), then fg ∈ M(Ω) and P(fg) ⊂ P(f) ∪ P(g).

(iv) If f ∈ M(Ω) and f is not identically zero in any connected component of Ω, then 1/f ∈
M(Ω), and P(1/f) = Z(f).

(v) If f ∈ M(Ω), then f ′ ∈ M(Ω) and P(f) = P(f ′).

(vi) f ∈ M(Ω) and f is not identically zero in any connected component of Ω, then

(vi)(a) f ′/f ∈ M(Ω), with f ′/f ∈ H (Ω \ Z(f) ∪ P(f)) and P(f ′/f) = Z(f) ∪ P(f).

(vi)(b) If z ∈ Z(f), with order m0(z) ∈ N ∪ {0}, then f ′/f has a pole of order 1 at z, with

Res
(
f ′/f, z

)
= m0(z).

(vi)(c) If z ∈ P(f), with order m∞(z) ∈ N ∪ {0}, then f ′/f has a pole of order 1 at z, with

Res
(
f ′/f, z

)
= −m∞(z).

Proof. (i) is a consequence of Propositions 2.13 and 2.12, and (ii) is immediate.
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(iii) Assume the non-trivial case where none of f, g are identically zero in any connected component
of Ω. If z0 ∈ P(f) ∩ P(g), then clearly z0 ∈ P(fg), as

lim
z→z0

|f(z)g(z)| = ∞;

see Proposition 2.5. With the same argument, we see that if z0 ∈ P(f) \ P(g) and g(z0) ̸= 0, then
also z0 ∈ P(fg). And if z0 ∈ P(f) \ P(g) and g(z0) = 0, then there are n,m ∈ N, and functions
φ,ψ holomorphic in D(z0, ε) with φ(z0), ψ(z0) ̸= 0, and

f(z)g(z) =
φ(z)

(z − z0)n
· (z − z0)

mψ(z) = (z − z0)
m−nφ(z)ψ(z), z ∈ D(z0, ε) \ {z0}.

Therefore, z0 is either a removable singularity or a pole of fg.

(iv) The possible singularities of 1/f in Ω is the set of points S := Z(f) ∪ P(f). The set Z(f) has
no accumulation points in Ω, by the assumption on f. Therefore S′ ∩Ω = ∅, whence 1/f has only
isolated singularities in Ω. To verify that these singularities are removable or poles, note that

lim
z→z0

∣∣∣∣ 1

f(z)

∣∣∣∣ =
{
0 if z0 ∈ P(f),

∞ if z0 ∈ Z(f),

thanks to Proposition 2.5. Combining Theorem 2.4 and Proposition 2.5, we see that each z0 ∈ S is
either a removable singularity or a pole for 1/f, and, more precisely Z(1/f) = P(f) and P(1/f) =
Z(f).

(v) Since holomorphic functions are infinitely-many times differentiable, if f is holomorphic in a
disk around a point z0, then the same occurs for f ′. Thus, the possible singularities of f ′ is the
set P(f), which has no accumulation points in Ω, and so the singularities of f ′ are all isolated.
Now, let z0 ∈ P(f) a pole of order m of f , and write the Laurent expansion of f in some disk
D(z0, r) \ {z0} :

f(z) =
∞∑
n=0

an(z − z0)
n +

b1
z − z0

+ · · ·+ bm
(z − z0)m

, 0 < |z − z0| < r, bm ̸= 0.

The series converges uniformly on each sub-annulus {z ∈ C : ε ≤ |z−z0| ≤ δ}, with 0 < ε < δ ≤ r,
and so we can differentiate termwise to obtain that

f ′(z) =

∞∑
n=1

nan(z − z0)
n−1 +

−b1
(z − z0)2

+ · · ·+ −mbm
(z − z0)m+1

, 0 < |z − z0| < r, bm ̸= 0.

Since Laurent Expansions are unique, the above shows that f ′ has a pole of order m+1 at z0. We
conclude that P(f) = P(f ′).

(vi) By parts (iii), (iv), (v), we have that f ′/f ∈ M(Ω), and

P(f ′/f) ⊂ P(f ′) ∪ P(f) ∪ Z(f) = P(f) ∪ Z(f).

The reverse inclusion and parts (vi)(b), (c) will be checked at the same time. If z0 ∈ Z(f) of order
m ∈ N, we can write f(z) = φ(z)(z− z0)

m for all z ∈ D(z0, r) for some r > 0 and φ ∈ H(D(z0, r))
and φ(z) ̸= 0 for all z ∈ D(z0, r). Differentiating f , and then dividing by f, we get

f ′(z)

f(z)
=
φ′(z)(z − z0)

m +m(z − z0)
m−1φ(z)

φ(z)(z − z0)m
=
φ′(z)

φ(z)
+

m

z − z0
, z ∈ D(z0, r) \ {z0}.

Since φ does not vanish in D(z0, r), the expression φ
′/φ defines a holomorphic function in D(z0, r),

and therefore the above shows that z0 ∈ P(f ′/f), with a pole of order 1, and Res(f ′/f, z0) = m.
This shows part (b) and that Z(f) ⊂ P(f ′/f).
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Now, if z0 ∈ P(f) is a pole of order m ∈ N, then we can write f(z) = ψ(z)(z − z0)
−m for all

z ∈ D(z0, r) for some r > 0 and ψ ∈ H(D(z0, r)) and ψ(z) ̸= 0 for all z ∈ D(z0, r). Differentiating
f , and then dividing by f, we get

f ′(z)

f(z)
=
ψ′(z)(z − z0)

−m −m(z − z0)
−m−1ψ(z)

ψ(z)(z − z0)−m
=
ψ′(z)

ψ(z)
− m

z − z0
, z ∈ D(z0, r) \ {z0}.

Again, ψ′/ψ is holomorphic in D(z0, r), and thus the above tells us that f ′/f has a pole of order
1 at z0, with Res(f ′/f, z0) = −m. This shows part (c), that P(f) ⊂ P(f ′/f), and consequently
P(f ′) = P(f) ∪ Z(f).

2.2.2 Meromorphic Functions in the Extended Complex Plane

Definition 2.18 (Meromorphic Functions at Infinity). Let Ω∞ ⊂ C∞ be an open set of C∞, that is,
either Ω∞ ⊂ C is open, or Ω∞ = {∞} ∪ C \K, with K compact. A function f is meromorphic
in Ω∞ if f is holomorphic in Ω∞ except in a set of isolated singularities, all of which are either
removable or poles.

If f and Ω∞ are as in Definition 2.18, and ∞ /∈ Ω∞, then Ω = Ω∞ is an open subset of C,
and f is meromorphic in Ω in the regular sense (Definition 2.15). However if ∞ ∈ Ω∞, then
Ω∞ = {∞} ∪ C \K, with K ⊂ C compact, and we have two possibilities.

• f is holomorphic at∞ (see Definition 2.7), then f is holomorphic in some annulus C\D(0, R).
The rest of the poles of f form a subset of C \K with no accumulation points in C \K, and
all of them contained in D(0, 2R). Therefore, f has only finitely-many poles in Ω ⊂ C.

• f has a pole at ∞. The function g(w) = f(1/w) is holomorphic in D(0, ε) \ {0}. But then
f is holomorphic C \ D(0, 1/ε), implying that the rest of the poles of f are contained in
D(0, 2/ε) \K ⊂ Ω∞. Since these poles have no accumulation points in C \K, we conclude
that the poles of f in Ω∞ are ∞ and finitely-many points of C.

Consequently, if f is meromorphic in Ω∞ with ∞ ∈ Ω∞, then f has (at most) finitely-many
poles.

Theorem 2.19 (Rational Functions). A function f is meromorphic in C∞ if and only if f is rational
in C.

Proof. Assume first that f = P/Q, where P (z) =
∑n

k=0 akz
k, Q(z) =

∑m
k=0 bkz

k, and bn, am ̸= 0.
The possible poles of f are the roots of Q, and so they are finitely many. We know already
that f is meromorphic in C. To see that it is also meromorphic in C∞, we look at the function
g(w) = f(1/w):

g(w) =
wm

(
a0w

n + a1w
n−1 + · · ·+ an

)
wn (b0wm + b1wm−1 + · · ·+ bm)

,

and notice that the singularities of g at 0 are either removable (when n ≤ m) or a pole (when
n > m). Therefore f is meromorphic in C∞.

To prove the converse, let f be meromorphic in C∞. By the observation right after Definition
2.18, f has finitely many poles z1, . . . , zn ∈ C and (possibly) a pole at ∞. In particular f ∈
H(C \ {z1, . . . , zN}), and there exists r > 0 so that the disks {D(zj , 2r)}Nj=1 are mutually disjoint.
There is a pole of order mk ∈ N at zk, and so we have the decomposition

f(z) = ψk(z) + φk(z), z ∈ D(zk, r) \ {zk}; where φk(z) =

mk∑
n=1

ckn
(z − zk)n

, z ∈ C \ {zk}, (2.2.1)

and ψk ∈ H(D(zk, r)) for all k = 1, . . . , N. Also, f has a pole or order m ∈ N∪{0} (let us call pole
of order 0 a removable singularity this time) at ∞, meaning that f(1/w) has a pole of order m at
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0. Thus we can find ε > 0, a function ψ∞ ∈ H(D(0, ε)), and a polynomial P : C → C of degree N
so that

f(1/w) = ψ∞(w) + P (1/w), for all 0 < |w| < ε. (2.2.2)

We define a function h : C → C in the following manner

h(z) =

ψk(z)−
∑N

j=1, j ̸=k φj(z)− P (z) if z ∈ D(zk, r), k ∈ {1, . . . , N}

f(z)−
∑N

j=1 φj(z)− P (z) if z ∈ C \ {z1, . . . , zN}.
(2.2.3)

Since the disks {D(zj , 2r)}Nj=1 are disjoint, the first branch of definition of h is consistent. Also, if
z ∈ C \ {z1, . . . , zN} and at the same time z belongs to D(zk, r) for some (unique) k ∈ {1, . . . , N},
then (2.2.1) implies that

f(z)−
N∑
j=1

φj(z)− P (z) = ψk(z) + φk(z)−
N∑
j=1

φj(z)− P (z) = ψk(z)−
N∑

j=1, j ̸=k

φj(z)− P (z);

showing that h is well defined in C. Moreover, since φj ∈ H (C \ {zj}) and ψk ∈ H(D(zk, r)) for
all j, k, it is clear that h is holomorphic in C. Now, note that (2.2.1) and (2.2.2) yield

lim
|z|→∞

|h(z)| = lim
|z|→∞

∣∣∣∣∣∣f(z)−
N∑
j=1

φj(z)− P (z)

∣∣∣∣∣∣ = lim
|z|→∞

|f(z)− P (z)| = lim
w→0

|ψ∞(w)| = |ψ∞(0)|,

by the continuity of ψ∞ at 0. This proves that h is bounded in C, and therefore constant, by virtue
of Liouville’s Theorem. We call this constant w0 ∈ C, and we obtain the decomposition

f(z) = w0 + P (z) +
N∑
j=1

φj(z) = w0 + P (z) +
N∑
j=1

mj∑
n=1

cjn
(z − zj)n

, z ∈ C \ {z1, . . . , zN}.

Thus f is a rational function.

As a corollary of Theorem 2.19 (more precisely, of its proof), we deduce the following.

Corollary 2.20 (Partial Fraction Decomposition). Every rational function f in C admits a decom-
position of the form

f(z) = P (z) +
N∑
j=1

mj∑
n=1

cjn
(z − zj)n

,

for a polynomial P , and constants {cjn : n = 0, . . . ,mj , j = 1, . . . , N} ⊂ C, where f has a pole of
order mj at zj , j = 1, . . . , N.

Proof. It is the conclusion of the proof of Theorem 2.19.

2.3 The Argument Principle

Theorem 2.21 (The Argument Principle). Let Ω ⊂ C be open, and f ∈ M(Ω), such that f is
not identically zero in any connected component of Ω. Let Γ be a cycle in Ω with Γ ≃ 0 in Ω,
and such that Γ∗ ∩ (ZΩ(f) ∪ PΩ(f)) = ∅. Then W (Γ, z) ̸= 0 for at most finitely-many points
z ∈ ZΩ(f) ∪ PΩ(f), and

1

2πi

∫
Γ

f ′(w)

f(w)
dw =

∑
z∈ZΩ(f)

m0(z)W (Γ, z)−
∑

z∈PΩ(f)

m∞(z)W (Γ, z); (2.3.1)

where m0(z) and m∞(z) are respectively the order of z as a zero of f and as a pole of f .
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Proof. We abbreviate Z = ZΩ and P = PΩ. Since f is not null on any connected component
of Ω, by the Identity Theorems for Holomorphic Functions, we have that Z(f)′ ∩ Ω = ∅. Also
P(f)′ ∩ Ω = ∅, and by Proposition 2.12, we deduce that W (Γ, z) ̸= 0 for at most finitely-many
z ∈ Z(f) ∪ P(f). In particular, the two sums in the right-hand side of (2.3.1) are both finite.

By Proposition 2.17(vi)(a), f ′/f ∈ H (Ω \ Z(f) ∪ P(f)) , where Z(f)∪P(f) is precisely the set
of isolated singularities (all of them poles) of f ′/f in Ω. By the assumption Γ∗∩(Z(f) ∪ P(f)) = ∅,
and so we can apply the Residues Theorem 2.14 to f ′/f in order to write

1

2πi

∫
Γ

f ′(w)

f(w)
dw =

∑
z∈Z(f)∪P(f)

Res
(
f ′/f, z

)
W (Γ, z)

=
∑

z∈Z(f)

m0(z)W (Γ, z)−
∑

z∈P(f)

m∞(z)W (Γ, z),

after applying Proposition 2.17(vi)(b), (c).

We can multiply by a holomorphic function in (2.3.1) and still get a similar formula.

Theorem 2.22. Let Ω ⊂ C be open, g ∈ H(Ω), and f ∈ M(Ω), such that f is not identically
zero in any connected component of Ω. Let Γ be a cycle in Ω with Γ ≃ 0 in Ω, and such that
Γ∗ ∩ (ZΩ(f) ∪ PΩ(f)) = ∅. Then,

1

2πi

∫
Γ
g(w)

f ′(w)

f(w)
dw =

∑
z∈ZΩ(f)

m0(z)W (Γ, z)g(z)−
∑

z∈PΩ(f)

m∞(z)W (Γ, z)g(z); (2.3.2)

where m0(z) and m∞(z) are respectively the order of z as a zero of f and as a pole of f .

Proof. Consider the function h := g f ′

f . Since g ∈ H(Ω), and f ∈ M(Ω), by Proposition 2.17(vi)

we get that h ∈ H(Ω), with P(h) ⊂ P(f ′/f) = Z(f)∪P(f). By the same proposition, the poles of
f ′/f are all of order 1. So, z ∈ P(f ′/f) will be a pole of h if and only if g(z) ̸= 0. In other words,
P(h) = P(f ′/f) \ Z(g), and when z ∈ Z(g), the function h has a removable singularity at z, and
so Res(h, z) = 0. On the other hand, if z ∈ P(f ′/f) and g(z) ̸= 0, then h has a pole of order 1
at z. These observations and Proposition 2.17(vi) tell us that, regardless of the value of g(z), we
have that

z ∈ Z(f) ∪ P(f) =⇒ Res(h, z) = g(z)Res(f ′/f, z) =

{
g(z)m0(z) if z ∈ Z(f)

−g(z)m∞(z) if z ∈ P(f).

Since Γ∗ ∩ P(h) = ∅, and P(h) ⊂ Z(f) ∪ P(f) (as we saw in the proof of Theorem 2.21) has no
accumulation points in Ω, we can apply the Residues Theorem 2.14 to h:

1

2πi

∫
Γ
g(w)

f ′(w)

f(w)
dw =

∑
z∈P(h)

Res(h, z)W (Γ, z) =
∑

z∈Z(f)∪P(f)

Res(h, z)W (Γ, z)

=
∑

z∈Z(f)

m0(z)W (Γ, z)g(z)−
∑

z∈P(f)

m∞(z)W (Γ, z)g(z).

2.4 Rouché’s Theorem

Theorem 2.23 (Rouché’s Theorem). Let Ω ⊂ C be open, and f, g ∈ M(Ω) functions that are not
identically zero in any connected component of Ω. Let Γ be a cycle in Ω with Γ ≃ 0 in Ω, and such
that Γ∗ ∩ PΩ(f) = ∅. Assume further that

|f(z)− g(z)| < |f(z)|, for all z ∈ Γ∗. (2.4.1)
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Then, we have that ∑
z∈ZΩ(f)

m0(f, z)W (Γ, z)−
∑

z∈PΩ(f)

m∞(f, z)W (Γ, z)

=
∑

z∈ZΩ(g)

m0(g, z)W (Γ, z)−
∑

z∈PΩ(g)

m∞(g, z)W (Γ, z); (2.4.2)

where m0(f, z), m0(g, z), and m∞(f, z), m∞(g, z) are respectively the orders of z as zeros of f, g
and as a poles of f, g.

Proof. Let us abbreviate Z = ZΩ and P = PΩ. Observe that (2.4.1) implies (Z(g) ∪ Z(f))∩Γ∗ = ∅.
Similarly P(g) ∩ Γ∗ = ∅, as the condition (2.4.1) and P(f) ∩ Γ∗ = ∅ tell us that lim

|z|→∞
|g(z)| ≠ ∞.

Thus can apply Theorem 2.21 to both f and g. Before doing so, consider the function h = g/f,
which is meromorphic in Ω by virtue of Proposition 2.17(iii), (iv). The possible zeros or poles of h
in Ω are contained in the set

A := Z(f) ∪ P(f) ∪ Z(g) ∪ P(g).

But A ⊂ Ω has no accumulation points within Ω, and A does not intersect the compact set Γ∗ ⊂ Ω.
Thus there exists ε > 0 so that the open set

Uε = {z ∈ C : dist(z,Γ∗) < ε}

contains Γ∗, is contained in Ω, and still A∩Uε = ∅. Therefore h ∈ H (Uε), and if Γ = {γj}Nj=1, where

each γj : [a, b] → Ω is a closed and piecewise C1-path, we can define new closed and piecewise
C1-paths by setting

σj : [aj , bj ] → C, σj(t) := h(γj(t)), t ∈ [aj , bj ], j = 1, . . . , N.

By the assumption (2.4.1), each σj satisfies that

|σj(t)− 1| =
∣∣∣∣ g(γj(t))f(γj(t))

− 1

∣∣∣∣ < 1, t ∈ [aj , bj ].

This shows that σ∗j ⊂ D(1, 1). Therefore C \ D(1, 1) is contained in the unbounded connected
component of σj , where W (σj , ·) is identically zero. Therefore W (σj , 0) = 0 for all j = 1, . . . , N.
But this yields

0 =
N∑
j=1

W (σj , 0) =
1

2πi

N∑
j=1

∫
σj

dw

w
=

1

2πi

N∑
j=1

∫ bj

aj

σ′j(t)

σj(t)
dt =

1

2πi

N∑
j=1

∫ bj

aj

h′(γj(t))γ
′
j(t)

h(γj(t))
dt

=
1

2πi

N∑
j=1

∫
γj

h′(w)

h(w)
dw =

1

2πi

∫
Γ

h′(w)

h(w)
dw =

1

2πi

∫
Γ

g′(w)

g(w)
dw − 1

2πi

∫
Γ

f ′(w)

f(w)
dw.

We derive that
1

2πi

∫
Γ

f ′(w)

f(w)
dw =

1

2πi

∫
Γ

g′(w)

g(w)
dw,

and (2.4.2) follows by applying Theorem 2.21 to both f and g.

Corollary 2.24 (Rouché’s Localization of Zeros). Let Ω ⊂ C be open, and f, g ∈ H(Ω) functions
that are not identically zero in any connected component of Ω. Let Γ be a cycle in Ω with Γ ≃ 0 in
Ω. Assume further the conditions:

(a) |f(z)− g(z)| < |f(z)| for all z ∈ Γ∗, (b) W (Γ, z) ∈ {0, 1} for all z ∈ C \ Γ∗.
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If we denote Ω1 = {z ∈ Ω : W (Γ, z) = 1}, then

N1(f) = N1(g),

where N1(f), N1(g) denote the number of zeros in Ω1 of f and g respectively, and counted with
multiplicity.

Proof. All the conditions of Theorem 2.23 are satisfied.

Let us apply Corollary 2.24 to a concrete function.

Example 2.25. For the polynomial P (z) = z10 − 3z9 + 7z4 + z − 1, we want to find the number of
zeros of P are in the open unit disk D. Consider the function f(z) = 7z4, and the path γ describing
the unit circle ∂D(0, 1) traveled once and counterclockwise. Notice that, if z ∈ γ∗ = ∂D(0, 1), then

|P (z)− f(z)| = |z10 − 3z9 + z − 1| ≤ |z|10 + 3|z|9 + |z|+ 1 ≤ 6 < |7z4| = |f(z)|.

All the assumptions of Corollary 2.24 are satisfied, and so P and f have the same number of zeros
(counted with multiplicity) in the set {z ∈ D : W (γ, z) = 1} = D. Since f has exactly 4 zeros in
D, we may conclude that P has also 4 zeros in D.

2.5 Hurwitz’s Theorem

The following theorem says that the number of zeros of a sequence of holomorphic functions is
essentially stationary.

Theorem 2.26 (Hurwitz’s Theorem). Let Ω be open and connected, D a disk with D ⊂ Ω, {fn}n∈N ⊂
H(Ω), and f : Ω → C a function so that {fn}n converges to f uniformly on compact subsets of Ω.
Then f ∈ H(Ω), and if ZΩ(f) ∩ ∂D = ∅, then there exists N ∈ N so that

ND(fn) = ND(f) for all n ≥ N ;

where ND(fn), ND(f) denote the number of zeros of fn and f within D, counted with multiplicity.

Proof. That f is holomorphic is a consequence of a part of Weierstrass’s Convergence Theorem. We
recall the proof of this fact. Clearly f is continuous in Ω, as locally uniformly limit of continuous
functions. And for every solid triangle ∆ ⊂ Ω, we have that∫

∂D
f = lim

n→∞

∫
∂D

fn = 0;

where the first equality is due to the uniform convergence in ∆, and the latter to the Cauchy
Theorem in a triangle for the fn’s (or by Corollary 1.14, as clearly ∂∆ ≃ 0 in Ω). By Morera’s
Theorem, f ∈ H(Ω).

We proceed with the second part of the theorem. Writing D = D(w0, r), there exists ε > 0
with the property that D(w0, r + ε) ⊂ Ω, as D ⊂ Ω. Since ZΩ(f) ∩ ∂D = ∅, we have that

m := min{|f(z)| : z ∈ ∂D} > 0.

The sequence {fn}n converges uniformly to f in ∂D, and so we can find N ∈ N such that

|fn(z)− f(z)| < m ≤ |f(z)| for all z ∈ ∂D, n ≥ N.

We can thus apply Corollary 2.24 for f, fn, γ the path ∂D, the domain D(w0, r+ ε), and Ω1 = D,
to infer that ND(fn) = ND(f) for all n ≥ N.
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Corollary 2.27. Let Ω be open and connected, {fn}n∈N ⊂ H(Ω), and f : Ω → C a function so that
{fn}n converges to f uniformly on compact subsets of Ω. If ZΩ(fn) = ∅ for all n ∈ N, then either
f ≡ 0 in Ω or ZΩ(f) = ∅.

Proof. The function f is holomorphic in Ω, as we saw in the proof of Theorem 2.26. Assume, for
the sake of contradiction, that f is not null in Ω, but still there exists z0 ∈ Ω with f(z0) = 0. Since
Ω is connected, and f ̸≡ 0 in Ω, by the Identity Principles for Analytic Functions, the zero z0 of
f is necessarily isolated. Thus there exists an open disk D centered at z0, with D ⊂ Ω, and such
that Z∂D(f) = ∅. Applying Hurwitz’s Theorem 2.26 to {fn}n, f , Ω, and the disk D, we deduce
that f has the same number of zeros (counted with multiplicity) in D as fn, for some n ∈ N. But
since z0 is one of those zeros of f, this contradicts the fact that ZΩ(fn) = ∅.

2.6 Exercises

Exercise 2.1. Let f ∈ H(C \ {0}) be a function with an isolated singularity at 0. Prove that the

function f(z)− Res(f,0)
z has a primitive in C \ {0}.

Exercise 2.2. Let f : C → C be a non-constant holomorphic in C. Prove that the function C ∋
z 7→ ef(z) has an essential singularity at ∞.

Exercise 2.3. Let P : C → C be a polynomial of degree N ∈ N, and let r > N. Obtain a closed
formula (depending on P and N) for the integral

∫
∂D(0,r)

P (z)
N∑

n=0

e
1

z−n dz.

Suggestion: Classify the singularities of the integrand, and apply the Cauchy Residues Theorem.

Exercise 2.4. Use the Cauchy Residues Theorem to find

pv

∫ ∞

−∞

eix

x
.

Use this to deduce that ∫ ∞

0

sinx

x
dx =

π

2
.

Suggestion: Integrate the function f(z) = eiz/z in the path ΓR,ε given by an appropriate composi-
tion of

γR(t) = Reit, γε(t) = εeit t ∈ [0, π]; Lε,R := [−R,−ε], Hε,R := [ε,R].

You can use directly material from [5, Theorem 5.38, Remark 5.39].

Exercise 2.5. Find the principal values

pv

∫ ∞

−∞

sin2(x)

x2
dx.

Suggestion: Combine the outcome of Exercise 2.4 with integration by parts.
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Exercise 2.6. Find the principal value

pv

∫ ∞

−∞

sin2 x

x2(1 + x2)
dx.

Suggestion: Take into account that 2 sin2 x = 1 − cos(2x), and integrate f(z) = 1−e2iz

z2(1+z2)
in the

same paths as in Exercise 2.4.

Exercise 2.7. Use the Cauchy Residues Theorem to calculate, for each n ∈ N, the principal value

pv

∫ ∞

−∞

dx

1 + x2n
.

Suggestion: Integrate the function f(z) = (1 + z2n)−1 on the circular sector consisting of the
segment [0, R], the arc {Reit : t ∈ [0, π/n]}, and the segment [0, Reiπ/n].

Exercise 2.8. Use the Cauchy Residues Theorem to prove that

pv

∫ ∞

−∞

e−2πiξx

eπx + e−πx
dx =

1

eπξ + e−πξ
, ξ ∈ R.

Deduce that the Fourier Transform F(g) of the real function x 7→ g(x) = sech(πx) = (cosh(πx))−1

is precisely g.
Suggestion: For ξ > 0, integrate the function f(z) = e−2πiξz

eπz+e−πz in the rectangle of vertices −R,
R, R + 2i, −R + 2i. For ξ = 0, you can for example integrate the same function in the rectangle
with half the height of the previous one.

Exercise 2.9. Use the Cauchy Residues Theorem to prove that

pv

∫ ∞

0

xα−1

x+ 1
dx =

π

sin (απ)
, 0 < α < 1.

Suggestion: Consider the holomorphic branch log z of the logarithm in C \ [0,+∞), the power
function zα−1 = e(α−1) log z, and the function f(z) = zα−1/(z + 1). Integrate f in the closed path
ΓR,ε,δ given by an appropiate composition (possibly taking reverse paths) of the paths:

γR,δ(t) := Reit, γε,δ(t) := εeit, t ∈ [δ, 2π − δ], LR,ε,δ := [εeiδ, Reiδ], HR,ε,δ := [εe−iδ, Re−iδ].

Then let R→ ∞, ε, δ → 0+.

Exercise 2.10. Use the Cauchy Residues Theorem to find

pv

∫ ∞

0

log x

(x+ 1)3
dx.

Suggestion: Consider the same branch of logarithm and paths as in Exercise 2.9.

Exercise 2.11. Use the Cauchy Residues Theorem to find

pv

∫ ∞

0

log x

x2 − 1
dx.

Suggestion: Consider the same branch of logarithm and paths as those in Exercise 2.9, but replacing
HR,ε,δ := [εe−iδ, Re−iδ] with the composition of

ℓ1ε,δ,η :=
[
εe−iδ, (1− η

2 )e
−iδ
]
, στ,δ(t) = (1− η

2e
it)e−iδ, t ∈ [0, π], ℓ2δ,η,R =

[
(1 + η

2 )e
−iδ, Re−iδ

]
,

where η, ε, δ → 0 and R→ ∞.
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Exercise 2.12. Let w ∈ C \ Z. Given N ∈ N with N ≥ |w| + 100, let RN be the rectangle with
vertices

−(N + 1
2)− i(N + 1

2), −(N + 1
2) + i(N + 1

2), (N + 1
2) + i(N + 1

2), (N + 1
2)− i(N + 1

2),

and positive orientation. Also consider γ− ≡ ∂D(−w, ε) and γ+ ≡ ∂D(w, ε) with negative orien-
tation, where 2ε = dist(w,Z). For ΓN = γ− ∪ γ+ ∪RN , use Theorem 2.22 on Ω := C \ {±w}, to
deduce that

1

2πi

∫
ΓN

π cot(πz)

w2 − z2
dz =

N∑
n=−N

1

w2 − n2
.

Then calculate the integral above, and let N → ∞ to deduce that

π cot(πw)

w
=

∞∑
n=−∞

1

w2 − n2
.

Suggestion: To calculate the integral, it is convenient to show first that sup{| cot(πz)| : z ∈
RN , N ∈ N} <∞.

Exercise 2.13. Find the number of solutions to the equation z7 − 4z3 + z − 1 = 0 within the open
unit disk D(0, 1).

Exercise 2.14. Find the number of solutions to the equation z4 − 5z + 1 = 0 within the open sets:

(a) Ω = D(0, 1).

(b) Ω = {z ∈ C : 1 < |z| < 2}.

Exercise 2.15. Given 0 < r < 1, show that there exists N ∈ N so that, for each n ≥ N, the function

fn(z) = 1 + 2z + 3z2 + · · ·+ nzn−1, z ∈ C,

has no zeros inside the open disk D(0, r).

Exercise 2.16. Given r > 0, show that there exists N ∈ N so that, for each n ≥ N, all the zeros of
the function

fn(z) = 1 +
1

z
+

1

2!z2
+ · · ·+ 1

n!zn
, z ∈ C \ {0},

are inside the open disk D(0, r).
Suggestion: Compare gn(w) = fn(1/w) with the exponential ew in circles centered at the origin,

and apply Rouché’s Corollary 2.24.

Exercise 2.17. Let Ω ⊂ C be open, with D(0, 1) ⊂ Ω and f ∈ H(Ω) so that |f(z)| < 1 for all
z ∈ ∂D. Find the number of solutions to the equation f(z) = zn in D(0, 1).

Exercise 2.18. Prove that there exists no nonconstant polynomial P : C → C with |P (z)| < 1 for
all |z| = 1.

Exercise 2.19. Given λ > 1, show that the equation e−z + z = λ has precisely one solution zλ in
the half-plane {z ∈ C : Re(z) > 0}, and this solution zλ ∈ R. In addition, prove that lim

λ→1−
zλ = 0.
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Exercise 2.20. Let Ω be open and connected, and {fn}n≥1 ⊂ H(Ω) converging uniformly on compact
sets to a function f (necessarily holomorphic in Ω). Assume further that each fn is injective in Ω.
Prove that either f is constant in Ω or else f is injective in Ω.

Suggestion: Use Corollary 2.27 for appropriate functions.

Exercise 2.21. Let Ω be open and connected, and {fn}n≥1 ⊂ H(Ω) converging uniformly on compact
sets to a nonconstant function f0 ∈ H(Ω). Prove that for every z0 ∈ Ω there exists {zn}n≥1 ⊂ Ω
and N ∈ N so that

lim
n→∞

zn = z0, and fn(zn) = f0(z0) for all n ≥ N.

Suggestion: Use Hurwitz’s Theorem 2.26 for appropriate functions.
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Chapter 3

Convergence of Holomorphic Functions

Weierstrass’s Convergente Theorem says that the locally uniform limit of holomorphic functions
is holomorphic, and that the sequence of derivatives converges to the derivatives of the limit,
also locally uniformly. We wish to determine whether a sequence {fn}n of holomorphic functions
has a (locally-uniform) convergent subsequence. The first observation is that, since every disk of
C is relatively compact, the locally uniform convergence within an open set Ω is equivalent to
the uniform convergence on each compact subset of Ω. Then, we will equip the space C(Ω,C)
of all continuous functions f : Ω → C with a topology, on which the convergence is exactly
the same as the convergence in compact subsets of Ω. This is achieved via the Compact-Open
Topology. This topology is metrizable, meaning that its open sets can be described as union of open
balls with respect to some distance ρ, thus allowing us to use sequential criteria for closures and
compactness of subsets F of C(Ω,C). But the key theorem is that of Arzelà-Ascoli, which provides
a characterization of the relatively compact subsets of C(Ω,C), in terms of equicontinuity and
local boundedness. As shown by Montel’s Theorem 3.16, a locally bounded family of holomorphic
functions is equicontinuous, and therefore it has a subsequence converging uniformly on compact
subsets. We also record Vitali’s Theorem 3.19, where we obtain converge of the original sequence
(instead of a subsequence). Finally, Osgood’s Theorem 3.20 states that the pointwise limit of
holomorphic functions is holomorphic in a dense open subset, and the converge is locally uniform
within that set.

We begin by reminding the Weierstrass’s Convergence Theorem.

Theorem 3.1 (Weierstrass Theorem). Let Ω ⊂ C be open, f : Ω → C a function, and let {fk : Ω →
C}k be sequence of holomorphic functions in Ω converging locally uniformly to f in Ω. Then,

(i) f is holomorphic in Ω.

(ii) For every n ∈ N, the sequence of nth-derivatives {f (n)k : Ω → C}k converges locally uniformly
in Ω to the nth-derivative f (n) of f .

Proof. See [5, Theorem 4.37]

Again, it is worth pointing out that locally uniform convergence in Ω is exactly the same as
the uniform convergence on each compact subset of Ω.

3.1 The Compact-Open Topology

In this section we construct the Compact-Open Topology, and the corresponding metrics. We allow
for the continuous functions to the metric valued (X, d), instead of only C-valued. We remind below
the definitions of metric and pseudometric spaces.
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3.1.1 Nested families of Compact Sets

Definition 3.2 (Nested Families of Compact Sets). Let Ω ⊂ C be an open set. A nested family
of compact sets in Ω is a sequence {Kn}n∈N of compact subsets of Ω satisfying the properties

• Kn ⊂ int(Kn+1) for all n ∈ N.

•
⋃
n∈N

Kn =
⋃
n∈N

int(Kn) = Ω.

Consequently, for any compact K ⊂ Ω, there exists n ∈ N with K ⊂ Kn.

Although definitely not unique, each open set has a nested family of compact sets.

Proposition 3.3. For every Ω ⊂ C open, there exists a nested family of compact sets in Ω.

Proof. We define

Kn := D(0, n) ∩ {z ∈ Ω : dist(z,C \ Ω) ≥ 1/n} , n ∈ N.

ObviouslyKn ⊂ Ω andKn is bounded. ThatKn is closed follows from the continuity of the distance
function C ∋ z 7→ dist(z,C \ Ω). Also observe that Also, since {z ∈ Ω : dist(z,C \ Ω) ≥ 1/n} is
open, we have that

int(Kn+1) = int
(
D(0, n+ 1)

)
∩ int ({z ∈ Ω : dist(z,C \ Ω) ≥ 1/(n+ 1)})

⊃ D(0, n) ∩ {z ∈ Ω : dist(z,C \ Ω) > 1/(n+ 1)}

⊃ D(0, n) ∩ {z ∈ Ω : dist(z,C \ Ω) ≥ 1/n} = Kn.

Finally, for every z ∈ Ω, there exists ε > 0 with D(z, ε) ⊂ Ω, whence dist(z,C \ Ω) ≥ ε. If n ∈ N
is large enough so that |z| ≤ n and ε > 1/n, we have that z ∈ Kn. This proves the properties of
Definition 3.2 for {Kn}n∈N.

We will construct an appropriate distance between continuous functions associated with a
nested family of compact sets. First we recall the definitions metric and pseudometric.

Definition 3.4 (Metric and Pseudometric). If A is a set, a pseudometric or pseudodistance in
A is a function ρ : A×A→ [0,+∞) so that

• ρ(x, x) = 0 for all x ∈ A. [Reflexivity]

• ρ(x, y) = ρ(y, x) for all x, y ∈ A. [Symmetry]

• ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ A. [Triangle Inequality]

We often say that then (A, ρ) is a pseudometric space.
If, in addition, ρ has the property

ρ(x, y) = 0 =⇒ x = y, x, y ∈ A;

then we say that ρ is a metric or distance in A, and that (A, ρ) is a metric space.

The following lemma permits to create bounded distances from an arbitrary metric.

Lemma 3.5. Let (A, ρ) be a pseudometric space. Then

ρ̃(x, y) :=
ρ(x, y)

1 + ρ(x, y)
, x, y ∈ A,

defines a pseudometric in A. If, in addition, ρ is a metric in A, then ρ̃ is a metric as well.
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Proof. Only the triangle inequality of ρ̃ is non-trivial. Notice that the function φ : [0,+∞) → [0, 1]
given by φ(t) = t

1+t , t ≥ 0, is increasing in [0,+∞). This property, along with the triangle inequality
for ρ implies that, for all points x, y, z ∈ A, we have that

ρ̃(x, z) =
ρ(x, z)

1 + ρ(x, z)
≤ ρ(x, y) + ρ(y, z)

1 + ρ(x, y) + ρ(y, z)
≤ ρ(x, y)

1 + ρ(x, y)
+

ρ(y, z)

1 + ρ(y, z)
= ρ̃(x, y) + ρ̃(y, z).

In the sequel, for an open set Ω ⊂ C and a metric space (X, d), we denote the family of all
continuous functions from Ω to X by C(Ω, X).

Proposition 3.6. Let Ω ⊂ C be open, K = {Kn}n∈N a nested family of compact sets in Ω, and
(X, d) a metric space. We define, for all f, g ∈ C(Ω, X),

ρK(f, g) :=
∞∑
n=1

1

2n
ρKn(f, g)

1 + ρKn(f, g)
, where ρKn(f, g) := max{d(f(z), g(z)) : z ∈ Kn}, n ∈ N.

(3.1.1)
Then (C(Ω, X), ρKn) is a pseudometric space for every n ∈ N, and (C(Ω, X), ρK) is a metric space.

Proof. Using that d is a metric in X, taking into account Lemma 1.27, it is easily seen that both
ρKn and ρH are pseduometrics. In addition, if f, g ∈ C(Ω, F ) are so that ρK(f, g) = 0, we have
that ρKn(f, g) = 0 for all n ∈ N. From the definition of ρKn , this clearly implies that f = g in Kn,
and for each n ∈ N. Since the union of {Kn}n∈N is all of Ω, this implies that f = g in Ω.

3.1.2 Compact-Open Topology. Convergence and Metrizability

As we did in Proposition 3.6, for each compact set K ⊂ C, and (X, d) a metric space, we define

ρK(f, g) := sup{d(f(z), g(z)) : z ∈ K}, f, g ∈ C(Ω, X).

Proposition 3.7. Let Ω ⊂ C be open, (X, d) a metric space, and K := {Kn}n∈N be a nested family
of compact sets in Ω. For the metric ρ := ρK associated with K as in (3.1.1), and the metric space
(C(Ω, X), ρ), the following properties hold.

(i) For every ε > 0, we can find δ > 0 and a compact set K ⊂ Ω so that, for all f, g ∈ C(Ω, X),
one has

ρK(f, g) ≤ δ =⇒ ρ(f, g) ≤ ε.

(ii) For every ε > 0 and every K ⊂ Ω compact, we can find δ > 0 so that, for all f, g ∈ C(Ω, X),
one has

ρ(f, g) ≤ δ =⇒ ρK(f, g) ≤ ε.

(iii) If A ⊂ C(Ω, X), the following statements are equivalent.

(a) A is open in the metric space (C(Ω, X), ρ) .

(b) For every f ∈ A there exists δ > 0 and a compact set K ⊂ Ω so that

{g ∈ C(Ω, X) : ρK(f, g) ≤ δ} ⊂ A.

(iv) For functions {fn}n≥0 ⊂ C(Ω, X), the following statements are equivalent.

(a) {fn}n≥1 converges to f0 in the metric space (C(Ω, X), ρ) .

(b) For every j ∈ N, we have {fn}n≥1 converges uniformly to f0 on Kj .

(c) For every compact K ⊂ Ω, the sequence {fn}n≥1 converges to f0 uniformly on K.
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(v) (C(Ω, X), ρ) is a metric space, which is complete if (X, d) is complete.

(vi) Let H := {Hn : n ∈ N} be another nested family of compact sets in Ω, and ρH the associated
metric as in (3.1.1). Then ρ and ρH are uniformly equivalent, that is, given ε > 0 there
exists δ > 0 so that if f, g ∈ C(Ω, X) are so that ρH(f, g) ≤ δ, then ρ(f, g) ≤ ε.

Proof.

(i) Given ε > 0, we can find N ∈ N so that
∑

n≥N 2−n ≤ ε/2. Define K := KN and δ = ε/2. If
f, g ∈ C(Ω, X) are so that ρK(f, g) ≤ ε/2, then

ρ(f, g) =

N∑
n=1

1

2n
ρKn(f, g)

1 + ρKn(f, g)
+

∞∑
n=N+1

1

2n
ρKn(f, g)

1 + ρKn(f, g)
≤

N∑
n=1

1

2n
ε

2
+
ε

2
< ε.

(ii) By the properties of nested families, if K ⊂ Ω is compact, there exists j ∈ N with K ⊂ Kj . If
φ : [0,∞) → R is the real function φ(t) = t

1+t , we define η = φ(ε) and δ = η/2j . For functions
f, g ∈ C(Ω, X) so that ρ(f, g) ≤ δ, we have that

φ(ρKj (f, g)) =
ρKj (f, g)

1 + ρKj (f, g)
≤ ρ(f, g) ≤ δ,

that is, φ(ρKj (f, g)) ≤ η = φ(ε). Since φ is increasing, we may conclude

ρK(f, g) ≤ ρKj (f, g) ≤ ε.

(iii) Assume that (a) holds. Since A is open, for each f ∈ A there exists ε > 0 with the property

Bρ(f, ε) := {g ∈ C(Ω, X) : ρ(f, g) ≤ ε} ⊂ A.

Using (i), we find δ > 0 and a compact subset K of Ω for which

{g ∈ C(Ω, X) : ρK(f, g) ≤ δ} ⊂ Bρ(f, ε) ⊂ A.

Thus we have shown (b).
Conversely, assume that (b) holds, and let f ∈ A. By the assumption, there are δ > 0 and

K ⊂ Ω compact with
{g ∈ C(Ω, X) : ρK(f, g) ≤ δ} ⊂ A.

Using (ii), we get ε > 0 so that

Bρ(f, ε) := {g ∈ C(Ω, X) : ρ(f, g) ≤ ε} ⊂ {g ∈ C(Ω, F ) : ρK(f, g) ≤ δ} ⊂ A.

Thus the ball Bρ(f, ε) ⊂ A.

(iv) Assuming (a), for each j ∈ N, one has

lim
n→∞

1

2j
ρKj (fn, f0)

1 + ρKj (fn, f0)
≤ lim

n→∞
ρ(fn, f0) = 0,

whence lim
n→∞

ρKj (fn, f0) = 0. This means that {fn}n≥1 converges uniformly on Kj to f, and (b) is
proven.

The implication (b) =⇒ (c) is a consequence of the properties of nested families of compact
sets.

Finally, if (c) holds, and ε > 0, let J ∈ N so that
∑

j>J 2
−j ≤ ε/2. For the compact J-first

compacts {K1, . . . ,KJ} of the nested family, we cand find N ∈ N so that

J∑
j=1

1

2j
ρKj (fn, f0)

1 + ρKj (fn, f0)
≤ ε

2
, n ≥ N.

Thus, for n ≥ N, we may write

ρ(fn, f0) =

J∑
j=1

1

2j
ρKj (fn, f0)

1 + ρKj (fn, f0)
+

∞∑
j=J+1

1

2j
ρKj (fn, f0)

1 + ρKj (fn, f0)
≤ ε

2
+

∞∑
j=J+1

1

2j
≤ ε.
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(v) We know already from Proposition (3.6) that ρ is a metric. Assume that (X, d) is a complete
metric space, and let {fn}n≥1 ⊂ C(Ω, X) a Cauchy sequence in the metric ρ. Clearly, we get
that, in particular, for each z ∈ Ω, the sequence {fn(z)}n≥1 ⊂ F is Cauchy, and so there exists
f(z) := lim

n→∞
fn(z). On the other hand, for each j ∈ N, the sequence of restrictions {fn↾Kj}n≥1 to

Kj is also a Cauchy sequence in (C(Kj , X), ρKj ). Thus, {fn↾Kj}n≥1 converges uniformly in Kj to
some function, which necessarily must be f↾Kj , from which we get the continuity of f in Kj . Since
{Kj}j is a nested sequence, we may conclude that f ∈ C(Ω, X). Since we have shown that {fn}n≥1

converges to f uniformly on each Kj , by (iv), we get that {fn}n converges to f with respect to
the metric ρ.

(vi) Let ε > 0, and N ∈ N so that
∑

n>N 2−n ≤ ε/2. Since {Hm}m≥1 is a nested family in Ω, we
can find M ∈ N with KN ⊂ HM . Note that then

ρKn(f, g) ≤ ρKN
(f, g) ≤ ρHM

(f, g), n = 1, . . . , N, f, g ∈ C(Ω, X). (3.1.2)

The function φ(t) = t
1+t : [0,∞) → [0, 1) is continuous and increasing, and so we can find η > 0

so that

f, g ∈ C(Ω, X), ρHM
(f, g) ≤ η =⇒ ρHM

(f, g)

1 + ρHM
(f, g)

≤ ε

2
.

Together with (3.1.2), this implies that

f, g ∈ C(Ω, X), ρHM
(f, g) ≤ η =⇒

N∑
n=1

1

2n
ρKn(f, g)

1 + ρKn(f, g)
≤ ρHM

(f, g)

1 + ρHM
(f, g)

N∑
j=1

1

2n
≤ ε

2
. (3.1.3)

But clearly

ρH(f, g) ≥
1

2M
ρHM

(f, g)

1 + ρHM
(f, g)

≥ ρHM
(f, g)

2M
.

So, letting δ := 2−Mη one has that ρH(f, g) ≤ δ implies ρHM
(f, g) ≤ η, and therefore, using (3.1.3)

and the choice of N, we may conclude

ρK(f, g) =
N∑

n=1

1

2n
ρKn(f, g)

1 + ρKn(f, g)
+

∞∑
n=N+1

1

2n
ρKn(f, g)

1 + ρKn(f, g)
≤ ε

2
+

∞∑
n=N+1

1

2n
≤ ε

2
+
ε

2
= ε.

Proposition 3.7 tells us how to define the topology of the uniform convergence in compact sets.

Definition 3.8 (Compact-Open Topology). Let Ω ⊂ C and (X, d) a metric space. The compact-
open topology τco in C(Ω, X) is the topology associated with the distance ρK; where K = {Kn}n∈N
is a nested family of compact sets in Ω. In other words, if BρK(f, ε) denotes the open ball respect
to the metric τco, centered at f and with radius ε, we have that

τco := {U ⊂ C(Ω, X) : for every f ∈ U there is ε > 0 with BρK(f, ε) ⊂ U}.

The topologycal space (C(Ω, X), τco) is metrizable, and does not depend on the chosen nested
family K. Moreover, if (X, d) is complete, (C(Ω, X), ρK) is complete as well.

3.2 The Arzelà-Ascoli Theorem

Throughout this section, if Ω is open and (X, d) is a metric space, C(Ω, X) is equipped with the
Compact-Open topology from Definition 3.8.



46

3.2.1 Equicontinuous Families

Definition 3.9 (Equicontinuity). Let A ⊂ C be a set, and (X, d) a metric space. A set F ⊂ C(A,X)
is equicontinuous at z0 ∈ A if

for every ε there exists δ > 0 so that sup{d(f(z), f(z0)) : z ∈ D(z0, δ) ∩A, f ∈ F} ≤ ε.

We also say that F is equicontinuous if F is equicontinuous at every z0 ∈ A.

The statement of Arzelà-Ascoli theorem contains several topological concepts in metric spaces,
that are convenient to refresh.

Remark 3.10 (Topology in Metric Spaces). Let (Y, d) be any metric space, which in the sequel will
play the role of (X, d) or (C(Ω, X), ρ). We recall the following.

(1) A subset A ⊂ (Y, d) is totally bounded if for every ε > 0 there are finitely-many (open) balls
B(y1, ε), . . . , B(yn, ε) in Y whose union contains A.

(2) A subset A ⊂ (Y, d) is compact if for every collection {Uα}α∈Λ of open subsets of Y whose
union contains A, there is a finite subcollection {Uα1 , . . . , Uαn} of {Uα}α∈Λ whose union still
contains A.

(3) A subset A ⊂ (Y, d) is relatively compact if there exists K ⊂ (Y, d) compact, with A ⊂ K.
Since closed subsets of compact sets are also compact, A is relatively compact if and only if
the closure A of A is compact in (Y, d).

(4) The Bolzano-Weierstrass Theorem: A set A ⊂ (Y, d) is compact if and only A is sequentially
compact. The latter means that every sequence {yn}n≥1 ⊂ A has a convergent subsequence
to some y ∈ A.

(5) In the metric space (Y, d), closures of sets can be characterize via sequences. More precisely,
if A ⊂ (Y, d), we have that y ∈ A if and only if there exists a sequence {yn}n≥1 ⊂ A with
lim
n→∞

d(yn, y) = 0.

Since the closure of A is, by the definition, the smallest closed subset containing A, the above
implies that a set A is closed if and only if for every sequence {yn}n≥1 ⊂ A convergent to
y ∈ Y, we have that y ∈ A as well.

(6) The metric space (Y, d) is complete if every Cauchy sequence {yn}n ⊂ (Y, d) is convergent
(in the metric d) to some y ∈ Y. Assuming that (Y, d) is complete, the following equivalences
for a set A ⊂ (Y, d) are a consequence of Bolzano-Weierstrass Theorem:

(6a) A is compact ⇐⇒ A is closed and totally bounded.

(6b) A is relatively compact ⇐⇒ A is totally bounded.

We now state some properties involving equicontinuity and these topological concepts.

Proposition 3.11. Let Ω ⊂ C be open, (X, d) a metric space, and F ⊂ C(Ω, X). Then

(i) The following statements are equivalent.

(a) F is totally bounded.

(b) For every compact K ⊂ Ω and ε > 0 there are f1, . . . , fN ∈ F so that, for all f ∈ F we
can find j ∈ {1, . . . , N} with sup{d(f(z), fj(z)) : z ∈ K} ≤ ε.

(ii) F is equicontinuous if and only if F is equicontinuous.

(iii) If z0 ∈ Ω, the following statements are equivalent.
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(a) F(z0) := {f(z0) : f ∈ F} is relatively compact in X.

(b) F(z0) is relatively compact in X.

Proof.

(i) Assume that (a) holds, and fix ε > 0 and K ⊂ Ω compact. By Proposition 3.7(ii) there exists
δ > 0 so that

f, g ∈ C(Ω, X), ρ(f, g) ≤ δ =⇒ sup{d(f(z), g(z)) : z ∈ K} ≤ ε. (3.2.1)

If F is totally bounded, there are functions f1, . . . , fn ∈ F so that for every f ∈ F we can find
j ∈ {1, . . . , n} with ρ(f, fj) ≤ δ, and then sup{d(f(z), fj(z)) : z ∈ K} ≤ ε, thanks to (3.2.1). This
shows (b).

Now assume that (b) holds, and let ε > 0. By Proposition 3.7(i), there are δ > 0 and K ⊂ Ω
compact with

f, g ∈ C(Ω, X), sup{d(f(z), g(z)) : z ∈ K} ≤ δ =⇒ ρ(f, g) ≤ ε. (3.2.2)

By the assumption, there are functions f1, . . . , fn ∈ F so that for every f ∈ F one has sup{d(f(z), fj(z)) :
z ∈ K} ≤ δ for one of those fj .We get from (3.2.2) that ρ(f, fj) ≤ ε, which shows that F is totally
bounded.

(ii) Since F ⊂ F , if F is equicontinuous, then F is equicontinuous as well. Conversely, if F is
equicontinuous, z ∈ Ω and ε > 0, there are δ > 0 so that D(z, δ) ⊂ Ω and

sup{d(g(w), g(z)) : g ∈ F , w ∈ D(z, δ)} ≤ ε. (3.2.3)

For each f ∈ F , there is a sequence {fn}n≥1 ⊂ F convergent to f in the metric ρ. But this implies,
in particular, that lim

n→∞
d(fn(w), f(w)) = 0 for all w ∈ Ω. Since (3.2.3) holds replacing g with fn,

taking the limit we get that also

sup{d(f(w), f(z)) : w ∈ D(z, δ)} ≤ ε.

This proves the equicontinuity of F , since f ∈ F is arbitrary, and δ depends only on z.

(iii) Notice that F(z0) ⊂ F(z0), and so the former is relatively compact when then latter is.
Also observe that F(z0) ⊂ F(z0). Indeed, if f ∈ F , we can find a sequence {fn}n≥1 ⊂ F

convergent to f in the metric ρ. Consequently, lim
n→∞

d(fn(z0), f(z0)) = 0, and thus f(z0) ⊂ F(z0).

This proves that F(z0) ⊂ F(z0).
Now, if F(z0) is relatively compact, then F(z0) is compact, and by what we have just proved,

F(z0) is relatively compact.

3.2.2 The Arzelà-Ascoli Theorem and Consequences

We are ready to prove the Arzelà-Ascoli Theorem, which characterizes the compact subsets of
(C(Ω, X), ρ), for Ω ⊂ C open, and (X, d) a complete metric space.

Theorem 3.12 (Arzelà-Ascoli Theorem). Let Ω ⊂ C be open, (X, d) a complete metric space, and
F ⊂ C(Ω, X). Equipping C(Ω, X) with the open compact topology, the following statements are
equivalent.

(i) F is closed, equicontinuous, and F(K) is a compact subset of (X, d) for each compact subset
K ⊂ Ω.

(ii) F is closed, equicontinuous, and F(z) is a compact subset of (X, d) for all z ∈ Ω.

(iii) F is closed, equicontinuous, and F(z) is relatively compact in (X, d) for all z ∈ Ω.
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(iv) F is compact.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are obvious.

Now, let ρ be a metric in (C(Ω, X), τco), associated with a nested family of compact sets in Ω.
By Proposition 3.6(v), we know that (C(Ω, X), ρ) is a complete metric space.

(iii) =⇒ (iv) : Since F is closed, and (C(Ω, X), ρ) is complete, F is compact if and only if F
is totally bounded. By Proposition 3.11(i), it suffices to show that F satisfies property (ii)(b) of
Proposition 3.11.

Let ε > 0 and K ⊂ Ω compact. Since F is equicontinuous, for each z ∈ K, we can find a disk
D(z, δz) ⊂ Ω so that

sup{d(f(z), f(w)) : w ∈ D(z, δz), f ∈ F} ≤ ε

3
. (3.2.4)

By the compactness of K, we can find z1, . . . , zn ∈ K so that

K ⊂
n⋃

k=1

D(zk, δk); (3.2.5)

where we have abbreviated δk = δzk . We define new elements

L :=
n⋃

k=1

F(zk); φ : F → Ln, φ(f) := (f(z1), . . . , f(zn)) , for all f ∈ F .

By the assumption, each F(zk) is relatively compact, and so L is a compact subset of X. With the
distance

dn
(
{xk}nk=1, {x′k}nk=1

)
:= max{d(xk, x′k) : k = 1, . . . , n}, for all {xk}nk=1, {x′k}nk=1 ∈ Ln,

the space (Ln, dn) is metric and compact. Since φ(F) is totally bounded with the metric dn (as a
subset of Ln), we can find functions f1, . . . , fN ∈ F so that

φ(F) ⊂
N⋃
j=1

Bdn(φ(fj), ε/3).

In other words, given any f ∈ F , we can find fj ∈ F for which

max{d (f(zk), fj(zk)) : k = 1, . . . , n} ≤ ε

3
. (3.2.6)

Now, for any z ∈ K, by (3.2.5) there exists k ∈ {1, . . . , n} with z ∈ D(zk, δk). Using (3.2.4) for f
and for fj and the points z and zj , and also (3.2.6), we get, by the triangle inequality, that

d(f(z), fj(z)) ≤ d(f(z), f(zk)) + d(f(zk), fj(zk)) + d(fj(zk), fj(z)) ≤
ε

3
+
ε

3
+
ε

3
= ε.

(iv) =⇒ (i) : Clearly F is closed, because F is compact.

Let us now check that if K ⊂ Ω is compact, then F(K) is a compact subset of (C(Ω, X), ρ). In
metric spaces, the compact sets are precisely the sequentially compact sets. So, given a sequence
{fn(zn)}n≥1 ⊂ F(K); where {zn}n≥1 ⊂ K and {fn}n≥1 ⊂ F , we need to find f0 ∈ F and z0 ∈ K
and a subsequence of {fn(zn)}n≥1 converging to f0(z0) in the metric d. By the assumption, F is
compact in (C(Ω, X), ρ) and K is compact, passing to subsequences if necessary, we may assume
that there exists f0 ∈ F and z0 ∈ K with

lim
n→∞

ρ(fn, f0) = 0, and lim
n→∞

|zn − z0| = 0. (3.2.7)
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Our claim is that {fn(zn)}n≥1 converges to f0(z0) in the metric d. Indeed, by (3.2.7) and Proposition
3.7, the convergence of fn to f0 is uniformly on K. But using also the continuity of f0 : Ω → X
and that {zn}n≥1, we can find N ∈ N so that simultaneously

max{d(fn(z), f0(z)) : z ∈ K} ≤ ε

2
, and d (f0(zn), f0(z0)) ≤

ε

2
, n ≥ N.

By the triangle inequality,

d(fn(zn), f0(z0)) ≤ d(fn(zn), f0(zn)) + d (f0(zn), f0(z0)) ≤
ε

2
+
ε

2
= ε, whenever n ≥ N.

This proves our claim, and not it only remains to check that F is equicontinuous. Indeed, otherwise,
we can find z0 ∈ Ω, ε > 0 and sequences {fn}n≥1 ⊂ F , {zn}n≥1 ⊂ Ω satisfying

lim
n→∞

zn = z0 and yet d (fn(zn), fn(z0)) ≥ ε, for all n ≥ 1. (3.2.8)

As in the previous argument, we may assume that {fn}n≥1 converges to f0 in the metric ρ, and
that lim

n→∞
d(fn(zn), f0(z0)) = 0. But then (3.2.8) yields

0 = lim
n→∞

d(fn(zn), f0(z0)) ≥ lim sup
n→∞

d(fn(zn), fn(z0))− lim
n→∞

d(fn(z0), f0(z0)) ≥ ε,

a contradiction. Observe that we used that lim
n→∞

d(fn(z0), f0(z0)), as {fn}n≥1 converges to f0

uniformly on each compact susbet of Ω.

Corollary 3.13. Let Ω ⊂ C be open, (X, d) a complete metric space, and F ⊂ C(Ω, X). Equipping
C(Ω, X) with the open compact topology, the following statements are equivalent.

(i) F is relatively compact.

(ii) F is equicontinuous and F(w) is a relatively compact subset of (X, d) for all w ∈ Ω.

Proof. The set F is relatively compact if and only if (by definition) F is compact. From the
equivalence (iii) ⇐⇒ (iv) of Theorem 3.12 and Proposition 3.11, we get the desired equivalence.

Corollary 3.14. Let Ω ⊂ C be open, (X, d) a complete metric space, and F := {fn}n≥1 ⊂ C(Ω, X)
a sequence. The following hold.

(i) If F is equicontinuous, and all the sets F(z), z ∈ Ω, are relatively compact in (X, d), then
there exists is a subsequence {fnk

: k ∈ N} convergent to some f ∈ C(Ω, X) in the compact-
open topology.

(ii) If F is equicontinuous and pointwise convergent, then {fn}n≥1 converges to some f ∈
C(Ω, X) in the compact-open topology.

Proof.

(i) By Corollary 3.13, F is relatively compact in the metric space (C(Ω, X), and then (i) follows.

(ii) The sequence (set) F is pointwise convergent, and that means, for all w ∈ Ω, the F(w) is
convergent sequence in X. Therefore, F(z) is relatively compact for all z ∈ Ω. Applying (i), we
find a subsequence {fnk

: k ∈ N} of {fn}n≥1 convergent to f ∈ C(Ω, X).
We need to show that the original sequence {fn}n≥1 converges to f in the metric ρ. Assume for

the sake of contradiction, that there exists ε > 0 and a subsequence {fmj}j≥1 with ρ(fmj , f) ≥ ε

for all j ∈ N. The set F̃ := {fmj : j ∈ N} is equicontinuous (as F is), and F̃(z) is relatively
compact in (X, d) for all z ∈ Ω. By (i), we can find a subsequence, which we keep denoting by
{fmj}j∈N, converging to some g ∈ C(Ω, X) in the metric ρ. By the continuity of the metric ρ, we
get that ρ(f, g) ≥ ε. However, for {fmj}j∈N converges pointwise to g, and must coincide with the
pointwise limit of {fnk

}k∈N, which is the function f. We obtain that f = g, a contradiction.
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3.3 Normal Families and Montel’s Theorem

Definition 3.15 (Normal Family). Let Ω ⊂ C be open, and F ⊂ C(Ω,C) be a family of functions.
We equip C(Ω,C) with the metric ρ from Definition 3.8. We say that

• F is a a normal family in Ω if F is compact in (C(Ω,C), ρ) , that is, if F is relatively
compact in (C(Ω,C), ρ) .

• F is locally bounded in Ω if for every z0 ∈ Ω there exists r > 0 so that D(z0, r) ⊂ Ω and
F(D(z0, r)) is a bounded subset of C. Here,

F(D(z0, r)) := {f(w) : f ∈ F , w ∈ D(z0, r)}.

Theorem 3.16 (Montel’s Theorem). Let Ω ⊂ C be open, and F ⊂ H(Ω) a family of holomorphic
functions in Ω. The following statements are equivalent.

(i) F is normal.

(ii) F is locally bounded.

Proof.

(i) =⇒ (ii): Since F is normal, F is compact, and by the Arzelà-Ascoli Theorem 3.12, we get
that F(K) is relatively compact (thus bounded) in C, for each compact K ⊂ Ω.

(ii) =⇒ (i): Since F is locally bounded, all the sets F(z), z ∈ Ω, are relatively compact in
C. By Corollary 3.13, it suffices to check that F is equicontinuous in Ω. Given z0 ∈ Ω, by the
assumption, we can find r > 0 be so that D(z0, 2r) ⊂ Ω and F(D(z0, 2r)) is bounded. Thus there
exists M ≥ 1 so that F(D(z0, 2r)) ⊂ D(0,M). We can apply the Cauchy Integral Formula (for
example, Corollary 1.2) to f ∈ F over the circle γ ≡ ∂D(z0, 2r) to obtain, for each z ∈ D(z0, r),

|f(z)− f(z0)| =
∣∣∣∣ 1

2πi

∫
γ

(
f(w)

w − z
− f(w)

w − z0

)
dw

∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
γ
f(w)

z − z0
(w − z)(w − z0)

dw

∣∣∣∣
=

∣∣∣∣ 1

2πi

∫ 2π

0
f(z0 + 2reit)

z − z0
(z0 + 2reit − z)2reit

· 2ireit dt
∣∣∣∣

≤ 1

2π

∫ 2π

0

|f(z0 + 2reit)|
2r − |z − z0|

|z − z0|dt ≤
M

r
|z − z0|. (3.3.1)

Given ε > 0, we take 0 < δ ≤ εr/M , and if z ∈ D(z0, r) we get that

|f(z)− f(z0)| ≤ ε,

by virtue of (3.3.1). Since the choice of δ does not depend on f ∈ F , this shows that F is
equicontinuous at z0, thus equicontinuous in Ω because z0 ∈ Ω is arbitrary.

Corollary 3.17. Let Ω ⊂ C be open, and F ⊂ H(Ω) a set. The following statements are equivalent.

(i) F is compact.

(ii) F is closed and locally bounded.

Proof. It is immediate from Montel’s Theorem 3.16.

For sequences, Montel’s Theorem 3.16 read us follows.

Corollary 3.18. Let Ω ⊂ C be open, and {fn}n≥1 ⊂ H(Ω) a locally bounded sequence. Then there
exists a subsequence {fnk

}k≥1 converging to some f ∈ H(Ω) uniformly on compact subsets of Ω.

Proof. By Montel’s Theorem 3.16, {fn}n≥1 is a normal family, that is, a relatively compact subset
of the metric space (C(Ω,C), ρ). By Bolzano-Weierstrass theorem, there exists a subsequence
{fnk

}k≥1 convergent to some f ∈ C(Ω,C) in the metric ρ. But this is precisely the uniform
convergence in compact subsets of Ω. And by Weierstrass Theorem 3.1, f ∈ H(Ω).
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3.3.1 Vitali’s Theorem and Osgood’s Theorem

Concerning the convergence of the original sequence (instead of a subsequence), we have the
following theorem due to Vitali. See also Exercise 3.8.

Theorem 3.19 (Vitali). Let Ω ⊂ C be open and connected, f ∈ H(Ω) and {fn}n≥1 ⊂ H(Ω) a locally
bounded sequence. For the set

A := {z ∈ Ω : lim
n→∞

fn(z) = f(z)},

assume that A′ ∩ Ω ̸= ∅. Then {fn}n≥1 converges to f uniformly on compact subsets of Ω.

Proof. Suppose, for the sake of contradiction, that there exists a compact K ⊂ Ω so that {fn}n
does not converge to f uniformly on K. Then we can find a subsequence {fnj}j of {fn}n with

sup
z∈K

|fnj (z)− f(z)| ≥ ε for all j ∈ N. (3.3.2)

But {fnj}j is locally bounded in Ω (as {fn}n is), and by Corollary 3.18, we can find a further
subsequence {fnmj

}j of {fnj}j converging uniformly on compact subsets of Ω to some g ∈ H(Ω).

Clearly g = f in the set A. Since Ω is connected and A′ ∩ Ω ̸= ∅, by the Identity Principles for
Analytic Functions, we deduce that f = g in Ω. In particular, we get that {fnmj

}j converges

uniformly on K to f, which contradicts (3.3.2).

Finally, we record the following result of Osgood, showing that pointwise convergence of holo-
morphic functions implies uniformly convergence in compact subsets of a dense open subset.

Theorem 3.20 (Osgood). Let Ω ⊂ C be open and {fn}n≥1 ⊂ H(Ω) converging pointwise to a
function f : Ω → C in Ω. Then there exists an open set V ⊂ Ω dense in Ω so that f ∈ H(V ) and
{fn}n≥1 converges to f uniformly on compact subsets of V.

Proof. We will first prove that given any open subset U of Ω with U ⊂ Ω, we can find a nonempty
open subsetWU of U so that {fn}n≥1 converges to f uniformly on compact subsets ofWU . Indeed,
consider the subsets of U given by

Ek := {z ∈ U : |fn(z)| ≤ k for all n ∈ N}, k ∈ N.

Because of the pointwise convergence of {fn} (to f) in Ω, we have that U =
⋃
k∈N

Ek. Note also that

Ek ⊂ Ek+1 for all k ∈ N. Therefore we can find k0 ∈ N so that Ek ̸= ∅ for all k ≥ k0. Therefore,
we can write

U =
∞⋃

k=k0

Ek.

Since U is complete (as a closed subset of C), and {Ek}k≥k0 are nonempty closed subsets whose
union is U, by Baire’s Category Theorem, at least one Ek must have nonempty interior. That is
Ek contains an open set WU . But also note that

|fn(z)| ≤ k for all z ∈WU , n ∈ N.

In particular {fn}n is locally (actually globally) bounded in the set WU . By Montel’s Theorem
3.16, {fn}n is a normal family in WU , thus relatively compact in (C(WU ,C), ρ). By the pointwise
convergence to f, combining Corollaries 3.13–3.14 we deduce that {fn}n≥1 converges to f uniformly
on compact subsets of WU .

Now, given any z ∈ Ω, there exists jz ∈ N so that D(z, 1/j) ⊂ Ω for all j ≥ jz. Let Wz,j :=
WD(z,1/j) denote the open set associated with D(z, 1/j) as above. We define

V :=
⋃
z∈Ω

∞⋃
j=jz

Wz,j .
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Being the union of open sets, V is open. Also, given z ∈ Ω and ε > 0, we can find j ≥ jz so that
1/j ≤ ε/2. Then, since Wz,j is a nonempty subset of D(z, 1/j), there exists ξ ∈ Wz,j ⊂ D(z, 1/j),
implying that |z − ξ| ≤ 1/j < ε. This shows that V is dense in Ω. Finally, if K ⊂ V is compact,
then K is contained in the union of finitely-many of those Wz,j , z ∈ Ω, j ≥ jz, z ∈ Ω. Relabelling
those (z, j) as α1, . . . , αm, we have that

K ⊂
N⋃
l=1

Wαl
.

But recall that {fn}n converges uniformly to f in compact subsets of each Wαl
, thus converging

in K. And by Weierstrass Theorem 3.1, we deduce that f ∈ H(V ).

3.4 Exercises

We will denote by ρ a metric associated with a nested family of compact sets, as in Definition 3.8.
Recall that, by Proposition 3.7, the convergence of continuous functions fn is equivalent to the
uniform convergence on compact subsets.

Exercise 3.1. Let Ω := {z ∈ C Im(z) > 0}, and the sequence of functions {fn(z) = tan(nz), z ∈
Ω}n≥1. Prove that for every ε > 0 the sequence {fn}n≥1 converges to the constant function f(z) = i
uniformly on Ωε := {z ∈ C : Im(z) ≥ ε}. Deduce that {fn}n≥1 converges to i with respect to the
metric ρ. Finally, show that the convergence is not uniform in Ω.

Exercise 3.2. Let K ⊂ C be compact, and {fn : K → R}n a sequence of real-valued and continuous
functions on K such that {fn}n converges pointwise to a continuous f : K → R, and that fn(z) ≤
fn+1(z) for all z ∈ K, n ∈ N. Prove that {fn}n converges to f uniformly.

Exercise 3.3. Consider the series of functions

∞∑
n=1

sin(nz)

n2
, z ∈ C.

Prove that:

(a) The series converges uniformly in z ∈ R.

(b) For each z ∈ C \ R, the numerical series
∑∞

n=1
sin(nz)

n2 diverges.

Exercise 3.4. Let Ω ⊂ C be open, z ∈ Ω, {zn}n≥1 ⊂ Ω with lim
n→∞

zn = z, and f ∈ C(Ω,C),
{fn}n ⊂ H(Ω) with {fn}n converging to f in the metric ρ. Prove that

lim
n→∞

fn(zn) = f(z).

Exercise 3.5. Let Ω ⊂ C be open, and {fn : Ω → C}n∈N a sequence of functions so that there exist
0 < α ≤ 1, L,M > 0 so that

sup{|fn(z)| : n ∈ N, z ∈ Ω} ≤M, |fn(z)− fn(w)| ≤ L|z − w|α, z, w ∈ Ω, n ∈ N.

Show that {fn : Ω → C}n∈N is equicontinuous in Ω. Use the Arzelà-Ascoli Theorem 3.12 to deduce
that {fn : Ω → C}n∈N has a subsequent convergent to some f ∈ C(Ω,C) satisfying that

|f(z)− f(w)| ≤ L|z − w|α, z, w ∈ Ω.
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Exercise 3.6. Let Ω ⊂ Ω be open, f ∈ H(Ω) and {fn}n≥1 ⊂ H(Ω). Prove that the following
statements are equivalent.

(a) {fn}n≥1 converges to f in the metric ρ.

(b) For every closed and piecewise C1-path γ in Ω, {fn}n≥1 converges to f uniformly on γ∗.

Exercise 3.7. Find U,Ω ⊂ C open, g ∈ H(U), and F ⊂ H(Ω) a normal family with f(Ω) ⊂ U for
all f ∈ F , so that g ◦ F := {g ◦ f : f ∈ F} is not normal.

Exercise 3.8. Let Ω ⊂ C be open, f : Ω → C a function, and a locally bounded sequence {fn}n≥1 ⊂
H(Ω) converging pointwise to f in Ω. Prove that f ∈ H(Ω) and that {fn}n≥1 converges to f
uniformly on compact subsets of Ω.

Exercise 3.9. Let Ω ⊂ C be open, and F ⊂ H(Ω). Consider the family of derivatives F ′ := {f ′ :
f ∈ F . Prove the following.

(a) If F is normal, then F ′ is normal.

(b) F is normal if and only if F ′ is normal and for each connected component Ωj of Ω there
exists a point wj ∈ Ωj for which F(wj) is bounded.

Exercise 3.10. If Ω ⊂ C is open, and F ⊂ H(D), show that the following are equivalent.

(a) F is normal.

(b) For every ε > 0 there exists c > 0 so that

cF = {cf : f ∈ F} ⊂ Bρ(0, ε);

where Bρ(0, ε) is the open ball centered at 0 and with radius ε with respect to the metric ρ.

Exercise 3.11. For D := D(0, 1) and F ⊂ H(D), show that the following are equivalent.

(a) F is normal.

(b) There exist positive constants {Mn}n≥0 with lim sup
n→∞

M
1/n
n ≤ 1, and so that if f ∈ F has the

expansion

f(z) =
∞∑
n=0

anz
n, z ∈ D,

then |an| ≤Mn for all n ≥ 0.

Exercise 3.12. Let Ω ⊂ C be open, and f ∈ H(Ω). Prove that, for every closed disk D(z0, R) ⊂ Ω,

|f(z0)|2 ≤
1

πR2

∫ R

0

∫ 2π

0
|f(z0 + reit)|2 r dr dt.

Assume further that Ω is connected, F ⊂ H(Ω), and there exists M > 0 so that

∥f∥2L2(D(z0,r))
:=

∫
D(z0,r)

|f(x+ iy)|2 dx dy ≤M, whenever D(z0, r) ⊂ Ω, f ∈ F .

Prove that F is a normal family.
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Chapter 4

Conformal Mappings

A conformal mapping between two open sets of C is a holomorphic bijection whose inverse is
holomorphic as well. This chapter is an exposition of some of the most elementary results for
conformal maps, which we will refer to as biholomorphic. First we show how to construct local
inverses of holomorphic maps around, assuming that the derivative does not vanish; see Theorem
4.1. The next main theorem is the Open Mapping Theorem 4.4, which shows that non-constant
holomorphic maps carry open sets to open sets. This is actually one of the main ingredients to
prove the Global Inverse Function Theorem 4.5, from which we obtain that any holomorphic and
injective map has non-zero derivative at each point, and admits a global holomorphic inverse.

In Section 4.2, we review the topology of the Extended Complex Plane C∞ given by the image
of the Riemann Sphere under the stereographic projection. When a biholomorphic map transforms
an open set Ω onto itself, it is called an automorphism of Ω. We will see how to characterize all
the automorphisms of the unit disk in Theorem 4.25, via rotations of certain fractional-linear
transformations. Generalizing these transformations gives raise to the Möbius Transformations or
Automorphisms of C∞. In Section 4.4, we classify this transformations, study their the fixed points,
and define the cross-ratio of 4 points in C∞, which permits to show that Möbius Transformations
map circles of C∞ into circles of C∞, preserving a given orientation, thus preserving the left-sides
and right-sides of a circle.

One of the key theorems of this course is the Riemann Mapping Theorem 4.43, which tells
us that any proper open and simply connected subset of C is conformally-equivalent to the unit
disk, meaning that there is a biholomorphic map between Ω and D. The proof of this theorem is
very far from easy, and requires the usage of Hurwitz’s Theorem 2.26, Montel’s Theorem 3.16, the
Inverse Function Theorem 4.5, and the Characterization of the automorphisms of D; Theorem 4.25.
Among other applications, Riemann Mapping Theorem allows to prove that simple-connectedness
is equivalent to the validity of the Cauchy Global Theorem; compare with Corollary 1.29.

4.1 The Inverse Function Theorems and Open Mapping Theorem

4.1.1 Local Inverse Function Theorem

We begin with local holomorphic inverses around points with non-zero derivative. In addition, we
use the Argument Principle 2.22 to derive a path-integral formula for the derivative.

Theorem 4.1 (Local Inverse Function Theorem). Let Ω ⊂ C an open set, f : Ω → C holomorphic
in Ω, and z0 ∈ Ω so that f ′(z0) ̸= 0. Then there exists an open set U ⊂ Ω with z0 ∈ U such that
V := f(U) is open, f ′(z) ̸= 0 for all z ∈ U, the restriction of f↾U : U → f(U) is a bijection, and
its inverse f−1 : V → U is holomorphic in V, with

(f−1)′(w) =
1

f ′(f−1(w))
for all w ∈ V. (4.1.1)
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Furthermore, for every closed disk D(z0, r) ⊂ U, we have

f−1(w) =
1

2πi

∫
∂D(z0,r)

zf ′(z)

f(z)− w
dz, for all w ∈ f (D(z0, r)) . (4.1.2)

Proof. The first part and formula (4.1.1) can be deduced using the Inverse Function Theorem
for C1 functions in R2. Indeed, writing z0 = x0 + iy0, the assumption f ′(z0) ̸= 0 leads us to
det(Df(x0, y0)) ̸= 0, meaning that Df(x0, y0) is invertible. Here Df(x0, y0) is the differential
map of f at (x0, y0), regarding f as a C1 function Ω → R2. Since f ′ (or Df) is continuous in Ω,
by the Inverse Function Theorem in Rn, there exists an open subset U of Ω containing z0, with
f ′(z) ̸= 0 for all z ∈ U, with f(U) open, and with f|U : U → f(U) being a bijection whose inverse
f−1 : f(U) → U is also of class C1(f(U),R2). Moreover, Df(x, y) is invertible for every (x, y) ∈ U
and the differential of f−1 at w ∈ f(U) satisfies

D(f−1)(w) =
(
Df(f−1(w))

)−1
. (4.1.3)

Let us check that f−1 : f(U) → C is holomorphic in f(U) and prove (4.1.1). Let w ∈ f(U) and
z ∈ U with f(z) = w. Since f ′(z) ̸= 0, considering the limit of the inverse, given ε > 0 there exists
δ > 0 so that 0 < |u− z| < δ, u ∈ U, implies∣∣∣∣ u− z

f(u)− f(z)
− 1

f ′(z)

∣∣∣∣ < ε. (4.1.4)

Now, by the continuity of f−1 on f(U), there exists η > 0 so that |ξ − w| < η, ξ ∈ f(U), implies
|f−1(ξ)− f−1(w)| < δ. We can thus apply (4.1.4) with f−1(ξ) in place of u to obtain∣∣∣∣f−1(ξ)− f−1(w)

ξ − w
− 1

f ′(z)

∣∣∣∣ < ε.

Finally, to check (4.1.2), assume D(z0, r) ⊂ U, and let w ∈ f(D(z0, r)), ξ := f−1(w) ∈ D(z0, r).
Consider the function fw(z) = f(z)− w, defined for z ∈ U. We have that fw(ξ) = 0, and f ′w(ξ) =
f ′(ξ) ̸= 0, as f ′ never vanishes in U. This shows that fw has a zero at ξ of order 1. Also, notice
that fw has no more zeros in U, since the existence of another zero ξ′ in U of fw would imply that
f(ξ) = f(ξ′), and the injectivity of f in U would yield ξ = ξ′. Applying Theorem 2.22 with the
functions g(z) = z, fw, and the path ∂D(z0, r), we obtain

ξ = g(ξ) =
∑

z∈ZU (fw)

g(z)m0(fw, z)

=
1

2πi

∫
∂D(z0,r)

f ′w(z)

fw(z)
g(z) dz =

1

2πi

∫
∂D(z0,r)

zf ′(z)

f(z)− w
dz.

Since ξ = f−1(w), the above is precisely (4.1.2).

4.1.2 The Open Mapping Theorem

Our next goal is to show that non-constant holomorphic functions in connected open sets are open.
The following proposition is the key ingredient.

Proposition 4.2. Let Ω ⊂ C be open and connected, f ∈ H(Ω) non-constant, and z0 ∈ Ω. Let m ∈ N
be the order of the zero of the function Ω ∋ z 7→ f(z)− f(z0). Then there exist W ⊂ Ω containing
z0, and a function φ ∈ H(W ) with

• f(z) = f(z0) + (φ(z))m for all z ∈W.

• φ′(z) ̸= 0 for all z ∈W , φ is bijective in W → φ(W ) and φ−1 : φ(W ) →W is holomorphic.
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• φ(W ) = D(0, r) and f(W ) = D(f(z0), r
m) for some r > 0.

Proof. Since f is non-constant, by the Identity Principles for Analytic Functions, there exists a
closed disk D(z0, ε) contained in Ω with f(z) ̸= f(z0) for all z ∈ D(z0, ε) \ {z0}. Thus we can find
g ∈ H(Ω) satisfying that

f(z)− f(z0) = (z − z0)
mg(z) and g(z) ̸= 0 for all z ∈ D(z0, ε). (4.1.5)

Since D(z0, ε) is simply connected and g never vanishes in D(z0, ε), by Corollary 1.29 g has an
mth root in D(z0, ε). This means that there exists h ∈ H(D(z0, ε)) with g(z) = (h(z))m for all
z ∈ D(z0, ε). Defining φ(z) := (z − z0)h(z) in z ∈ D(z0, ε), then (4.1.5) gives

f(z)− f(z0) = (φ(z))m for all z ∈ D(z0, ε). (4.1.6)

Also, clearly φ′(z0) = h(z0) ̸= 0, because g(z0) ̸= 0. We can apply Theorem 4.1 to φ in the open
set D(z0, ε), thus finding an open set U ⊂ D(z0, ε) containing z0 as in the mentioned theorem. In
particular φ(U) is open and contains φ(z0) = 0, and φ : U → φ(U) is a bijective. Thus we can
find r > 0 with the property that D(0, r) ⊂ φ(U). The desired open set is defined by

W := φ−1 (D(0, r)) ∩ U.

Notice that φ(W ) = D(0, r) ∩ φ(U) = D(0, r), which in combination with formula (4.1.6) gives
the third claim. Now, the first claim follows from (4.1.6), because W is contained in U. Since
φ : U → φ(U) is bijective with holomorphic inverse, the same applies for the restriction of φ to W,
which proves the second of our claims.

The next topological definition is of course standard.

Definition 4.3 (Open Mapping). Let Ω ⊂ C be open, and f : Ω → C a function. We say that f is
open if f(U) is an open subset of C for all open subset U ⊂ Ω.

Now, the Open Mapping Theorem reads as follows.

Theorem 4.4 (Open Mapping Theorem). Let Ω ⊂ C be open and connected, and f ∈ H(Ω) non-
constant. Then f is open.

Proof. If U ⊂ Ω is an open set, and we check that for every z ∈ U we can find and open set Uz

with z ∈ Uz ⊂ U and f(Uz) is open, then we will have that

f(U) = f

(⋃
z∈U

Uz

)
=
⋃
z∈U

f (Uz) ,

is open as well.
Let z0 ∈ U and δ > 0 with D(z0, δ) ⊂ U. Applying Proposition 4.2 to f , z0, and the connected

open set D(z0, δ), we obtain a new open set W ⊂ D(z0, δ) containing z0 so that f(W ) is the open
disk D(w0, r

m) for some r > 0.

4.1.3 Global Inverse Function Theorem

Finally, we show that if a holomorphic function on a domain is injective, then the derivative never
vanishes and the function is biholomorphic onto its image.

Theorem 4.5 (Global Inverse Function and Open Mapping Thorem). Let Ω ⊂ C open and con-
nected, and f ∈ H(Ω) an injective function in Ω. Then f ′(z) ̸= 0 for all z ∈ Ω, the image f(Ω) is
open, and the inverse f−1 : f(Ω) → Ω is holomorphic in f(Ω).
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Proof. For the sake of contradiction, assume that f ′(z0) = 0 for some z0 ∈ Ω. This implies that
the function Ω ∋ z 7→ f(z) − f(z0) has a zero of order m ≥ 2 at z0. For these m, f, Ω, and z0,
let φ and W be as those of Proposition 4.2. If φ(W ) = D(0, r), let w ∈ D(0, rm) \ {0}, and let
ξ1, . . . , ξm ∈ D(0, r) the (distinct) solutions to the equation zm = w. Since φ : W → D(0, r) is a
bijection, there are m points z1, . . . , zm ∈W with φ(zj) = ξj for all j = 1, . . . ,m. Consequently,

f(zj) = f(z0) + (φ(zj))
m = f(z0) + w, for all j = 1, . . . ,m.

Since m ≥ 2, this contradicts that f is injective in Ω. Therefore, we must have f ′(z) ̸= 0 for all
z ∈ Ω.

Now, applying Theorem 4.1, we obtain, for each z ∈ Ω, an open set Uz ⊂ Ω with z ∈ Uz, with
f(Uz) open and f↾Uz : Uz → f(Uz) has a holomorphic inverse. This shows that f(Ω) is open, and
that f : Ω → f(Ω) has a holomorphic inverse f−1 : f(Ω) → Ω.

In the sequel, by a biholomorphic map between two open sets U and V, we understand a
bijective function f : U → V so that both f and f−1 are holomorphic on U and V respectively.

4.2 Topology in the Extended Complex Plane

Let us recall the definition of the Extended Complex Plane.

Definition 4.6 (Extended Complex Plane). If ∞ denotes a point at infinity for C, meaning that
∞ /∈ C, we define the extended complex plane by C∞ := C ∪ {∞}.

4.2.1 The Metric Induced by the Stereographic Projection

There is a bijection between between C∞ and S2 via the stereographic projection.

Definition 4.7 (The Stereographic Projection). Denote by N = (0, 0, 1) ∈ R3, the north pole. The
Stereographic Projection onto C is the mapping Π : S2 → C∞ given by

Π(P ) =

{
the unique point z ∈ LN,P ∩ C if P ∈ S2 \ {N}
∞ if P = N.

(4.2.1)

Here LN,P denotes the affine line in R3 passing through N and P.

The mapping Π : S2 → C∞ in (4.2.1) is well-defined, and below we recall the formulae for the
stereographic projection.

Proposition 4.8. The mapping Π : S2 → C∞ defined in (4.2.1) satisfies

Π(X,Y, Z) =
X + iY

1− Z
≡
(

X

1− Z
,

Y

1− Z

)
for all (X,Y, Z) ∈ S2 \ {N}. (4.2.2)

Moreover, Π : S2 → C∞ is a bijection whose inverse Π−1 : C∞ → S2 is given by

Π−1(z) =


1

|z|2 + 1

(
2Re(z), 2 Im(z), |z|2 − 1

)
if z ∈ C

N = (0, 0, 1) if z = ∞.

(4.2.3)

Proof. See [5, Proposition 1.20].

By Proposition 4.8, the stereographic projection Π defines a bijection between S2 and C∞. In
fact, we can use Π to define a distance function in C∞, and so a topology in C∞.
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Definition 4.9 (Spherical Metric). The spherical or chordal metric in C∞ is the function d̂ :
C∞ × C∞ → [0,+∞) given by

d̂(z, w) :=
1

2
∥Π−1(z)−Π−1(w)∥2 =

1

2

√
(X −X ′)2 + (Y − Y ′)2 + (Z − Z ′)2, (4.2.4)

whenever z, w ∈ C∞, Π
−1(z) = (X,Y, Z) ∈ S2, Π−1(w) = (X ′, Y ′, Z ′) ∈ S2.

Note that d̂(z, w) ≤ 1
2 diam(S2) = 1 for all z, w ∈ C∞. We can express d̂(z, w) solely in terms

of z, w ∈ C∞.

Proposition 4.10. The function d̂ : C∞ × C∞ → [0,+∞) defines a distance in C∞ and

d̂(z, w) =



|z − w|√
(1 + |z|2) (1 + |w|2)

if z, w ∈ C

1√
|z|2 + 1

if z ∈ C, w = ∞

0 if z = w = ∞.

(4.2.5)

Proof. See [5, Proposition 1.22].

Corollary 4.11. The Stereographic Projection Π :
(
S2, ∥ · ∥2

)
→ (C∞, d̂ ) is an homeomorphism

between metric spaces. Consequently, (C∞, d̂ ) is a compact metric space.

Proof. Actually, by Definition 4.9, Π defines a 1/2-isometry:

d̂(Π(u),Π(v)) =
1

2
∥Π−1(Π(u))−Π−1(Π(v))∥2 =

1

2
∥u− v∥2, u, v ∈ S2.

The surjectivity of Π is given, for example, by Proposition 4.8.

Proposition 4.12. The metrics (C, | · |) and (C, d̂ ) are equivalent in C. More precisely, one has that

d̂(z, w) ≤ |z − w|, z, w ∈ C,

and for every z ∈ C and ε > 0 there exists δ > 0 so that

z ∈ C, d̂(z, w) < δ =⇒ |z − w| < ε.

Proof. The first inequality follows from formula (4.2.5) for d̂. For the second property, notice that
Π :

(
S2 \ {N}, ∥ · ∥2

)
→ (C, | · |) is a continuous bijection, by formula (4.2.2). Thus given ε > 0

and u ∈ S2, there exists δ > 0 so that ∥u− v∥2 < δ, with v ∈ S2 implies ∥Π(u)− Π(v)∥ < ε. Now
the definition (4.2.4) proves the assertion.

4.2.2 Balls, Open, Closed, Compact Sets, Closures and Interiors

Our goal is to describe the topoogy induced by the metric d̂.

Remark 4.13. Let us make several observations.

(1) Let us consider balls in (C∞, d̂ ) centered at ∞. If r > 0, by formula (4.2.5), we have that
d̂(z,∞) < r, for z ∈ C, if and only if

|z|2 > 1

r2
− 1.
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Denoting by B
d̂
(∞, r) the open ball in (C∞, d̂ ) centered at ∞ and with radius r, the above

shows that

B
d̂
(∞, r) :=

C∞ if r ≥ 1,

C∞ \D
(
0,
√

1
r2

− 1
)

if r < 1.

Similarly, the corresponding closed balls are

B
d̂
(∞, r) :=

C∞ if r ≥ 1,

C∞ \D
(
0,
√

1
r2

− 1
)

if r < 1.

To examine the balls centered at points of C, observe that by Proposition 4.12 one has that

D(z, r) ⊂ B
d̂
(z, r), D(z, r) ⊂ B

d̂
(z, r), z ∈ C, r > 0,

and for every ε > 0 and z0 ∈ C there exists δ > 0 so that

B
d̂
(z0, δ) ⊂ D(z0, ε).

(2) Consequently, if A ⊂ C, then

A is open in (C, | · |) ⇐⇒ A is open in (C∞, d̂ ).

In particular, C is open in (C∞, d̂ ).

(3) If F ⊂ C, then by the previous remark,

F is closed in (C, | · |) ⇐⇒ F ∪ {∞} is closed in (C∞, d̂ ).

(4) Concerning convergence of sequences, observe that if {zn}n ⊂ C, then (4.2.5) shows that

lim
n→∞

d̂(zn,∞) = 0 ⇐⇒ lim
n→∞

|zn| = ∞.

In other words, the convergence {zn}n → ∞ in the metric d̂ is equivalent to the convergence
to infinity of the real numbers {|zn|}n.
On the other hand, if z ∈ C, and {zn}n ⊂ C, then

lim
n→∞

|zn − z| = 0 ⇐⇒ lim
n→∞

d̂(zn, z) = 0.

This is a consequence of part (1).

(5) If K ⊂ C is compact in (C, | · |), then K is closed in (C∞, d̂ ), thus compact in (C∞, d̂ ).

Indeed, if {zn}n is a sequence contained in K, which converges to z ∈ C∞ with respect to
the metric d̂, then by the previous remark, z ̸= ∞, as the sequence {zn}n must be bounded.
Thus z ∈ C, and since lim

n→∞
d̂(zn, z) = 0, we get that also {zn}n converges to z in (C, | · |), by

(4). By the compactness of K in (C, | · |), we get that z ∈ K. This shows that K is closed in
(C∞, d̂ ), and thus compact, because C∞ is compact itself.

We can now describe the open sets, the interior, closure, and boundary in (C∞, d̂ ).

Theorem 4.14. The open sets of (C∞, d̂ ) are

TC∞ := {U ⊂ C : U is open in (C, | · |)} ∪ {C∞ \K, with K compact in (C, | · |)} .

Also, if A ⊂ C, the following holds.
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(i) int
d̂
(A) = int(A).

(ii) If A is bounded, then A
d̂
= A and ∂d̂(A) = ∂A.

(iii) If A is unbounded, then A
d̂
= A ∪ {∞} and ∂d̂(A) = ∂A ∪ {∞}.

Proof. By Remark 4.13(2), if U ⊂ (C, | · |) is open, then U is also open in (C∞, d̂ ). Also, if
U = C∞ \K, with K ⊂ C compact, we know from Remark 4.13(5) that K is closed in (C∞, d̂ ),
and then U is open in (C∞, d̂ ).

Conversely, if U ⊂ C∞ is open in (C∞, d̂ ), we have two possibilities. In the case where ∞ /∈ U,
we have that U ⊂ C, and then U is open in (C, |·|) by Remark 4.13(2). And if∞ ∈ U, and 0 < r < 1
is so that B

d̂
(∞, r) ⊂ U, then by Remark 4.13(1), there exists δ > 0 so that C∞ \ D(0, δ) ⊂ U.

Defining V := U \ {∞} ⊂ C, we see that V is open in (C∞, d̂ ), as U is open and {∞} is closed
in (C∞, d̂ ). Again by Remark 4.13(2), V is open in (C, | · |), and thus C \ V is closed there. But
since C \ V ⊂ D(0, δ), we get that K := C \ V is a compact subset of (C, | · |). And clearly
U = {∞} ∪ V = C∞ \K.

Now, (i) is a consequence of the fact that the interior of a set (in any topological space) is the
union of its open subsets, and the characterization of open sets we obtained in Remark 4.13.

Onto (ii), if A is bounded, then A is compact in (C, | · |), and thus closed in (C∞, d̂ ) by Remark

4.13(5). This shows the inclusion A
d̂ ⊂ A. For the reverse inclusion, if z ∈ A ⊂ C, then we can

find {zn}n ⊂ A converging to z in the metric (C, | · |), and thus with respect to (C∞, d̂ ) by Remark

4.13(4). This shows that z ∈ A
d̂
, as desired. The identity for the boundaries follows by recalling

that ∂τ (A) = A
τ ∪ intτ (A) for any topology τ, in combination with the identity for the closures

and the identity for the interiors (i).

To show (iii), note that if A is unbounded, then every set E closed in (C∞, d̂ ) that contains
A must contained ∞ as well. Thus, each of those E are of the form E = {∞} ∪ F, with F ⊂ C
closed in (C, | · |) by Remark 4.13(3). Therefore, we may write

A
d̂
=
⋂

{E : A ⊂ E, E closed in (C∞, d̂)}

= {∞} ∪
(⋂

{F : A ⊂ F, F closed in (C, | · |)}
)
= {∞} ∪A.

And the identity between boundaries follows from the ones for closures and interiores.

Finally, we comment on the continuity of functions at points of C∞. In general, the continuity
of an f : (X, dX) → (Y, dY ) at a point x0, between metric spaces (X, dX), (Y, dY ) is defined (or
can be characterized) as:

{xn}n ⊂ X \ {x}, lim
n→∞

dX(xn, x) = 0 =⇒ lim
n→∞

dY (f(xn), f(x)) = 0.

Remark 4.15. Let U ⊂ (C∞, d̂ ) be open, and f : U → C∞, both the source and target equipped
with the metric d̂. Let also z0 ∈ U. Using Remark 4.13(2),(4), it is easy to verify that

f is continuous at z0 ⇐⇒



lim
z→z0

f(z) = f(z0) if z0 ∈ U \ {∞}, f(z0) ∈ C,

lim
z→z0

|f(z)| = +∞ if z0 ∈ U \ {∞}, f(z0) = ∞,

lim
|z|→+∞

f(z) = f(∞) if z0 = ∞, f(z0) ∈ C,

lim
|z|→+∞

|f(z)| = +∞ if z0 = f(z0) = ∞.

The first and third limit are in the usual sense between complex numbers.
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For instance, we consider the function f : C∞ → C∞ given by f(z) = 1/z, f(0) = ∞, f(∞) = 0.
Taking into account the previous characterizations and that

lim
z→0

|f(z)| = lim
z→0

1

|z|
= +∞, lim

|z|→+∞
f(z) = lim

|z|→+∞

1

z
= 0 = f(∞).

Thus, f is continuous at all points of C∞.

4.3 Automorphisms of the Unit Disk

Definition 4.16 (Automorphism). If Ω ⊂ C is open, an automorphism of Ω is any bijection
f : Ω → Ω with both and f and f−1 holomorphic.

We denote the family of all automorphisms of Ω by Aut(Ω).

4.3.1 Functions φw : Definition and Properties

We are interested in finding all automorphisms of D := D(0, 1). The key functions are the following.

Definition 4.17. For each w ∈ D, we define the mappings φw : C \ {1/w} → C by

φw(z) =
z − w

1− wz
, z ∈ C \ {1/w}. (4.3.1)

We extend φw to C∞ is φ̃w : C∞ → C∞, defined by

φ̃w(z) =


φw(z) if z ∈ C \ {1/w},
∞ if z = 1/w,

−1/w if z = ∞.

(4.3.2)

In the following proposition, T will denote the unit circle of C, that is, T = ∂D(0, 1).

Proposition 4.18. For w ∈ D, the following properties hold.

(i) If w ̸= 0, then φw ∈ H (C \ {1/w}), φw has a pole of order 1 at 1/w, and φw (C \ {1/w}) =
C \ {−1/w}.
And if w = 0, φ0 is the identity map in C, with ∞ being a pole of order 1 of φ0.

(ii) φ−w ◦ φw is the identity in C \ {1/w}, φw ◦ φ−w is the identity in C \ {−1/w}, and φω :
C \ {1/w} → C \ {−1/w} is biholomorphic.

(iii) φ̃w : C∞ → C∞ is a homeomorphism.

(iv) φw(D) = D and φw(T) = T.

(v) φ′
w(z) =

1− |w|2

(1− wz)2
for all z ∈ C \ {1/w}. In particular, we have φ′

w(0) = 1 − |w|2 and

φ′
w(w) =

1

1− |w|2
.

Proof. In property (i), for w ̸= 0, all the properties are immediate or follow very easily, except,
perhaps, the part about the pole. But notice that φw(z) = g(z)/h(z), with g(z) = z − w and
h(z) = 1−wz, with g, h ∈ H(C), h(1/w) = 0, g(1/w), h′(1/w) ̸= 0. This shows that φw has a pole
of order 1 at 1/w. And property (ii) is very easy to check.

Concerning property (iii), that φ̃w : C∞ → C∞ is a bijection follows from (ii) and the formula
(4.3.2). The continuity of φ̃w and its inverse is clear from the characterization of continuity at
points in C∞ that we learnt in Remark 4.15.
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To prove (iv), observe that

1 + |w|2|z|2 − wz − wz = |1− wz|2, |z − w|2 = |z|2 + |w|2 − wz − wz.

From which it is very easy to verify that |φ̃w(z)| < 1 if and only if z ∈ D, and |φ̃w(z)| = 1 if and
only if z ∈ T.

Finally, (v) is merely a computation.

4.3.2 The Maximum Modulus Principles

Let us recall the Maximum Modulus Principles and the Schwarz Lemma.

Theorem 4.19 (Maximum Modulus Principle I). Let Ω ⊂ C be open and connected, f : Ω → C be
holomorphic in Ω, and z0 ∈ Ω, r > 0 so that D(z0, r) ⊂ Ω. Then

|f(z0)| ≤ max{|f(z)| : z ∈ ∂D(z0, r)}. (4.3.3)

Moreover, the inequality (4.3.3) becomes equality if and only if f is constant in Ω.

Proof. See [5, Theorem 4.48].

As a consequence, holomorphic maps in domains having local maxima are constant.

Corollary 4.20. Let Ω ⊂ C be open and connected, f : Ω → C be holomorphic in Ω, and assume
there exists z0 ∈ Ω with |f(z0)| ≥ |f(z)| for all z ∈ Ω. Then f is constant in Ω.

Proof. See [5, Theorem 4.49].

The second maximum principle tells us that that maximums of holomorphic maps in domains
are attained at the boundary.

Theorem 4.21 (Maximum Modulus Principle II). Let Ω ⊂ C be open, connected, and bounded.
Let f : Ω → C be continuous in Ω and holomorphic in Ω. Then, the maximum of f in Ω is attained
in the boundary:

max{|f(z)| : z ∈ Ω} = max{|f(z)| : z ∈ ∂Ω}. (4.3.4)

Proof. See [5, Theorem 4.50].

Using what we learnt about the topology in C∞ in Section 4.2, we can generalize a bit Theorem
4.21 so that now it holds (in a different form) for unbounded domains.

Corollary 4.22. Let Ω ⊂ C be open and connected, and f ∈ H(Ω) so that there exists 0 ≤ M < ∞
so that

lim sup
Ω∋z→w

|f(z)| ≤M, for all w ∈ ∂∞Ω.

Then |f(z)| ≤M for all z ∈ Ω.

Proof. For δ > 0, consider the open setWδ := {z ∈ Ω : |f(z)| > M+δ}.We claim thatWδ
C∞ ⊂ Ω.

Indeed, otherwise there is w ∈Wδ
C∞ \ Ω. Since Wδ ⊂ Ω, this tells us that

w ∈ Ω
C∞ \ Ω = Ω

C∞ \ int∞(Ω) = ∂∞Ω.

But then the assumption and at the same time the definition of Wδ lead us to

M + δ ≤ lim sup
Wδ∋z→w

|f(z)| ≤M,
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a contradiction. Consequently, Wδ
C∞ ⊂ Ω ⊂ C, and so, by Theorem 4.14, Wδ is bounded and

Wδ ⊂ C.
The next claim is that Wδ = ∅. Indeed, otherwise the compactness of Wδ gives z0 ∈ Wδ ⊂ Ω

with
M + δ ≤ |f(z0)| ≤ max{|f(w)| : w ∈Wδ} = max{|f(z)| : z ∈ Ω},

where the last equality follows from the fact that if z ∈ Ω \ Wδ, then |f(z)| ≤ M + δ. Since
z0 ∈ Ω, Corollary 4.20 gives that f is constant in Ω, thus |f(z)| = |f(z0)| ≥ M + δ for all z ∈ Ω,
contradicting the hypothesis.

We conclude that Wδ = ∅ for δ > 0, as desired.

Using the Maximum Modulus Principles, one can show Schwarz’s Lemma.

Theorem 4.23 (Schwarz Lemma). Let f : D → C be a holomorphic function with f(0) = 0 and
sup{|f(z)| : z ∈ D} ≤ 1. Then

(i) |f(z)| ≤ |z| for all z ∈ D.

(ii) |f ′(0)| ≤ 1.

(iii) If either (i) holds with equality for some z ∈ D \ {0} or (ii) holds with equality, then there
exists λ ∈ C with |λ| = 1 so that

f(z) = λz for all z ∈ D.

Proof. See [5, Theorem 4.51].

4.3.3 Key Inequalities and Characterizations of Aut(D)

We now state some estimates that are useful also in the proof of the Riemann Mapping Theorem
4.43 of the next section.

Proposition 4.24. Let f : D → C be holomorphic with |f(z)| ≤ 1 for all z ∈ D. Then, if w, ξ ∈ D
are so that f(w) = ξ, then

|f ′(w)| ≤ 1− |ξ|2

1− |w|2
. (4.3.5)

Moreover, the inequality (4.3.5) is an identity if and only if there exists λ ∈ T with

f(z) = φ−ξ (λφw(z)) , for all z ∈ D. (4.3.6)

Proof. We consider function

g(z) = φξ ◦ f ◦ φ−w(z), z ∈ D. (4.3.7)

Since w, ξ ∈ D, by Proposition 4.18, g ∈ H(D), and |g(z)| ≤ 1 for all z ∈ D. Also, because
φ−w(0) = w, f(w) = ξ, and φξ(ξ) = 0, we get that g(0) = 0. By Theorem 4.23, |g′(0)| ≤ 1. On the
other hand, Proposition 4.18(v) gives

g′(0) = φ′
ξ(ξ) · f ′(w) · φ′

−w(0) = f ′(w) · 1− |w|2

1− |ξ|2
, (4.3.8)

which implies (4.3.5) by the estimate |g′(0)| ≤ 1.
Now, assume that (4.3.5) holds with equality. By formula (4.3.8), this implies that |g′(0)| = 1.

By Theorem 4.23, there exists λ ∈ T with g(z) = λz for all z ∈ D. Since the inverse of φξ is φ−ξ

(see Proposition 4.18(ii)), by the definition of g in (4.3.7), we derive (4.3.6).
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Conversely, if for some λ ∈ T, formula (4.3.6) holds, then differentiating f at w and using
Proposition 4.18(v) lead us to

f ′(w) = φ′
−ξ(λφw(w)) · λφ′

w(w) = λ
1− |ξ|2

1− |w|2
,

and clearly (4.3.5) holds with equality.

The following theorem shows that all automorphisms of the unit disk are, up to a rotation, one
of the functions φw, w ∈ D.

Theorem 4.25 (Characterization of the Automorphisms of D). Let f ∈ Aut(D) and w ∈ D so that
f−1(0) = w. Then there exists λ ∈ T so that f(z) = λφw(z) for all z ∈ D. Consequently,

Aut(D) = {λ · φw : w ∈ D, λ ∈ T}.

Proof. Consider the inverse g = f−1 : D → D of f, and bear in mind tht f ′(w) ̸= 0 and g′(0) =
1/f ′(w). Applying Proposition 4.24 to both f and g, we get

|f ′(w)| ≤ 1

1− |w|2
, |g′(0)| ≤ 1− |w|2,

and since g′(0) = 1/f ′(w), this shows that

|f ′(w)| = 1

1− |w|2
, |g′(0)| = 1− |w|2.

And by the second part of Proposition 4.24, and bearing in mind that φ0 is the identity map, there
exists λ ∈ T so that f(z) = λφw(z) for all z ∈ D.

4.4 The Möbius Transformations

The Möbius Transformations are fractional-lineal transformations more general than those from
Definition 4.17. They can be used, for example, to transform homeomorphically the unit circle
into R∪{∞} and the same time transform biholomorphically the interior of the circle to the upper
half-plane and the exterior to the lower plane.

4.4.1 Definition, Basic Properties and Examples

Definition 4.26 (Möbius Transformations). A Möbius Transformation is any mapping T :
C∞ → C∞ of the form

T (z) =
az + b

cz + d
, for all z ∈ C, T (∞) =

a

c
, where a, b, c, d ∈ C, with ad− bc ̸= 0.

In the case c = 0, then necessarily a ̸= 0 and we understand that T (∞) = a
0 = ∞. Also, if c ̸= 0,

we understand that

T

(
−d
c

)
= ∞.

We will denote the family of all Möbius Transformations by Aut(C∞).

Here are some of the most basic properties of the Möbius Transformations.

Proposition 4.27. Let T ∈ Aut(C∞) with T (z) = az+b
cz+d . Then, the following hold.

(i) T ∈ M(C∞) with a pole of order 1 at −d/c.
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(ii) T : C \ {−d/c} → C \ {a/c} is bijective and holomorphic in C \ {−d/c}, with the inverse
T−1 : C \ {a/c} → C \ {−d/c} being a Möbius Transformation as well, and

T−1(z) =
dz − b

−cz + a
.

(iii) T : C∞ → C∞ is an homeomorphism.

Proof. Property (i) is immediate, observing that T is a rational function and recalling Theorem
2.19. The part about the pole is also immediate.

To prove (ii), a simple computation shows the desired formula for T−1, from which the rest
of the properties follows at once. And (iii) is a consequence of (ii) together with the fact that T
attains the value ∞ either at ∞ (when c = 0) or at −d/c when c = 0.

There are four special (and fundamental) examples of Möbius Transformations.

Definition 4.28 (Translation, Dilation, Rotation, Inversion). Let T ∈ Aut(C∞). Then,

• T is a translation if T (z) = z + a, z ∈ C∞, a ∈ C.

• T is a rotation if T (z) = λz z ∈ C∞, λ ∈ T.

• T is a dilation if T (z) = az, z ∈ C∞, a ∈ C \ {0}.

• T is an inversion if T (z) = 1/z, z ∈ C∞.

All T ∈ Aut(C∞) can be written as the composition of 4 of of those from Definition 4.28.

Proposition 4.29. If T ∈ Aut(C∞), then there are T1, T2, T3, T4 ∈ Aut(C∞) translation, rotations,
dilations, or inversions so that

T = T4 ◦ T3 ◦ T2 ◦ T1.

Proof. Let T (z) = az+b
cz+d with ad− bc ̸= 0.

In the case where c = 0, it is clear that T = T2 ◦ T1, where

T1(z) =
a

d
z, T2(z) = z +

b

d
.

Clearly T1 is a dilation, and T2 a translation.

In the case where c ̸= 0, it is straightforward to verify that T = T4 ◦ T3 ◦ T2 ◦ T1, where

T1(z) = z +
d

c
, T2(z) =

1

z
, T3(z) =

bc− ad

c2
z, T4(z) = z +

a

c
.

We see that T1 is a translation, T2 is a inversion, T3 is a dilation, and T4 again a translation.

Consequently, (Aut(C∞), ◦) is a (non-abelian) group.

Proposition 4.30. If T, S ∈ Aut(C∞), then S ◦ T ∈ Aut(C∞).

Proof. Using Proposition 4.29, it suffices to check that S ◦ T ∈ Aut(C∞) when S is one of the
transformations of Definition 4.28. But this verification is straightforward.
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4.4.2 Fixed Points and Cross Ratio

We next show that the identity is the only Möbius map with more than two fixed points.

Proposition 4.31 (Fixed Points of Aut(C∞)). If T ∈ Aut(C∞) and T is not the identity map, then
there are at most two points z ∈ C∞ with T (z) = z.

Proof. Let T (z) = az+b
cz+d with ad−bc ̸= 0, and consider first the case where c ̸= 0. Then T (∞) = a/c,

thus ∞ is not a fixed point of T. And for z ∈ C, T (z) = z if and only if

az + b

cz + d
= z, that is, cz2 + (d− a)z − b = 0,

which have at most two solutions.
Now, in the case c = 0, clearly T (∞) = ∞. The other fixed points are obtained by solving

z = a
dz +

b
d . If b = 0, then z = a

dz only admits the solution z = 0, as a ̸= d (because T is not
the identity map). And if b ̸= 0, since d ̸= 0 (as otherwise ad − bc = 0), we have the solution
z = b/(d− a). In any case, there is at most one fixed point in addition to ∞.

Consequenly, T ∈ Aut(C∞) is completely determined by its action on three distinct points.

Corollary 4.32. If T, S ∈ Aut(C∞) and z1, z2, z3 ∈ C∞ are pairwise distinct points with S(zi) =
T (zi) for all i = 1, 2, 3, then T = S in C∞.

Proof. By Propositions 4.27 and 4.30, we have that R := T−1 ◦ S ∈ Aut(C∞) satisfies

R(z1) = z1, R(z2) = z2, R(z3) = z3.

Thus R has three distinct fixed points in C∞. By Proposition 4.31, R is the identity map, whence
T = S.

The following definition will lead us to a practical way to construct Möbius Maps passing
through three distinct points of C∞ × C∞ .

Definition 4.33 (Cross-Ratio). Let z2, z3, z4 ∈ C∞ three pairwise distinct points. Denote by S :=
S(z2,z3,z4) : C∞ → C∞ the Möbius Transformation defined by

S(z) =



z−z3
z−z4

z2−z4
z2−z3

if z2, z3, z4 ∈ C∞,

z−z3
z−z4

if z2 = ∞,

z2−z4
z−z4

if z3 = ∞,

z−z3
z2−z3

if z4 = ∞.

(4.4.1)

Notice that S is the unique S ∈ Aut(C∞) so that S(z2) = 1, S(z3) = 0, S(z4) = ∞.
Now, if z1 ∈ C∞\{z2, z3, z4}, we define the cross-ratio of (z1, z2, z3, z4) of z1, z2, z3, z4 (where

the order matters), by the number

(z1, z2, z3, z4) := S(z1) = S(z2,z3,z4)(z1) ∈ C∞.

The following result is often called the Symmetry Principle, and shows that Möbius maps
always preserve cross-ratios.

Proposition 4.34. Let z2, z3, z4 ∈ C∞ be distinct points and T ∈ Aut(C∞). Then,

(z, z2, z3, z4) = (T (z), T (z2), T (z3), T (z4)) , for all z ∈ C∞.
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Proof. Define S = S(z2,z3,z4) as in (4.4.1), and R = S ◦ T−1 ∈ Aut(C∞). We have that

R(T (z2)) = 1, R(T (z3)) = 0, R(T (z4)) = ∞.

Thus, according to the notation in Definition 4.33, R = S(T (z2),T (z3),T (z4)), as Corollary 4.32 guar-
antees that there is only one transformation mapping T (z2), T (z3), T (z4) to 1, 0,∞ respectively.
Consequenly, for each z ∈ C∞, one has

(z, z2, z3, z4) = S(z) = S ◦ T−1(T (z)) = R(T (z)) = (T (z), T (z2), T (z3), T (z4)).

We now easily obtained the mentioned determination of Möbius Maps.

Corollary 4.35. Let z2, z3, z4 ∈ C∞ be three pairwise distinct points and w2, w3, w4 ∈ C∞ another
three pairwise distinct. Then there exists a unique T ∈ Aut(C∞) so that T (zi) = wi for all
i = 2, 3, 4.

Proof. Define S1, S2 ∈ Aut(C∞) by the pointwise cross-ratio:

S1(z) = (z, z2, z3, z4), S2(z) = (z, w2, w3, w4), z ∈ C∞.

Taking T = S−1
2 ◦ S1 we get a desired Möbius transformation, which is unique by Corollary 4.32.

4.4.3 Preservation of Circles and Orientations

Let us extend a bit the notion of circle in the extended plane C∞.

Definition 4.36 (Circles of C∞). A circle of C∞ is a set Γ ⊂ C∞ so that either Γ is a (usual)
circle of C or Γ = ℓ ∪ {∞}, with ℓ ⊂ C a line of C.

By a line of C we mean a 1-dimensional affine subspace of R2.

The reason we call those lines through ∞ circles is that their image under the inverse of the
stereographic projection is precisely a circle of S2 passing through the north pole.

In the sequel, denote R∞ = R ∪ {∞}.

Lemma 4.37. Let T ∈ Aut(C∞). Then T−1(R∞) is a circle of C∞.

Proof. If T (z) = az+b
cz+d with ad− bc ̸= 0, and w ∈ C∞, then T (w) ∈ R∞ is equivalent to

aw + b

cw + d
= T (w) = T (w) =

aw + b

cw + d
,

or, equivalently

(ac− ac)|w|2 + (ad− bc)w + (bc− da)w + (bd− bd) = 0. (4.4.2)

Now, consider first the case where ac ∈ R. Then, letting iξ = ad− bc, we have iξ = bc− da, and,
after some simplications, (4.4.2) becomes

Re(ξw) = Im(bd).

This defines a line of C, if we verify that ξ ̸= 0. Indeed, otherwise ad = bc. On the other hand
either a ̸= 0 or c ̸= 0 (by the general condition ad − bc ̸= 0). In the first case a ̸= 0, then using
that ac = ac, we get

ad = bc =⇒ aad = bac = bac =⇒ ad = bc =⇒ ad = bc,
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a contradiction. Similarly, we arrive at a contradiction assuming that c ̸= 0, and therefore we have
shown that ξ ̸= 0.

Now, assume ac /∈ R, thus ac− ac ̸= 0. Letting ξ ∈ C be so that iξ = ad− bc, (4.4.2) becomes

|w|2 + γw + γw = K, where γ =
ξ

2 Im(ac)
, K =

Im(bc)

Im(ac)
.

This describes a circle of C, if we verify that K + |γ|2 > 0. Indeed,

K + |γ|2 = Im(bc)

Im(ac)
+

|ξ|2

4 Im(ac)2
=

1

4 Im(ac)2
(
|ξ|2 − (bd− bd)(ac− ac)

)
=

1

4 Im(ac)2
(
|a|2|d|2 + |b|2|d|2 − adbc− bcad

)
=

|ad− bc|2

4 Im(ac)2
> 0.

The condition “real cross-ratio” can be used to determine the membership to circles of C∞.

Proposition 4.38. Let z1, z2, z3, z4 ∈ C∞ be four distinct points. The following are equivalent:

(a) (z1, z2, z3, z4) ∈ R∞ := R ∪ {∞}.

(b) There exists a circle of C∞ passing through z1, z2, z3, z4.

Proof. The three points z2, z3, z4 determine a unique circle of C∞, which we denote by Γ. Defining
S := S(z2,z3,z4) as in (4.4.1) we have that S(z2) = 1 ∈ R∞, S(z3) = 0 ∈ R∞, S(z4) ∈ R∞. By
Lemma 4.37, S−1(R∞) is a circle containing z2, z3, z4, thus S

−1(R∞) = Γ. Thus (z1, z2, z3, z4) =
S(z1) ∈ R∞ if and only if z1 ∈ Γ.

We are now ready to show that Möbius transformations map circles to circles.

Proposition 4.39. Let T ∈ Aut(C∞) and Γ be a circle of C∞, Then T (Γ) is a circle of C∞.

Proof. Let Γ be a circle of C∞, and z2, z3, z4 ∈ Γ be three distinct points. If T ∈ Aut(C∞), denote
wi = T (zi) for i = 2, 3, 4. Since T : C∞ → C∞ is bijective, w2, w3, w4 are three distinct points
which determine a circle Γ′ ⊂ C∞. If z ∈ C∞, then by Proposition 4.38, z ∈ Γ if and only if
(z, z2, z3, z4) ∈ R∞. By Proposition 4.34, this is equivalent to saying that (T (z), w2, w3, w4). And
again by Proposition 4.38, this is equivalent to T (z) ∈ Γ′.

A consequence of Proposition 4.39 is that the mapping from Corollary 4.35 is so that it maps
the circle determine by the three point input to the one determined to by the three point output.

Corollary 4.40. Given two circles Γ,Γ′ of C∞, there exists T ∈ Aut(C∞) so that T (Γ) = Γ′.
In fact, given three distinct points (z2, z3, z4) ∈ Γ and three distinct points (w2, w3, w4) ∈ Γ′,

there exists a unique T ∈ Aut(C∞) with T (Γ) = Γ′ and T (zi) = wi for i = 2, 3, 4.

Proof. It is immediate from Corollary 4.35 and Proposition 4.39.

We next focus on preserving not only circles of C∞ but also their interiors and exteriors with
respect to a given orientation.

Definition 4.41 (Right and Left Side of Circles). Given a circle Γ of C∞, and three distinct points
z2, z3, z4 ∈ Γ, the orientation determined by z2, z3, z4 (where the order matters) if ordered triple
O = (z2, z3, z4). The right side of Γ with respect to O is the set

R(Γ,O) = {z ∈ C∞ : Im(z, z2, z3, z4) > 0}.

The left side of Γ with respect to O is the set

L(Γ,O) = {z ∈ C∞ : Im(z, z2, z3, z4) < 0}.
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With the notation of Definition 4.41, one has, by virtue of Proposition 4.38,

Γ = {z ∈ C∞ : Im(z, z2, z3, z4) = 0}.

Since the mapping C∞ 7→ (z, z2, z3, z4) is a Möbius Transformation, in particular is an homeomor-
phism C∞ → C∞.

The Möbius Transformations map right (left) sides of circles to right (left) sides of circles.

Theorem 4.42 (Orientation Principle). Let Γ1,Γ2 ⊂ C∞ be circles and T ∈ Aut(C∞) so that
T (Γ1) = Γ2. Then, for the orientations O1 := (z2, z3, z4) of Γ1 and O2 := (T (z2), T (z3), T (z4)) of
Γ2, we have that

T (R(Γ1,O1)) = R(Γ2,O2) and T (L(Γ1,O1)) = L(Γ2,O2).

Proof. It is immediate from Definition 4.41 and Proposition 4.34.

4.5 The Riemann Mapping Theorem

We split the proof of this theorem into five claims.

Theorem 4.43 (Riemann Mapping Theorem). Let Ω ⊂ C be open and connected with Ω ̸= C and
so that Γ ≃ 0 in Ω for all cycles Γ in Ω. Then there exists a biholomorphic map F : Ω → D.

Moreover, given z0 ∈ Ω and θ0 ∈ (−π, π], there exists a unique F : Ω → D with

F (z0) = 0, Arg(F ′(z0)) = θ0.

Proof. We define the family of maps

F := {ψ : Ω → D : ψ ∈ H(Ω) and ψ is injective in Ω}.

We split the proof into three main steps.

Claim 1: F ̸= ∅.
Consider a point w0 ∈ C \ Ω and define h : Ω → C by formula h(z) = z − w0, z ∈ Ω. By the

assumption on Ω and Theorem 1.19, we can find φ ∈ H(Ω) with φ2 = h in Ω. Note that φ is
injective and φ(z) ̸= 0 for all z ∈ Ω, because so is h. By the Open Mapping Theorem 4.4, one has
that φ(Ω) is open, and thus contains a closed disk D(w, r).

And notice that if z ∈ Ω and φ(z) ∈ D(−w, r), then −φ(z) ∈ D(w, r) ⊂ φ(Ω), and thererefore
we can find z1 ∈ Ω with −φ(z) = φ(z1). The injectivity of h implies that z = z1, and so φ(z) = 0,
a contradiction. This shows that φ(Ω) ∩D(−w, r) = ∅, allowing us to define

ψ : Ω → D, ψ(z) =
r

φ(z) + w
, z ∈ Ω.

The image of ψ is indeed contained in D, as |φ(z) + w| > r. And clearly ψ is injective, as so is φ.
Hence Claim 1 is proven.

Claim 2: Given ψ ∈ F so that ψ(Ω) ⊊ D and z0 ∈ Ω, there exists ψ1 ∈ F with |ψ′
1(z0)| >

|ψ′(z0)|.
Let w ∈ D\ψ(Ω), and consider the map φw◦ψ; where φw is that of (4.3.1). Since φw : D → D is

biholomorphic (see e.g. Proposition 4.18), we clearly have that φw ◦ψ is holomorphic and injective
Ω → D. Moreover, φw ◦ ψ(z) ̸= 0 for all z ∈ Ω, as (ψw)

−1(0) = {w} and w /∈ ψ(Ω). Making use
again of the assumption on Ω and Theorem 1.19, we can find g ∈ H(Ω) so that g2 = φw ◦ ψ in Ω.

Since |g(z)| < 1 for all z ∈ Ω, and g is injective in Ω (as so are φw and ψ), the map ψ1 : Ω → D
given ψ1 := φg(z0) ◦g, is well-defined, holomorphic and injective, that is, ψ1 ∈ F . Now, if s : C → C
is the square function s(z) = z2, then we can write

ψ = φ−w ◦ g2 = φ−w ◦ s ◦ φ−g(z0) ◦ φg(z0) ◦ g = h ◦ ψ1, h := φ−w ◦ s ◦ φ−g(z0).
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This implies that

ψ′(z0) = h′(ψ1(z0)) · ψ′
1(z0) = h′(0) · ψ′

1(z0). (4.5.1)

Also, observe that h : D → D and is holomorphic, and that h cannot be injective in D, as the
φ−w, φ−g(z0) are bijections, and s is not injective in D. We can apply Proposition 4.24 to derive

|h′(0)| ≤ 1− |h(0)|2.

Moreover the first inequality is strict because otherwise Proposition 4.24 would imply that h(z) =
φ−h(0)(λz) for all z ∈ D and some λ ∈ T, obtaining that h is injective in D, a contradiction.
Therefore, we must have

|h′(0)| < 1− |h(0)|2 ≤ 1 (4.5.2)

Combining (4.5.1) and (4.5.2) gives

|ψ′
1(z0)| =

|ψ′(z0)|
|h′(0)|

< |ψ′(z0)|.

Claim 3: There exists h ∈ F with h(Ω) = D.
Fix z0 ∈ Ω and r0 > 0 so that D(z0, r0) ⊂ Ω, and by the Cauchy Inequalities we have that

|ψ′(z0)| ≤
sup{|ψ(z)| : z ∈ ∂D(z0, r0)}

r0
≤ 1

r0
, ψ ∈ F .

Thus {|ψ′(z0)| : ψ ∈ F} is a (nonempty, by Claim 1) bounded subset of R, and so we can find a
sequence {ψn}n ⊂ F with

lim
n→∞

|ψ′
n(z0)| = a := sup{|ψ′(z0)| : ψ ∈ F} ∈ R. (4.5.3)

Observe that, since each ψ ∈ F is injective, by Theorem 4.5, ψ′(z0) ̸= 0 for all ψ ∈ F , and so
a > 0. Also, notice |ψn(z)| ≤ 1 for all n ∈ N, and so {ψn}n is a locally bounded family of H(Ω).
By Montel’s Theorem 3.16 (or Corollary 3.18), there exists a subsequence of {ψn}n, which we
keep denoting by {ψn}n, converging locally uniformly in Ω to some h ∈ H(Ω), and still satisfying
(4.5.3). By the pointwise convergence, |h(z)| ≤ 1 for all z ∈ Ω.

Since ψn is holomorphic and injective, and Ω is connected, a consequence of Hurwitz’s Theorem
2.26 (see Exercise 2.20), is that h is either constant or injective in Ω. But by Weierstrass Theorem
3.1, {ψ′

n}n also converges locally uniformly to h′ in Ω. In particular

|h′(z0)| = lim
n→∞

|ψ′
n(z0)| = a > 0.

Therefore h cannot be a constant, whence h is injective. Also, by the Open Mapping Theorem 4.4,
h(Ω) ⊂ D implies that h(Ω) ⊂ D. Consequently h ∈ F .

It only remains to show that h(Ω) = D. Assume, for the sake of contradiction, that h(Ω) ⊊ D.
By Claim 2, we can find another function h1 ∈ F with |h′1(z0)| > |h′(z0)| = a. But this contradicts
the definition of a, see (4.5.3).

We have shown Claim 3, and so the first part of the theorem.

Claim 4: Given z0 ∈ Ω and θ0 ∈ (−π, π], there exists F : Ω → D biholomorphic with F (z0) = 0
and Arg(F ′(z0)) = θ0.

We already know that there is F : Ω → D biholomorphic. Define G := φF (z0) ◦F, which is also
biholomorphic between Ω and D, but additionally satisfies G(z0) = 0, and G′(z0) ̸= 0 by Theorem
4.5. Now it is enough to multiply G by a suitable constant λ ∈ T, obtaining F1 := λ ·G : Ω → D
biholomorphic, with F1(z0) = 0 and Arg(F ′

1(z0)) = θ0.

Claim 5: Given z0 ∈ Ω and θ0 ∈ (−π, π], there exists a unique F : Ω → D biholomorphic with
F (z0) = 0 and Arg(F ′(z0)) = θ0.
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We know that at least one of those F ’s exists by Claim 4. Let F1 and F2 be two such functions,
and define ψ := F1 ◦ F−1

2 : D → D, which is an automorphism of D. Therefore, by Theorem 4.25,
there are λ ∈ T and w ∈ D so that

ψ(z) = λ
z − w

1− wz
, z ∈ D.

Since F1(z0) = F2(z0) = 0, we have that ψ(0) = 0, and therefore w = 0. Consequently, ψ(z) = λz
for all z ∈ D. In addition,

λ = ψ′(0) = F ′
1(F

−1
2 (0)) · (F−1

2 )′(0) =
F ′
1(z0)

F ′
2(z0)

=
|F ′

1(z0)|
|F ′

2(z0)|
> 0,

where the last inequality follows from the fact that F ′
1(z0) and F ′

2(z0) have the same principal
argument. The above implies λ > 0, and so λ = 1.

Using Riemann’s Mapping Theorem 4.43, we can show simple-connectedness actually charac-
terizes the validity of the Cauchy Global Theorem, thus characterizing also all the stamtements
from Corollary 1.29.

Corollary 4.44. Let Ω ⊂ C be open and connected. The following statements are equivalent.

(i) Ω is simply connected.

(ii) Γ ≃ 0 in Ω for all cycles Γ in Ω.

Proof. We can assume that Ω ̸= C. If Ω is simply connected, then Ω satisfies (ii) by Corollary
1.29. Conversely, if (ii) holds, then by Theorem 4.43 there exists a biholomorphic map F : Ω → D.
Since D is simply-connected and F is a homeomorphism, we have that Ω is simply connected.

4.6 Exercises

Exercise 4.1. Let Ω, U ⊂ C be two open sets, and functions f : Ω → U, g : U → C with f(Ω) = U,
g ∈ H(U), and g(f(z)) = z for all z ∈ Ω. Prove that f ∈ H(Ω), g′(f(z)) ̸= 0 for all z ∈ Ω, and
that

f ′(z) =
1

g′(f(z))
, z ∈ Ω.

Exercise 4.2. Denoting D = D(0, 1) and H = {z ∈ C : Im(z) > 0}. Prove that

f(z) = i
1− z

1 + z

is holomorphic and injective in D, with f(D) = H, and find the inverse f−1 : H → C of f.

Exercise 4.3. Let Ω ⊂ C be open and connected, and f ∈ H(Ω) so that Re(f)(z) ≥ 0 for all z ∈ Ω.
Use the Open Mapping Theorem to show that actually Re(f)(z) > 0 for all z ∈ C.

Exercise 4.4. Let Ω ⊂ C be open, z0 ∈ Ω, and f : Ω \ {z0} → C be holomorphic and injective in
Ω \ {z0}. Prove that f cannot have an essential singularity at z0.

Exercise 4.5. Let f : C → C holomorphic and injective in C. Prove that f must be of the form
f(z) = az + b, with a, b ∈ C, a ̸= 0.

Suggestion: Apply the previous exercise to show that f has either a removable singularity or
pole at ∞. Which holomorphic functions in C have that behavior at ∞?
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Exercise 4.6. Let f ∈ H(C) so that f(f(1/n)) = 1/n for all n ∈ N. Prove that f is of the form
f(z) = z or f(z) = w − z for some w ∈ C.

Suggestion: Show that f is injective and apply the previous exercise.

Exercise 4.7. Determine whether there exists f ∈ Aut(D) with the following restrictions.

(a) f(0) = 0 and f(1/2) = i/2.

(b) f(0) = 0 and f(1/3) = 1/4.

(c) f(0) = 1/2 and f ′(0) = 3/4.

Exercise 4.8. Prove that if f ∈ Aut(D) with f(0) = 0 and f ′(0) > 0, then f(z) = z for all z ∈ D.

Exercise 4.9. Prove that if f ∈ Aut(D) and f has two fixed points, then f(z) = z for all z ∈ D.

Exercise 4.10. Prove that there is no f : D → D holomorphic with f(1/2) = 3/4 and f ′(1/2) = 2/3.

Exercise 4.11. Prove that there is a unique f : D → D holomorphic with f(0) = 1/2 and f ′(0) = 3/4,
and find the formula for f.

Exercise 4.12. Let Ω ⊂ C be open, r2 > r1 > 0 with {z ∈ C : r1 ≤ |z| ≤ r2} ⊂ Ω and f ∈ H(Ω).
Denoting

M(r) := sup{|f(z)| : |z| = r}, r1 ≤ r ≤ r2,

prove the inequalities

logM(r) ≤
(

log r2 − log r

log r2 − log r1

)
logM(r1) +

(
log r − log r1
log r2 − log r1

)
logM(r2), r1 ≤ r ≤ r2.

Exercise 4.13. Let Ω ⊂ C be open and connected, R > 0 so that D(0, R) ⊂ Ω and f ∈ H(Ω). We
denote,

M(r) := sup{|f(z)| : |z| = r}, A(r) := sup{|Re f(z)| : |z| = r}, 0 ≤ r ≤ R.

Prove the inequalities

M(r) ≤ R+ r

R− r
(A(R) + |f(0)|) , 0 ≤ r ≤ R.

Exercise 4.14. Let Ω ⊂ C be open and connected, and U open, connected and bounded with U ⊂ Ω.
If f ∈ H(Ω) is so that |f | is constant in ∂U, show that either f is constant in Ω or |f | has (at
least) one zero in U.

Exercise 4.15. Let Ω ⊂ C be open, bounded, and connected, and {fn}n a sequence of holomorphic
functions in Ω, continuous in Ω, which converges uniformly in ∂Ω. Prove that {fn}n converges
uniformly in Ω.

Exercise 4.16. Let f : D → C be holomorphic. Prove that there exists {zn}n ⊂ D with lim
n→∞

|zn| = 1

and {f(zn)}n is bounded.
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Exercise 4.17. Prove that if |w| < 1 and |ξ| > 1, then

|w| − |ξ|
1− |wξ|

≤
∣∣∣∣ w + ξ

1 + wξ

∣∣∣∣ ≤ |w|+ |ξ|
1 + |wξ|

.

Exercise 4.18. Let f ∈ H(D) with |f(z)| ≤ 1 for all z ∈ D. Prove that, for all z ∈ D,

|f(0)| − |z|
1− |f(0)z|

≤ |f(z)| ≤ |f(0)|+ |z|
1 + |f(0)z|

.

Exercise 4.19. Let f ∈ H(D) be non-constant, with Re(f)(z) ≥ 0 for all z ∈ D. Use the Möbius
Transformation T (z) = z−1

z+1 and Schwarz’s Lemma (Theorem 4.23) to show that

1− |z|
1 + |z|

|f(0)| ≤ |f(z)| ≤ 1 + |z|
1− |z|

|f(0)|, for all z ∈ D.

Exercise 4.20. Let f ∈ H(D) with |f(z)| ≤ 1 for all z ∈ D, and let z1, . . . , zn ∈ D be points with
f(zk) = 0 for all k = 1, . . . , n. Prove that

|f(z)| ≤
n∏

k=1

∣∣∣∣ z − zk
1− zkz

∣∣∣∣ , z ∈ D.

Exercise 4.21. Let f ∈ H(D), and z1, . . . , zn ∈ D \ {0} so that

(i) |f(z)| ≤ 1 for all z ∈ D.

(ii) f(zk) = 0 for all k = 1, . . . , n.

(iii) f(0) = λ · z1z2 · · · zn for some λ ∈ T.

Find a explicit formula for f.

Exercise 4.22. Let Ω ⊂ C be open and connected, with D ⊂ Ω, and let f ∈ H(Ω) with |f(z)| = 1
for all z ∈ T. Find a general formula for f in terms of the zeros of f in D.

Exercise 4.23. Let Ω ⊂ C be open and connected with D(0, 1) ⊂ Ω, and f ∈ H(Ω) with |f(z)| = 1
for all z ∈ T. With the additional information f(0) = 2−5/2 and that the zeros of D are 1

4(1 + i)
(of order 1) and 1/2 (of order 2), use the previous exercise to find the explicit formula for f .

Exercise 4.24. For the inversion T (z) = 1/z, show the following.

(a) T (∂D(0, r)) = ∂D(0, 1/r).

(b) If γ ⊂ C is a circle with 0 /∈ γ, then T (γ) is a circle of C with 0 /∈ T (γ).

(c) If γ ⊂ C is a circle with 0 ∈ γ, then T (γ) = ℓ ∪ {∞} with ℓ ⊂ C a line so that 0 /∈ ℓ.

(d) If γ = ℓ ∪ {∞} with ℓ ⊂ C a line so that 0 /∈ ℓ, then T (γ) is a circle of C with 0 /∈ T (γ).

(e) If γ = ℓ ∪ {∞} with ℓ ⊂ C a line so that 0 ∈ ℓ, then T (γ) = ℓ′ ∪ {∞} with ℓ′ ⊂ C a line so
that 0 ∈ ℓ′.

Exercise 4.25. Find the Möbius Transformation T in the following cases.
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(a) T maps 0, i, 1− i to −1, 0, i.

(b) T (1 + i
2) = 0 and T (D(1, 1)) = D(0, 1).

(c) T (∂D(0, 2)) = R and T (0) = −i.

Exercise 4.26. Let T (z) = az+b
cz+d a Möbius Transformation with T (R) = R. Show that we can assume

that a, b, c, d ∈ R.

Exercise 4.27. Let H := {z ∈ C : Im(z) > 0} and T a Möbius Transformation with T (H) = D.
Show that T can be written as

T (z) = λ
z − z0
z − z0

, z ∈ H,

for λ ∈ T, T (z0) = 0.

Exercise 4.28. Find all Möbius Transformations T so that T (∂D) = ∂D.

Exercise 4.29. Find a biholomorphic map between U = {z ∈ C : Re(z), Im(z) > 0} and V = {z ∈
C : Im(z)}.

Exercise 4.30. Verify that the function f(z) =
(z + 1)2 − 2

(z − 1)2 + 2
is biholomorphic between {z ∈ C :

|z| < 1, Re(z) > 0} and D.
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Chapter 5

Harmonic Functions

This chapter is devoted to analytical properties of harmonic functions in the plane. These are
defined as C2-smooth functions satisfying the Laplace Equation. We first show in Theorem 5.5
that simple-connectedness characterizes the existence of harmonic conjugates, or equivalently, the
fact every harmonic function can be written as the real part of some holomorphic functions. In
particular, every harmonic function in an arbitrary open set can be locally written as the real part
of holomorphic map; see Corollary 5.7. From this observation one can derive plenty of regularity
properties for harmonic functions such as their real-analyticity and the open-map property; see
Exercise 5.6.

But the goal is to characterize the harmonicity by an integral property over circles, without
the need to a priori show the Laplace equation or the C2 regularity. This integral property is the
Mean Value Property. While it is easy to see from the Cauchy Integral Formula that harmonic
functions satisfy this property, the converse is very non-trivial, and requires to prove the Maximum
Principles (Theorems 5.10 and 5.14) for functions with the Mean Value Property. A consequence
of these principles is that two functions having this property that agree (continuously) in the
boundary of a bounded domain must coincide also in the interior; see Corollary 5.15.

The Poisson Extension of a continuous function in a circle is a continuous extension to the
closure of the disk, that is harmonic in the interior. The Maxmimum Principles permit to prove
that these extensions are unique. In other words, the Dirichlet Problem in a disk has a unique
solution; see Theorem 5.16. This allows to characterize harmonic functions via the Mean Value
Property (Theorem 5.18).

Using this characterization, one can show that the locally uniform limit of harmonic functions is
harmonic; see Corollary 5.19. The argument is in the same spirit as that of Weierstrass Convergence
Theorem 3.1, where an integral property over triangles that characterizes holomorphic maps (via
Morera’s Theorem) is used to prove that locally uniform limits of holomorphic maps are harmonics.

Furthermore, the Mean Value Property leads to the Harnack Inequalities (Theorem 5.20),
yielding estimates between the values of a (nonnegative) harmonic map in the interior of a disk
and the values at the boundary. Based on these inequalities, Harnack’s Convergence Theorem
5.22 classifies completely the convergence of monotonically non-decreasing sequences of harmonic
function.

Definition 5.1 (Real Harmonic Function). Let Ω ⊂ R2 be open and u : Ω → R a function of class
C2(Ω). We say that u is harmonic if u satisfies the Laplace Equation:

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0 on Ω. (5.0.1)

We denote the family of all harmonic functions in Ω by Har(Ω).

By saying that u ∈ C2(Ω) we of course mean that u has partial derivatives up to order two,
and are continuous in Ω.
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Definition 5.2 (Harmonic Conjugate). Let Ω ⊂ C be open and let u : Ω → R be a harmonic function.
We say that v : Ω → R is a harmonic conjugate of u in Ω if the function u+ iv is holomorphic
in Ω.

Real and Imaginary Parts of holomorphic maps are always harmonic.

Proposition 5.3. Let Ω ⊂ C be open and f : Ω → C holomorphic. Then Re(f) and Im(f) are
harmonic in Ω.

Proof. The functions Re(f), Im(f) : Ω → R are of class C∞(Ω) and the Laplace Equation is
satisfied thanks to the Cauchy-Riemann Equations.

5.1 Harmonic Conjugates in Simply Connected Domains

The existence of a harmonic conjugate can be characterized as follows.

Proposition 5.4. Let Ω ⊂ C be open and u ∈ Har(Ω). Then, the following statements are equivalent.

(i) u has a harmonic conjugate in Ω.

(ii) The function f := ux − iuy has a primitive in Ω.

Proof. Assume that u has a harmonic conjugate v, so that g := u + iv ∈ H(Ω). By the Cauchy
Riemann Equations, we have that

g′ = ux + ivx = ux − iuy = f,

thus showing that g is a primitive of f.
Conversely, let g ∈ H(Ω) be so that g′ = f in Ω. We can write g = w + iv, where w = Re(g)

and v = Im(g). We get that

ux − iuy = g′ = wx + ivx = wx − iwy.

We get that ux = wx and uy = wy in Ω. From the first equation, we obtain that w(x, y) =
u(x, y) +φ(y); for a one-variable differentiable function φ. Inserting this into the second equation,
we derive uy(x, y) + φ′(y) = uy(x, y). This implies that φ is a constant c ∈ R, and so w = u+ c in
Ω. But since g ∈ H(Ω), and w = Re(g) and v = Im(g), the function v is a harmonic conjugate of
w, and so of u as well.

Since domains with whose cycles are all null-homologous are characterized by the existence of
primitives, we obtained the following.

Theorem 5.5 (Existence of Harmonic Conjugates). Let Ω ⊂ C be open. Then, the following state-
ments are equivalent.

(i) Γ ≃ 0 in Ω for all cycles Γ in Ω.

(ii) Every u ∈ Har(Ω) has a harmonic conjugate in Ω.

Proof. Assume that (i) holds and let u ∈ Har(Ω). The function f = ux − iuy is holomorphic in
Ω since ux, −uy satisfy the Cauchy-Riemann Equations as a consequence of the Laplace Equation
(5.0.1) for u. By Theorem 1.19, f has a primitive in Ω. By Proposition 5.4, u has a harmonic
conjugate.

Conversely, assume that (ii) holds and let f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω. By Exercise
5.1, the function u := log |f | is harmonic in Ω. So by (ii), there exists v ∈ Har(Ω) so that the
function g := u+ iv is holomorphic in Ω. Taking the modulus of eg, we get

|eg| = eRe(g) = eu = |f |,



79

in all of Ω. But then the function h = e−g ·f has modulus constantly equal to 1 in Ω. Consequently,
for each connected component U of Ω, there exists a constant cU ∈ C \ {0} with f = cUe

g in U.
Taking ξU ∈ C with cU = eξU , one gets that f = eξU+g in U. Thus, on each connected component
of Ω, the function f has a holomorphic logarithm. By Theorem 1.19, we get (i).

Consequently, simple-connectedness has a new characterization.

Corollary 5.6 (Harmonic Conjugates in Simply Connected Domains). Let Ω ⊂ C be open and
connected. Then, the following statements are equivalent.

(i) Ω is simply connected.

(ii) Every u ∈ Har(Ω) has a harmonic conjugate in Ω.

Proof. It suffices to combine Theorem 5.5 with Corollary 4.44.

We conclude this section by noticing that then holomorphic functions are locally real parts of
holomorphic functions.

Corollary 5.7. Let Ω ⊂ C be open, and u ∈ Har(Ω). Then, for every z0 ∈ Ω there exist r > 0 and
f ∈ H(D(z0, r)) so that D(z0, r) ⊂ Ω and u = Re(f).

Proof. If z0 ∈ Ω and r > 0 is so that D(z0, r) ⊂ Ω, we can apply Corollary 5.6 to the simply
connected set D(z0, r) to obtain that u has a harmonic conjugate v in D(z0, r). Thus f := u+ iv
is holomorphic in D(z0, r) and u = Re(f).

5.2 The Mean Value Property and the Maximum Principles

We focus our attention on the following integral condition for a continuous function.

Definition 5.8 (Mean Value Property). Let Ω ⊂ C be open and f : Ω → C be continuous in Ω. We
say that f has the Mean Value Property in Ω if for every z0 ∈ Ω and r > 0 so that D(z0, r) ⊂ Ω,
one has

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit) dt.

All harmonic maps enjoy the Mean Value Property.

Proposition 5.9. Let Ω ⊂ C be open and u ∈ Har(Ω). Then u has the Mean Value Property in Ω.

Proof. Given D(z0, r) ⊂ Ω, there exists ε > 0 so that D(z0, r) ⊂ D(z0, r + ε) ⊂ Ω. By Corollary
5.6, there exists f ∈ H(D(z0, r + ε)) with Re(f) = u in D(z0, r + ε). Therefore, f has the Mean
Value Property for holomorphic maps,

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit) dt.

It suffices now to take real parts on both sides.

The first Maximum Principles shows that non-constant functions with the Mean Value Property
cannon have local maximum.

Theorem 5.10 (Maximum Principle I). Let Ω ⊂ C be open and connected, and u ∈ C(Ω,R) with
the Mean Value Property in Ω. Then, if there exists z0 ∈ Ω with u(z0) ≥ u(z) for all z ∈ Ω, then
u is constant in Ω.
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Proof. Consider the set of points A = {z ∈ Ω : u(z) = u(z0)}. Obviously ∅ ≠ A ⊂ Ω. By the
continuity of u in Ω, it is clear that u is a closed relative to Ω. Since Ω is connected, we will
show that A = Ω as soon as we prove that A is open. To see this, let z ∈ A and R > 0 so that
D(z,R) ⊂ Ω. By the Mean Value Property of u, we have that, for all 0 < r ≤ R,

u(z0) = u(z) =
1

2π

∫ 2π

0
u(z + reit) dt.

We can rewrite this as

0 =
1

2π

∫ 2π

0

(
u(z0)− u(z + reit)

)
dt,

where the integrand is a continuous function in t ∈ [0, 2π], which is nonnegative by the assumption
on u and z0. Therefore u(z0) = u(z + reit) for all t ∈ [0, 2π] and all 0 < r ≤ R. We conclude that
u = u(z0) in D(z,R), showing that D(z,R) ⊂ A. Therefore, A is an open set.

Analogously, we deduce the following.

Corollary 5.11 (Minimum Principle). Let Ω ⊂ C be open and connected, and u ∈ C(Ω,R) with the
Mean Value Property in Ω. Then, if there exists z0 ∈ Ω with u(z0) ≤ u(z) for all z ∈ Ω, then u is
constant in Ω.

Proof. It follows by applying Theorem 5.10 to −u.

From the previous principles, we see that functions with the Mean Value Property in bounded
domains attained their extraema at the boundary.

Corollary 5.12. Let Ω ⊂ C be open, connected and bounded, and u ∈ C(Ω,R) with the Mean Value
Property in Ω. Then,

max{u(z) : z ∈ Ω} = max{u(z) : z ∈ ∂Ω} and min{u(z) : z ∈ Ω} = min{u(z) : z ∈ ∂Ω}.

Proof. Assume that the first identity does not hold. Then there exists z0 ∈ Ω with u(z0) ≥ u(z) for
all z ∈ Ω and u(z0) > max{u(z) : z ∈ ∂Ω}. By Theorem 5.10, u is constant in Ω. The continuity
of u in Ω implies that u is constant in Ω as well, contradicting that u(z0) > u(z) for all z ∈ ∂Ω.

As concerns the identity for the minimum, it suffices to apply the first identity to −u instead
of u.

The following technical lemma is the key for the second Maximum Principle, and allows for
unbounded domains.

Lemma 5.13. Let Ω ⊂ C be open and connected, and ψ : Ω → R continuous and with the Mean
Value Property in Ω. Assume further that

lim sup
z→w, z∈Ω

ψ(z) ≤ 0, for all w ∈ ∂C∞(Ω). (5.2.1)

Then either ψ(z) < 0 for all z ∈ Ω or ψ(z) = 0 for all z ∈ Ω.

Proof. We only need to show that ψ(z) ≤ 0 for all z ∈ Ω. Indeed, if we show this, then, if ψ(z0) = 0
for some z0 ∈ Ω, then we can apply Theorem 5.10 to obtain that ψ is identically zero in Ω, and
our claim follows.

Let us then prove that ψ ≤ 0 in Ω. Assume, towards a contradiction, that ψ(z) > ε for some
ε > 0 and z ∈ Ω. The set A := {z ∈ Ω : ψ(z) ≥ ε} is therefore nonempty. Observe that A is

bounded, because otherwise ∞ ∈ ∂Ω and ∞ ∈ A
C∞
, implying that

0 ≥ lim sup
z→w, z∈Ω

ψ(z) ≥ lim sup
z→w, z∈A

ψ(z) ≥ ε,
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a contradiction. Let us now check that A is closed in C. Indeed, let {zn}n ⊂ A be convergent to
w ∈ C. In the case w ∈ Ω, by the continuity of ψ we have that ψ(w) = lim

n→∞
ψ(zn) ≥ ε , and so

w ∈ A. And if w /∈ Ω, then w ∈ ∂Ω, and by (5.2.1) we have

ε ≤ lim
n→∞

ψ(zn) ≤ 0,

a contradiction. We have shown that A is closed in C. Therefore A is compact, and so we can find
z0 ∈ A with

ψ(z0) = max{ψ(z) : z ∈ A} = max{ψ(z) : z ∈ Ω}.
By Theorem 5.10, ψ is constant in Ω. Since ψ(z0) ≥ ε, this contradicts (5.2.1).

Applying Lemma 5.13 for a difference of two functions, we easily derive the Second Maximum
Principle.

Theorem 5.14 (Maximum Principle II). Let Ω ⊂ C be open and connected, and u, v ∈ C(Ω,R) with
the Mean Value Property in Ω. Assume further that

lim sup
z→w, z∈Ω

u(z) ≤ lim inf
z→w, z∈Ω

v(z), for all w ∈ ∂C∞(Ω). (5.2.2)

Then either u(z) < v(z) for all z ∈ Ω or u(z) = v(z) for all z ∈ Ω.

Proof. Recall that

lim sup
z→w, z∈Ω

u(z) = lim
ε→0+

(
sup{u(z) : z ∈ Ω and d̂(z, w) ≤ ε}

)
,

for each w ∈ ∂C∞Ω. By (5.2.2), we have

lim sup
z→w, z∈Ω

(u− v)(z) ≤ lim sup
z→w, z∈Ω

u(z) + lim sup
z→w, z∈Ω

(−v(z)) ≤ lim inf
z→w, z∈Ω

v(z) + lim sup
z→w, z∈Ω

(−v(z)) = 0.

Thus we can apply Lemma 5.13 to the function ψ = u− v.

Consequently, two continuous functions with the Mean Value Property that agree on the bound-
ary, must agree on the interior as well.

Corollary 5.15. Let Ω ⊂ C be open, connected and bounded, and u ∈ C(Ω,R) with the Mean Value
Property in Ω. Then, if u(z) = 0 for all z ∈ ∂Ω, then u(z) = 0 for all z ∈ Ω.

Proof. By Theorem 5.14, we have that u < 0 in Ω or u ≡ 0 in Ω. Applying Theorem 5.14 with −u
instead of u, we get that either u > 0 in Ω or u ≡ 0 in Ω. We conclude that u ≡ 0 in Ω.

5.3 The Dirichlet Problem in the Disk

Recall the various formulae for the Poisson Kernel:

Pr(θ) :=
∑
n∈Z

r|n|einθ = Re

(
1 + reiθ

1− reiθ

)
=

1− r2

1− 2r cos θ + r2
, for all r ∈ [0, 1), θ ∈ R.

This kernel essentially solves a fundamental Partial Differential Equation with boundary data.

Theorem 5.16 (Solution to Dirichlet’s Problem). Let g : T → R be a continuous function, then
there exists a unique u ∈ C(D,R) ∩Har(D) with u = g in T. Moreover, u can be expressed as

u(z) = Re(F )(z), F (z) :=
1

2π

∫ 2π

0

eit + z

eit − z
· u(eit) dt, for all z ∈ D. (5.3.1)

Or, in polar coordinates, as

u(reiθ) :=
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − t) + r2
u(eit) dt, for all r ∈ [0, 1), θ ∈ R. (5.3.2)
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Proof. Defining u = g in T and u as in (5.3.1) or (5.3.2), one has that u ∈ C(D,R) ∩ Har(D);
see [5, Theorem 6.23]. To show that a function with the conditions of u is unique, assume that
v ∈ C(D,R) ∩ Har(D) and u = v in T. Since harmonic functions satisfy the Mean Value Property
(see Proposition 5.9), we can apply Corollary 5.15 to deduce that u = v in D.

As expected, Theorem 5.16 can be generalized to arbitrary disks, by translating centers and
dilating radii.

Corollary 5.17. Let z0 ∈ C, R > 0 and u : ∂D(z0, R) → R be continuous. Then the formula

u(z0 + reiθ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − t) + r2
u(z0 +Reit) dt, for all 0 ≤ r < R, θ ∈ R;

(5.3.3)
defines the unique extension of u to a function C(D(z0, R)) ∩Har(D(z0, R)).

Consequently, if we are given u ∈ C(D(z0, R))∩Har(D(z0, R)), then u is as in formula (5.3.3)
in D(z0, R).

Proof. If u : ∂D(z0, R) → R is continuous, we can define v : D → R by the formula v(z) =
u(z0 + Rz), for all z ∈ T, where clearly v ∈ C(T). By Theorem 5.16, v admits a unique extension
to D with v ∈ C(D,R) ∩ Har(D), and the extension is given by formula (5.3.2). Given 0 ≤ r < R,
θ ∈ R, denote s = r/R ∈ [0, 1), and define u(z0 + reiθ) := v(seiθ). We deduce that

u(z0 + reiθ) = v(seiθ) =
1

2π

∫ 2π

0

1− s2

1− 2s cos(θ − t) + s2
v(eit) dt

=
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − t) + r2
u(z0 +Reit) dt,

giving us formula (5.3.3). And if ũ : D(z0, R) → R is another function C(D(z0, R))∩Har(D(z0, R))
with ũ = u in ∂D(z0, R), then the function ṽ(z) = ũ(z0 + Rz), z ∈ D belongs to C(D) ∩ Har(D)
and satisfies ṽ = v in T. By the uniqueness of such functions (guaranteed by Theorem 5.16), we
infer that ṽ = v in D, whence ũ = u in D(z0, R).

We are finally ready to state the characterization of Harmonic Functions via the Mean Value
Property.

Theorem 5.18 (Mean Value Characterization for Harmonic Functions). Let Ω ⊂ C be open and
u : Ω → R be continuous in Ω. The following statements are equivalent.

(i) u ∈ Har(Ω).

(ii) u has the Mean Value Property in Ω.

Proof. The implication (i) =⇒ (ii) was proven in Proposition 5.9.
Conversely, assume that u enjoys the Mean Value Property in Ω. Given z0 ∈ Ω, let r > 0

so that D(z0, r) ⊂ Ω. By Corollary 5.17, there is a unique v ∈ C(D(z0, r)) ∩ Har(D(z0, r)) with
v = u in ∂D(z0, r). Thus the function u− v is continuous in D(z0, r) and satisfies the Mean Value
Property in D(z0, r). By Corollary 5.15, we have that u = v in D(z0, r), thus deducing that u is
harmonic in D(z0, r). Since z0 ∈ Ω, this shows that u ∈ Har(Ω).

This allows to show that locally uniform limits of harmonic functions are harmonic.

Corollary 5.19. Let Ω ⊂ C be open, and let τ be the Compact-Open topology in C(Ω,C). Then
Har(Ω) is a complete and closed subspace of (C(Ω,C), τ) . Consequently, if {un}n ⊂ Har(Ω) con-
verges locally uniformly in Ω to some u : Ω → R, then u ∈ Har(Ω) as well.
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Proof. Since (C(Ω,C), τ) is a complete metric (metrizable) space, it suffices to show that Har(Ω)
is closed in (C(Ω,C), τ) . To see this, let {un}n ⊂ Har(Ω) converging to some u ∈ C(Ω,R) in the
metric ρ. Given any closed disk D(z0, r) contained in Ω, we have that {un}n converges uniformly
to u on D(z0, r), and by Proposition 5.9 for each un we have

u(z0) = lim
n→∞

un(z0) = lim
n→∞

1

2π

∫ 2π

0
un(z0 + reit) dt =

1

2π

∫ 2π

0
u(z0 + reit) dt.

We have shown that u has the Mean Value Property in Ω. Since u is continuous in Ω, Theorem
5.18 implies that u ∈ Har(Ω). We conclude that Har(Ω) is closed in (C(Ω,C), τ) .

5.4 Harnack’s Inequalities and Theorem

The Harnack’s Inequalities permits to estimate the value of a nonnegative harmonic function in
the interior in terms of those at the boundary of the circle.

Theorem 5.20 (Harnack’s Inequalities). Let z0 ∈ C, R > 0 and u ∈ C(D(z0, R)) ∩ Har(D(z0, R))
with u ≥ 0 in D(z0, R). Then

R− r

R+ r
u(z0) ≤ u(z0 + reiθ) ≤ R+ r

R− r
u(z0), for all 0 ≤ r < R, θ ∈ R. (5.4.1)

Proof. First observe that

R2 − r2

R2 − 2rR cos(θ − t) + r2
=

R2 − r2

|R− rei(θ−t)|2
for all 0 ≤ r < R, t, θ ∈ R,

which, together with (R− r)2 ≤ |R− rei(θ−t)|2 ≤ (R+ r)2, leads us to

R− r

R+ r
u(z0 +Reit) ≤ R2 − r2

R2 − 2rR cos(θ − t) + r2
u(z0 +Reit) ≤ R+ r

R− r
u(z0 +Reit).

Integrating over t ∈ [0, 2π], using the Mean Value Property for harmonic functions (see Proposition
5.9), we get

R− r

R+ r
u(z0) =

1

2π

∫ 2π

0

R− r

R+ r
u(z0 +Reit) dt

≤ 1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − t) + r2
u(z0 +Reit) dt

≤ 1

2π

∫ 2π

0

R+ r

R− r
u(z0 +Reit) dt =

R+ r

R− r
u(z0).

Then (5.4.1) follows by observing that the integral in the second equation line above is precisely
u(z0 + reiθ) by virtue of formula (5.3.3).

Let us consider a particular (but fundamental) case of Theorem 5.20.

Remark 5.21. Let R > 0, z0 ∈ C, and v ∈ C(D(z0, R)) ∩Har (D(z0, R)) with v ≥ 0. Then,

1

3
v(z0) ≤ v(z) ≤ 3v(z0), for all z ∈ D(z0, R/2). (5.4.2)

Indeed, by Theorem 5.20, we have that if |z − z0| ≤ R/2, then

1

3
v(z0) =

R−R/2

R+R/2
v(z0) ≤

R− |z − z0|
R+ |z − z0|

v(z0) ≤ v(z) ≤ R+ |z − z0|
R− |z − z0|

v(z0) ≤
R−R/2

R+R/2
v(z0) ≤ 3v(z0).
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The following theorem classifies completely the convergence of a non-decreasing sequence of
harmonic maps in a domain.

Theorem 5.22 (Harnack’s Theorem). Let Ω ⊂ C be open and connected and {un}n ⊂ Har(Ω) a
sequence so that un ≤ un+1 in Ω for all n ∈ N. Then either

(A) lim
n→∞

un(z) = ∞ uniformly on compact subsets of Ω, or else

(B) {un}n converges to some u ∈ Har(Ω) uniformly on compact subsets of Ω.

Proof. We can assume (e.g., considering the sequence {un−u1}n instead of {un}n) that un ≥ 0 in
Ω. We define the function u : Ω → R ∪ {+∞} by

u(z) := lim
n→∞

un(z) = sup
n∈N

un(z), z ∈ Ω.

Clearly u takes values in R ∪ {+∞} and {un}n increases to u in Ω. The sets

V := {z ∈ Ω : u(z) = +∞}, W := {z ∈ Ω : u(z) ∈ R}

are disjoint, with Ω = V ∪W. We next show that both V and W are open sets.
Indeed, given z0 ∈ Ω and R > 0 with D(z0, R) ⊂ Ω, we can apply Remark 5.21 to obtain that

1

3
un(z0) ≤ un(z) ≤ 3un(z0), for all n ∈ N, z ∈ D(z0, R/2). (5.4.3)

This tells us that if z0 ∈ V (resp. if z0 ∈W ), then D(z0, R/2) ⊂ V (resp. D(z0, R/2) ⊂W ).
This shows that V and W are open sets. Since their disjoint union is Ω, which is connected,

then either Ω = V or Ω =W.
In the first case, Ω = V, we have that lim

n→∞
un(z) = ∞ for all z ∈ Ω. Let us show that this

convergence is locally uniform in Ω, from which we obtain the altervative (A). Indeed, given z0 ∈ Ω,
let R > 0 be so that D(z0, R) ⊂ Ω. Given L > 0 we can find N ∈ N so that un(z0) ≥ 3L for all
n ≥ N. Now, if z ∈ D(z0, R/2), we can apply (5.4.3) to obtain

un(z) ≥
1

3
un(z0) ≥ L, for all n ≥ N.

This shows that {un}n converges uniformly to ∞ in D(z0, R/2).
In the second case, Ω = W, we have that u(z) = lim

n→∞
un(z) ∈ R for all z ∈ Ω. We will now

show that {un}n is Cauchy-locally uniformly in Ω, that is, given z0 ∈ Ω, there exists r > 0 so that
D(z0, r) ⊂ Ω and for every ε > 0 we can find N ∈ N with

sup{|um(z)− un(z)| : m ≥ n ≥ N, z ∈ D(z0, r)} ≤ ε. (5.4.4)

If z0 ∈ Ω, let R > 0 be so that D(z0, R) ⊂ Ω. Given ε > 0, since lim
n→∞

un(z0) exists (is equal to

u(z0) ∈ R), there is N ∈ N with

|um(z0)− un(z0)| = um(z0)− un(z0) ≤
ε

3
, for all m ≥ n ≥ N. (5.4.5)

Now, if z ∈ D(z0, R/2), and m ≥ n ≥ N, we can use the esimates (5.4.2) for um−nn ≥ 0, obtaining

um(z)− un(z) ≤ 3 (um(z0)− un(z0)) , m ≥ n ≥ N.

Using (5.4.5), the above gives precisely (5.4.4). Since {un}n is Cauchy-locally uniformly in Ω, we
have that {un}n is a Cauchy sequence of the space Har(Ω) with the Compact-Open Topology. By
Corollary 5.19, this space is complete, and so there exists v ∈ Har(Ω) to which {un}n converges
uniformly on compact subsets of Ω. Since the function u : Ω → R was the pointwise limit of {un}n,
we must have u = v, thus concluding u ∈ Har(Ω) and that {un}n converges uniformly on compact
subsets to u. This is precisely the alternative (B).
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5.5 Exercises

Exercise 5.1. Let Ω ⊂ C be open, and f ∈ H(Ω) with f(z) ̸= 0 for all z ∈ Ω. Show that log |f | is a
harmonic function in Ω.

Exercise 5.2. Let Ω ⊂ C be open and connected. Show that if both u ∈ Har(Ω) and u2 ∈ Har(Ω),
then u is constant in Ω.

Exercise 5.3. Let Ω ⊂ C be open and connected. Show that if f ∈ H(Ω) and |f |2 ∈ Har(Ω), then f
is constant in Ω.

Exercise 5.4. Let Ω ⊂ C be open, and u ∈ Har(Ω). Prove that, if D(z0, R) ⊂ Ω, then

u(z0) =
1

πR2

∫
D(z0,R)

u(x, y) dx dy.

Exercise 5.5. Let f : R2 → R a polynomial given by f(x, y) =
∑n

k,j=0 ak,jx
kyj, for all (x, y) ∈ R2,

with ak,j ∈ R for all 0 ≤ k, j ≤ n. Show that f ∈ Har(C) if and only if

(i) k(k − 1)ak,j−2 + j(j − 1)ak−2,j = 0 for all 2 ≤ k, j ≤ n, and

(ii) ak,j = 0 for all k, j ∈ {n− 1, n}.

Exercise 5.6. Let Ω ⊂ C be open and connected, and u ∈ Har(Ω) non-constant. Prove that u : Ω →
R is an open map.

Exercise 5.7. Consider the function u(z) = Im

((
1 + z

1− z

)2)
for all z ∈ D. Show that u ∈ Har(D)

and that lim
r→1−

u(reiθ) = 0 for all θ ∈ R.

Exercise 5.8. Let Ω ⊂ C be open and connected, R > 0 so that D(0, R) ⊂ Ω and f ∈ H(Ω)
non-constant in Ω. Prove that the function

[0, R] ∋ r 7→M(r) := max{Re(f)(z) : |z| = r}

is strictly increasing in [0, R].

Exercise 5.9. Let f : D → C be continuous with f = u+ iv, and u, v ∈ Har(D). First show that

f(reiθ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − t) + r2
f(eit) dt, r ∈ [0, 1), θ ∈ R.

Use this to prove that f ∈ H(D) if and only if∫ 2π

0
f(eit)eint dt = 0, for all n ∈ N.

Exercise 5.10. Let Ω ⊂ C be open and connected, and let K ⊂ Ω be compact. Prove that there
exists a constant L = L(K,Ω) > 0 so that

max
z∈K

u(z) ≤ Lmin
z∈K

u(z)

for all u ∈ Har(Ω) with u ≥ 0 in Ω.

Exercise 5.11. Let Ω ⊂ C be open and connected, {fn}n ⊂ H(Ω), and denote un := Re(fn) for all
n ∈ N. Assume further that there exists z0 ∈ Ω so that {fn(z0)}n converges in C, and that {un}n
converges locally uniformly in Ω to some u : Ω → R continuous. Prove that {fn}n converges locally
uniformly to some f ∈ H(Ω).
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Chapter 6

Analytic Continuation. Approximation

Given an open set Ω ⊂ C and a holomorphic function f in Ω, can we extend f to a holomorphic
function in a larger open set? Can we at least extend f continuously to the boundary ∂Ω of Ω?
The first part of this chapter takes care of some results on this direction. The Schwarz’s Reflection
Principle (Theorem 6.3) tells us that on open sets Ω that are symmetric about R, one can extend
holomorphic functions from the positive part to the negative part of Ω, provided the function is
continuous up to the real part of Ω and takes real values there. This idea of reflecting is generalized
to domains with analytic boundary, meaning that their boundaries can be locally parameterized
by resctrictions of biholomorphic maps from a disk; see Theorem 6.5.

The second main result of is Carathéodory’s Theorem 6.6, whose proof is rather difficult,
involving deep topological theorems (such as Jordan’s curve theorem) and a bit of measure theory
in the arguments. It states that a biholomorphic map between the disk D and a Jordan Domain
Ω always admits an extension D → Ω that is an homeomorphism. We then use this big result
in combination with the Riemann Mapping Theorem 4.43 to solve the Dirichlet Problem (on the
existence of harmonic extensions of boundary data) in Jordan Domains; see Theorem 6.9.

Examples of holomorphic functions in the disk that do not admit extensions around any point
of the unit circle are provided by some lacunary series; see Example 6.13. Such functions are said
to have natural boundary equal to the unit circle.

Then we study analytic continuations along disks and chains, being the Monodromy Theorem
6.20 the main result. This theorem says essentially that in a simply-connected domain Ω, one can
extend a holomorphic function f from a disk D ⊂ Ω to a global holomorphic function in Ω, if one
is able to find analytic continuations along all paths in Ω that starts at the center of the disk.

The second part of this chapter is devoted to locally uniform approximation of holomorphic
functions by rational functions (with localized poles) or polynomials. This is the content of the
Runge’s Theorems 6.24 and 6.29. The first one says that if a compact set K has connected comple-
ment, then any holomorphic function on a neighbourhood of K can be uniformly approximated in
K by polynomials. The second theorem is much more general, and says that one can approximate
holomorphic functions in an open set Ω uniformly on compact subsets of Ω by rational functions
whose poles are in the connected components of C∞ \Ω; see also Corollary 6.31. In particular, in a
simply connected domain, all holomorphic maps admit approximations by polynomials uniformly
on compact sets.

6.1 The Schwarz Reflection Principle

Symmetric sets about R are defined (naturally) as follows.

Definition 6.1 (Symmetric Sets). A set A ⊂ C is symmetric about R if A satisfies the property

z ∈ A ⇐⇒ z ∈ A.
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Also, for A symmetric about R, we denote the sets

A+ := A ∩ {z ∈ C : Im(z) > 0}, A− := A ∩ {z ∈ C : Im(z) < 0}, A0 := A ∩ R.

The union of two holomorphic functions respectively on Ω+ and Ω− that agree (with continuity)
at Ω0 gives a holomorphic function in Ω.

Lemma 6.2. Let Ω ⊂ C be open and symmetric about R, and consider functions

f : Ω+ ∪ Ω0 → C, g : Ω− ∪ Ω0 → C,

with f ∈ C
(
Ω+ ∪ Ω0

)
∩H(Ω+) and g ∈ C

(
Ω− ∪ Ω0

)
∩H(Ω−). Then, if f = g in Ω0, the function

F : Ω → C given by

F (z) =

{
f(z) if z ∈ Ω+ ∪ Ω0,

g(z) if z ∈ Ω−,

is holomorphic in Ω.

Proof. Since both f and g are continuous in their respective domains, and f = g in Ω0, then F is
continous in Ω. Also, F is holomorphic in Ω+ ∪ Ω−, as f ∈ H(Ω+) and g ∈ H(Ω−). To show that
F is holomorphic in Ω, we verify that∫

T
F (z) dz = 0, for every triangle T with co(T ) ⊂ Ω. (6.1.1)

Here, by a triangle T we mean the boundary of the solid triangle co(T ), which is the convex
envelope of three non-align points of Ω. Since F : Ω → C is continuous, (6.1.1) would imply that
F ∈ H(Ω) by Morera’s Theorem. Let us distinguish four cases of triangles T.

Case 1. co(T ) ∩ Ω0 = ∅. Since co(T ) is connected, this implies that either co(T ) ⊂ Ω+ or
co(T ) ⊂ Ω−. Assuming that co(T ) ⊂ Ω+ (the other case is analogous), we have that∫

T
F (z) dz =

∫
T
f(z) dz = 0.

The last inequality is a consequence of Cauchy’s Theorem (see e.g. Corollary 1.14), as f ∈ H(Ω)
and co(T ) ⊂ Ω.

Case 2. co(T ) ⊂ Ω+ ∪ Ω0 or co(T ) ⊂ Ω− ∪ Ω0. Assume the first case co(T ) ⊂ Ω+ ∪ Ω0, where
the latter case is studied identically. Denote ∆ := co(T ). Since Ω+ is open, and ∆ is compact, we
can find ε0 > 0 so that

∆ε := {z + εi : z ∈ co(T )} ⊂ Ω+, 0 < ε ≤ ε0.

Clearly ∆ε is a new solid triangle contained in Ω+, and we denote its boundary by Tε. By Case 1
applied to ∆ε, we have that ∫

Tε

F (z) dz = 0 for all 0 < ε ≤ ε0.

We have, for every 0 < ε ≤ ε0,∣∣∣∣∫
T
F (z) dz

∣∣∣∣ = ∣∣∣∣∫
T
F (z) dz −

∫
Tε

F (z) dz

∣∣∣∣ = ∣∣∣∣∫
T
F (z) dz −

∫
T
F (z + εi) dz

∣∣∣∣
=

∣∣∣∣∫
T
(F (z)− F (z + εi)) dz

∣∣∣∣ ≤ ∫
T
|F (z)− F (z + εi)| |dz|

≤ ℓ(T ) sup{|F (z)− F (w)| : z, w ∈ K, |z − w| ≤ ε}, where K := ∆ ∪
⋃

0<t≤ε0

∆t.
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Since K is a compact subset of Ω, we have that F is uniformly continuous in K, and so the last
term tends to 0 as ε→ 0+. Consequently,

∫
T F = 0.

Case 3. co(T ) ∩ Ω+ ̸= ∅, co(T ) ∩ Ω− ̸= ∅ and a vertex of T belongs to Ω0.

We may of course assume that T has the positive orientation. The line segment that joins the
mentioned vertex with the other point in the intersection Ω0 ∩ T splits co(T ) into two triangles
co(T1) ⊂ Ω+ ∪ Ω0, co(T2) ⊂ Ω− ∪ Ω0. By Case 2, we get that∫

T1

F (z) dz =

∫
T2

F (z) dz = 0.

Giving the positive orientation to both T1 and T2, we get that

0 =

∫
T1

F (z) dz +

∫
T2

F (z) dz =

∫
T
F (z) dz.

In the second equality we used that F is integrated over ℓ and ℓ−, where ℓ is the common edge of
T1 and T2.

Case 4. co(T ) ∩ Ω+ ̸= ∅, co(T ) ∩ Ω− ̸= ∅ and no vertex of T belongs to Ω0.

Assume, without loss of generality that two vertices of T are in Ω+ and one in Ω−. The segment
co(T )∩R splits co(T ) into a solid quadrilateral Q ⊂ Ω+∪Ω0 and a solid triangle co(T1) ⊂ Ω−∪Ω0.
We can further divide Q into two solid triangles co(T2) and co(T3) contained in Ω+ ∪Ω0. By Case
2, we have ∫

T1

F (z) dz =

∫
T2

F (z) dz =

∫
T3

F (z) dz = 0.

Giving the positive orientation to all the triangles T, T1, T2, T3, it is then clear that∫
T
F (z) dz =

∫
T1

F (z) dz +

∫
T2

F (z) dz +

∫
T3

F (z) dz = 0.

This is the most basic (but fundamental) result on analytic continuation.

Theorem 6.3 (Schwarz’s Reflection Principle). Let Ω ⊂ C be open and symmetric about R, and
f : Ω+ ∪Ω0 → C continuous in Ω+ ∪Ω0, holomorphic in Ω+, and with the property that f(z) ∈ R
for all z ∈ Ω0. Then the function F : Ω → C given by

F (z) =

f(z) if z ∈ Ω+ ∪ Ω0

f(z) if z ∈ Ω−.
(6.1.2)

is holomorphic in Ω and F = f in Ω+ ∪ Ω0.

Proof. Defining g : Ω− ∪ Ω0 → C by g(z) = f(z) for all z ∈ Ω− ∪ Ω0, the continuity of f implies
that of g in Ω− ∪ Ω0. Also, for all z ∈ Ω0,

g(z) = f(z) = f(z) = f(z).

Thus, f = g in Ω0. Also, since f ∈ H(Ω+), Exercise 6.1 tells us that g ∈ H(Ω−). All the assumptions
of Lemma 6.2 are satisfied for f and g, and so F ∈ H(Ω).
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6.2 Continuation through Analytic Boundaries

In this section we generalize the idea of reflecting from the Schwarz’s Theorem 6.3 to a more general
setting.

Definition 6.4 (Analytic Boundary). If Ω ⊂ C is open, we say that Ω has analytic boundary if
for every z0 ∈ ∂Ω there exists an open set U ⊂ C and a biholomorphic map φ : D → U with

φ(D+) = U ∩ Ω, φ(D0) = U ∩ ∂Ω, φ(0) = z0.

Note that then φ(D−) = U \ Ω.

To check the last comment in the previous definition, note that if Ω, z0, U, φ are as above, and
w ∈ D− is so that φ(w) ∈ Ω, using that φ is bijective, we get that w ∈ D+ ∪ D0, a contradiction.

Theorem 6.5 (Holomorphic Extensions from Analytic Boundaries). Let Ω ⊂ C be open, and f :
Ω → C with the following properties:

• f is continuous in Ω and holomorphic in Ω.

• f(Ω) is open, and f(∂Ω) ⊂ ∂f(Ω).

• Both Ω and f(Ω) have analytic boundary.

Then there exist an open set W ⊂ C with Ω ⊂ W , and a holomorphic function F : W → C with
F = f in Ω.

Proof. We will constructW as a union of open neighbourhoods around each point of the boundary,
where f has a holomorphic extension, and F as the union of these local extensions.

Let z ∈ ∂Ω, U, V ⊂ C open sets, φ : D → U , ψ : D → V biholomorphic so that

φ(D+) = U ∩ Ω, φ(D0) = U ∩ ∂Ω, φ(D−) = U \ Ω, φ(0) = z (6.2.1)

ψ(D+) = V ∩ f(Ω), ψ(D0) = V ∩ ∂f(Ω), ψ(D−) = V \ f(Ω) ψ(0) = f(z). (6.2.2)

Since V is open and contains f(z), we can find δ > 0 so that D(f(z), δ)) ⊂ V. The continuity of f
in Ω implies that we can find O ⊂ C open containing z so that f−1(D(f(z), δ)) = O∩Ω. Defining
A := U ∩ O, we have that

A ⊂ C is open, z ∈ A, f(A ∩ Ω) ⊂ V ∩ f(Ω), f(A ∩ ∂Ω) ⊂ V ∩ ∂f(Ω). (6.2.3)

Let us verify (6.2.3). The first two properties are immediate. The first inclusion follows by writing

f(A ∩ Ω) = f(U ∩ O ∩ Ω) ⊂ D(f(z), δ) ∩ f(Ω) ⊂ V ∩ f(Ω).

For the second inclusion, the assumption f(∂Ω) ⊂ ∂f(Ω) gives f(A ∩ ∂Ω) ⊂ ∂f(Ω). Also, if
w ∈ A∩∂Ω, there is a sequence {wn}n ⊂ A∩Ω convergent to w. By the continuity of f in Ω, we have
that {f(wn)}n is a sequence contained in f(Ω)∩D(f(z), r) that converges to f(w) ∈ D(f(z), r) ⊂ V.
Thus, we have f(w) ∈ V ∩ ∂f(Ω), and (6.2.3) is proven.

Now, since φ : D → U is biholomorphic and 0 ∈ φ−1(A), there exists ε > 0 so that the set
φ−1(A) contains the disk Dε := D(0, ε). Since obviously D±

ε ⊂ D± and D0
ε ⊂ D0, by (6.2.1), we

get that

φ(D+
ε ) ⊂ A ∩ Ω, φ(D0

ε) ⊂ A ∩ ∂Ω, φ(D−
ε ) ⊂ A \ Ω. (6.2.4)

Now define the function

g : D+
ε ∪ D0

ε → D+ ∪ D0, g = ψ−1 ◦ f ◦ φ. (6.2.5)
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Taking into account that f ∈ C(Ω) ∩ H(Ω), that φ,ψ are biholomorphic, and (6.2.1)-(6.2.5), it is
clear that g is continuous in D+

ε ∪D0
ε, holomorphic in D+

ε , with g(D+
ε ) ⊂ D+ and g(D0

ε) ⊂ D0 ⊂ R.
By Theorem 6.3, there exists G : Dε → D with

G ∈ H(Dε), G = g on D+
ε , G(D+

ε ) ⊂ D+, G(D0
ε) ⊂ D0, G(D−

ε ) ⊂ D−. (6.2.6)

We finally define
W := φ(Dε), F :W → C, F := ψ ◦G ◦ φ−1. (6.2.7)

Clearly W is open, and by (6.2.6) and (6.2.5), we get that F ∈ H(W ), that F = f on φ(D+
ε ∪D0

ε),
where, by (6.2.4), W ∩ Ω = φ(Dε) ∩ Ω ⊂ φ(D+

ε ∪ D0
ε).

To summarize, for each z ∈ ∂Ω, we have found:

Wz ⊂ C open with z ∈Wz, Fz :Wz → C holomorphic in Wz, Fz = f on Wz ∩ Ω. (6.2.8)

To construct an extension of f to a open neighbourhood of Ω, we proceed as follows. For each
z ∈ ∂Ω, let Wz and Fz as in (6.2.8), and let rz > 0 so that D(z, 2rz) ⊂Wz. We define

W := Ω ∪
⋃

z∈∂Ω
D(z, rz),

and F :W → C as

F (w) =

{
f(w) if w ∈ Ω,

Fz(w) if w ∈ D(z, rz), for some z ∈ ∂Ω.

Let us check that F is well-defined. Let w ∈ D(z, rz)∩Ω for some z ∈ ∂Ω. By (6.2.8), Fz(w) = f(w).
Also, if w ∈ D(z, rz)∩D(ξ, rξ) for z, ξ ∈ ∂Ω, where we may assume that rz ≥ rξ, then the triangle
inequality gives that ξ ∈ D(z, 2rz) ∩ D(ξ, 2rξ). Since this intersection defines an open set, there
exists δ > 0 with D(ξ, r) ⊂ D(z, 2rz) ∩ D(ξ, 2rξ). But ξ ∈ ∂Ω, and so we have that D(ξ, r) ∩ Ω
is a nonempty open set, thus containing a disk D. Because D ⊂ Ω ∩ D(z, 2rz) ∩ D(ξ, 2rξ), by
(6.2.8), we get that Fz = f = Fξ in D. The Identity Principle for holomorphic maps establishes
that Fz = Fξ in D(z, 2rz) ∩D(ξ, 2rξ), and this set contains w, so Fz(w) = Fξ(w).

We conclude that F is well-defined in W. It is obvious that F = f in W , and that F ∈ H(W ),
as it coincides locally with a holomorphic map.

6.3 Carathéodory’s Theorem

We split the proof of Carathéodory’s Theorem into two main claims. We will use multiple times
the Jordan Curve’s Theorem: if γ : [0, 1] → C is a closed, continuous and not self-intersecting
curve, then C \ γ∗ consists of two open connected components, of which one is one (called the
inside of γ) and the other unbounded (calle the outside of γ). The boundary of these components
is precisely γ∗. Such a curve γ is called a Jordan curve, and satisfies that γ∗ is homeomorphic to
T = ∂D, the unit circle.

Theorem 6.6 (Carathéodory’s Theorem). Let Ω ⊂ C be open, bounded, and connected, and let
f : D → Ω be biholomorphic. The following statements are equivalent.

(i) ∂Ω is a Jordan curve, that is, there exists an homeomorphism h : T → ∂Ω.

(ii) There exists a unique homeomorphism F : D → Ω with F = f in D.

Proof. The implication (ii) =⇒ (i) is easy, because the homeomorphism F : D → Ω maps
boundaries to boundaries, and thus we can use the restriction F ↾T: T → ∂Ω to T to define an
homeomorphism between T and ∂Ω.

Conversely, assume that (i) holds, and let h : T → ∂Ω be an homeomorphism.
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Claim 1: f : D → ∂Ω is uniformly continuous in D. Suppose, for the sake of contradiction, that
there exists ε > 0 and sequences {zn}n, {wn}n ⊂ D with lim

n→∞
|zn−wn| = 0 and |f(zn)−f(wn)| ≥ ε

for all n ∈ N. Passing to subsequences, we may assume that there exists ξ ∈ D so that

lim
n→∞

zn = lim
n→∞

wn = ξ, and |f(zn)− f(wn)| ≥ ε for all n ∈ N. (6.3.1)

Notice that ξ ∈ ∂D, as otherwise, ξ ∈ D and we would have

lim
n→∞

f(zn) = lim
n→∞

f(wn) = f(ξ),

contradicting (6.3.1). Now, for every r ∈ (0, 1) consider the circle paths [0, 2π] ∋ t 7→ Γr(t) = ξ+reit

and let ar, br ∈ [0, 2π] be so that the restriction γr : [ar, br] → C of Γr to [ar, br] satisfies

γr([ar, br]) = D ∩ ∂D(ξ, r), γr((ar, br)) = D ∩ ∂D(ξ, r), for all r ∈ (0, 1). (6.3.2)

Now, by (6.3.2), we have that f ◦ γr : (ar, br) → Ω, and by Cauchy-Schwarz Inequality,∫ br

ar

|(f ◦ γr)′(t)| dt = r

∫ br

ar

|f ′(γr(t))| dt

≤ r

(∫ br

ar

|f ′(γr(t))|2 dt
)1/2(∫ br

ar

12 dt

)1/2

≤
√
2πr

(∫ br

ar

|f ′(γr(t))|2 r dt
)1/2

.

Squaring both sides and reorganizing the terms we derive

1

2πr

(∫ br

ar

|(f ◦ γr)′(t)| dt
)2

≤
∫ br

ar

|f ′(γr(t))|2 r dt.

The paths {γr}r∈(0,1) parametrize the set D∩D(ξ, 1) = {γr(t) = ξ + reit : t ∈ (ar, br), r ∈ (0, 1)},
and if we integrate the previous estimate over r ∈ (0, 1), we get

1

2π

∫ 1

0

1

r

(∫ br

ar

|(f ◦ γr)′(t)| dt
)2

dr ≤
∫ 1

0

∫ br

ar

|f ′(γr(t))|2 r dtdr =
∫
D∩D(ξ,1)

|f ′(x+ iy)|2 dx dy

≤
∫
D
|f ′(x+ iy)|2 dx dy =

∫
D
|det(Df(x+ iy))|dx dy

=

∫
f(D)

dx dy = L2(f(D)) = L2(Ω) <∞;

where L2(Ω) denotes the area of Ω. This shows that

1

2π

∫ 1

0

1

r

(∫ br

ar

|(f ◦ γr)′(t)| dt
)2

dr <∞. (6.3.3)

If we had that
∫ br
ar

|(f ◦ γr)′(t)| dt ≥ δ for all 0 < r ≤ r0 and some r0, δ ∈ (0, 1), then (6.3.3) would
give a contradiction, since∫ 1

0

1

r

(∫ br

ar

|(f ◦ γr)′(t)|dt
)2

≥
∫ r0

0

1

r

(∫ br

ar

|(f ◦ γr)′(t)|dt
)2

dr ≥
∫ r0

0

δ2

r
dr = ∞.

Therefore, there exists a sequence {rn}n ⊂ (0, 1) decreasing to 0 so that, denoting an = arn ,
bn = arn , γn = γrn , we have

lim
n→∞

∫ bn

an

|(f ◦ γn)′(t)|dt = 0. (6.3.4)
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We now use (6.3.4) to extend continuously each f ◦ γn to [an, bn]. In order to do this, note that if
an < s < t < bn, we have

|(f ◦ γn)(t)− (f ◦ γn)(s)| =
∣∣∣∣∫ t

s
(f ◦ γn)′(θ) dθ

∣∣∣∣ ≤ ∫ t

s
|(f◦γn)′(θ)| dθ =

∫ bn

an

|(f◦γn)′(θ)|X(s,t)(θ) dθ.

Note that
lim

s,t→a+n

|(f ◦ γn)′(θ)|X(s,t)(θ) = 0 for all θ ∈ [an, bn]

and that
|(f ◦ γn)′(θ)|X(s,t)(θ) ≤ |(f ◦ γn)′(θ)| for all an < s < t < bn,

and the function (an, bn) ∋ θ 7→ |(f ◦ γn)′(θ)| is integrable by (6.3.4). By the Lebesgue Dominated
Convergence Theorem, we get

lim
s,t→a+n

|(f ◦ γn)(t)− (f ◦ γn)(s)| = 0.

This shows that the limit τn := lim
t→a+n

(f ◦ γn)(t) exists, and similarly we check that the limit

ηn := lim
t→b−n

(f ◦ γn)(t) exists. This allows to extend f ◦ γn : [an, bn] → C to [an, bn] with continuity

by defining (f ◦ γn)(an) := τn and (f ◦ γn)(bn) := ηn. Moreover, (6.3.4) implies that

lim
n→∞

|τn − ηn| ≤ lim
n→∞

diam ((f ◦ γn)∗) = lim
n→∞

sup
an≤s≤t≤bn

|(f ◦ γ)(t)− (f ◦ γ)(s)|

= lim
n→∞

sup
an≤s≤t≤bn

∣∣∣∣∫ t

s
(f ◦ γn)′(θ) dθ

∣∣∣∣ ≤ lim
n→∞

∫ bn

an

|(f ◦ γn)′(θ)| dθ = 0. (6.3.5)

We observe that τn ∈ ∂Ω, as otherwise τn ∈ Ω, and since f−1 : Ω → D is continuous,

D ∋ f−1(τn) = lim
t→a+n

f−1((f ◦ γn)(t)) = lim
t→a+n

γn(t) = γn(an),

contradicting (6.3.2). Similarly ηn ∈ ∂Ω for all n ∈ N. Since h : T → ∂Ω is an homeomorphism,
for every n ∈ N we can find pn, qn ∈ T with h(pn) = τn and h(qn) = ηn. Since h

−1 : ∂Ω → T is
uniformly continuous, by (6.3.5), we have that lim

n→∞
|pn− qn| = 0. Thus, if we denote by δn the arc

in T joining pn and qn, then lim
n→∞

diam(δ∗n) = 0. In particular, for n large enough, δn is the shortest

arc in T that joins pn to qn. We define the continuous curve σn := h ◦ δn, whose trace is contained
in ∂Ω and joins τn and ηn. And observe that

lim
n→∞

diam(σ∗n) = 0, (6.3.6)

as otherwise, we would have c > 0 and points τ ′n, η
′
n ∈ σ∗n with |τ ′n − η′n| ≥ c for infinitely many n.

But then the continuity of h would imply |h(τ ′n)− h(η′n)| ≥ d > 0 for infinitely many n, where the
points h(τ ′n), h(τ

′
n) ∈ δ∗n, a contradiction.

We finally define the composite curves Σn := σn ⋆ (f ◦ γn) for all n ∈ N. By the continuity of
f ◦ γn at the extreme points, we see that σn is a closed, simple, and continuous curve contained in
Ω. By the Jordan’s Curve Theorem, C \ Σ∗

n has precisely one bounded connected component (the
inside of Σn), and one unbounded connected component (the outside of Σn) connected component,
both of which have boundary equal to Σ∗

n. We denote by Ωn the bounded one, where ∂Ωn = Σ∗
n.

By (6.3.5) and (6.3.6), we get that

lim
n→∞

diam(Ωn) = lim
n→∞

diam(Σ∗
n) = 0. (6.3.7)

We next observe that Ωn ⊂ Ω. Indeed, since ∂Ω is a Jordan curve and Ω is bounded, then C \Ω is
the unbounded connected component of C\∂Ω. Since Σ∗

n∩(C\Ω) = ∅ (by the construction of Σn),
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this implies that C \ Ω is contained in one of the connected components of C \ Σ∗
n, that is, either

C \ Ω ⊂ Ωn or C \ Ω ⊂ C \ Ωn. The first situation is impossible, as Ωn is bounded. Therefore, the
second possibility holds, and therefore Ωn ⊂ Ω. But if we had that ξ ∈ Ωn and still ξ ∈ ∂Ω, then
we can find {ξj}j ⊂ C \ Ω ⊂ C \ Ωn converging to ξ. Since Ωn is open, there are ξj ’s belonging to
Ωn and C \ Ωn, a contradiction. We have shown the inclusion Ωn ⊂ Ω.

Now, notice that the trace of γn : (an, bn) → D ∩D(ξ, rn) splits D into two disjoint connected
open subsets Un := D ∩ D(ξ, rn), Vn = D \ D(ξ, rn) of D \ γ∗n, where lim

n→∞
diam(Un) = 0. Since

f : D → Ω is a homeomorphism, we get that (f ◦ γn)∗ splits Ω \ (f ◦ γn)∗ into two connected
components f(Un) and f(Vn). The set Ωn is a connected component of Ω \ (f ◦ γn)∗ for the
following reason. As we observed before, Ωn is an open and connected subset of Ω \ (f ◦ γn)∗.
And if {ξj}j ⊂ Ωn converges to some ξ ∈ Ω \ (f ◦ γn)∗ with ξ /∈ Ωn, then ξ ∈ ∂Ωn = Σ∗

n, and
hence ξ ∈ σ∗n ⊂ ∂Ω, contradicting that ξ ∈ Ω. Consequently, Ωn is connected, and both open
and (relatively) closed in Ω \ (f ◦ γn)∗, thus it is a connected component of Ω \ (f ◦ γn)∗, and so
either Ωn = f(Un) or Ωn = f(Vn). But for n large enough, we have that D(0, 1/2) ⊂ Vn, and so
f(D(0, 1/2)) ⊂ f(Vn), which shows that f(Vn) has diameter bounded below by a positive number
independent of n. Due to (6.3.7), we deduce that Ωn = f(Un) for all n large enough. The sequences
{zn}n, {wn}n from (6.3.1) can be assumed to be contained in Un. But precisely (6.3.1) contradicts
that lim

n→∞
f(Un) = 0.

Claim 2: The unique extension F : D → Ω of f is a homeomorphism. By Claim 1, f : D → Ω
is uniformly continuous, and so has a unique uniformly continuous extension F : D → C to D.

We next show that F (∂D) = ∂Ω. Indeed, if z ∈ ∂D, there is a sequence {zn}n ⊂ D convergent
to z, and so {F (zn)}n ⊂ Ω is convergent to F (z) by the continuity, thus F (z) ∈ Ω. But if we
had F (z) ∈ Ω, since f : D → Ω is bijective, there would be w ∈ D with f(w) = F (z), and the
continuity of f−1 yields that {zn}n converges to w ∈ D, a contradiction. This shows the inclusion
F (∂D) ⊂ ∂Ω. For the reverse inclusion, let w ∈ ∂Ω and {wn}n ⊂ Ω convergent to w. Again
by the surjectivity of f : D → Ω, there is a sequence (passing to a subsequence if necessary)
{zn = f−1(wn)}n ⊂ D convergent to some ξ ∈ D. If we had ξ ∈ D, then {wn = f(zn)}n would
converge to f(ξ) = w, necessarily implying that w ∈ Ω, and this is a contradiction. Thus ξ ∈ ∂D,
and ∂Ω ⊂ T (∂D).

Consequently, F (D) = F (D) ∪ F (∂D) = f(D) ∪ ∂Ω = Ω ∪ ∂Ω = Ω, showing that F : D → Ω
is surjective. Since D is compact, Ω is a Haussdorff space, F is continuous and surjective, we will
prove that F is a homeomorphism as soon as we check that F is injective. The injectivity of F
in D follows from that of f, and since F (∂D) = ∂Ω, it suffices to verify the injectivity of F at
points of ∂D. Let z1, z2 ∈ ∂D be so that z1 ̸= z2 and F (z1) = F (z2). Let γ be the arc in ∂D joining
z1 and z2, let ℓ1 := [0, z1], ℓ2 = [0, z2], and the composite path Γ = ℓ1 ⋆ γ ⋆ ℓ

−
2 . Obviously Γ is

a Jordan curve which divides D into two connected components (of D \ Γ∗), say U (the inside of
Γ) and V (the outside of Γ in D). Then Σ := F (ℓ1 ∪ ℓ−2 ) defines a Jordan curve contained in Ω,
with Σ ∩ ∂Ω = {F (z1)}, as F maps D to Ω and ∂D to ∂Ω. Denoting by W the inside of Σ, the
same argument we used in Claim 1 permits to show that W ⊂ Ω. Moreover, we must have either
F (U) =W or F (V ) =W. In the first case, we get that

F (γ∗) = F (∂U ∩ ∂D) ⊂ ∂W ∩ ∂Ω = {F (z1)}.

In the latter case, with the same argument,

F (∂D \ γ∗) = F (∂V ∩ ∂D) ⊂ ∂W ∩ ∂Ω ⊂ {F (z1)}.

Thus, we have that F is constant in one of the arcs γ∗, ∂D \ γ∗. Denote by σ this arc, and notice
that σ ̸= ∂D. If z0 ∈ ∂D \ σ, let T : C∞ → C∞ a Möbius Transformation with

T (z0) = ∞, T (∂D) = R∞, T (D) = H := {z ∈ C : Im(z) > 0}.

Since z0 /∈ σ, then T (U) ⊂ C, the restriction T ↾U : U → T (U) is a homeomorphism (between
compact subsets of C). Moreover T (U) is an open subset of H, so that T ↾U : U → T (U) being
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biholomorphic, and T (σ) ⊂ ∂(T (U)) ∩ R. Since T is continuous and σ is connected, T (σ) is
connected, and therefore an interval [a, b] of R. Thus there exist c ∈ (a, b) and a disk Dε = D(c, ε)
with D+

ε ⊂ T (U) ⊂ H and D0
ε ⊂ T (σ) ⊂ R. Finally, if ξ ∈ C is the constant value of F over σ, we

define the continuous (and holomorphic in T (U)) function g(z) := F ◦T−1(z)− ξ for all z ∈ T (U),
which, in particular, satisfies

g ∈ C(D+
ε ∪D0

ε), g ∈ H(D+
ε ), g(D0

ε) ⊂ {F (w)− ξ : w ∈ σ} = {0}.

By Theorem 6.3, g has a holomorphic extension G : Dε → C. But then G vanishes in D0
ε , so by the

Identity Principles for holomorphic maps, g is null in D+
ε , and so in T (U), as this set is connected.

Since T−1 is a bijection, we deduce that F is constantly equal to ξ in U, a contradiction, because
U ⊂ D is an open set, where F coincides with the bijective map f.

We conclude that F is injective in ∂D, and so, by the previous comments, F : D → Ω is a
homeomorphism.

If we now combine the Riemann Mapping Theorem 4.43 with Theorem 6.6, and then also with
Theorem 6.5.

Corollary 6.7. Let Ω be open and bounded so that ∂Ω is a Jordan curve. Then there exists a
homeomorphism ψ : D → Ω, with ψ↾D: D → Ω biholomorphic.

If, in addition, ∂Ω is analytic, then there exists W ⊂ C open with D ⊂ W and a holomorphic
map Ψ :W → C with Ψ = ψ in D.

Proof. Since ∂Ω is a Jordan curve, the set C\Ω is connected. Any cycle Γ in Ω is constant on each
connected subset of C \ Γ∗, thus constant in C \Ω. We know that W (Γ, z) = 0 for all |z| ≥ r, and
for some large enough r > 0; see Remark 1.7. Since there points |z| ≥ r belonging to C\Ω (as Ω is
bounded), we have that W (Γ, w) = 0 for all w ∈ C \Ω. By the continuity of W (Γ, ·) : C \ Γ∗ → Z,
the windinng numbers are zero at points of C \ Ω ⊃ C \ Ω. In other words, Γ ≃ 0 in Ω. By
Riemann’s Theorem 4.43, there exists φ : D → Ω biholomorphic. By Carathéodory’s Theorem 6.6,
there exists a unique extension ψ : D → Ω of φ, which is a homeomorphism.

If, in addition, ∂Ω is analytic, by Theorem 6.5, there is an open subset W ⊃ D and a holomor-
phic map Ψ :W → C extending ψ from D.

6.4 The Dirichlet Problem in Jordan Domains

Lemma 6.8. Let Ω, U ⊂ C be open sets, f : Ω → U holomorphic in Ω, and u : U → R harmonic in
U. Then the function u ◦ f : Ω → R is harmonic in Ω.

Proof. We may assume that Ω is connected, as otherwise we can verify the harmonicity of u ◦ f
on each connected component. Also, if f is constant the result is obvious. If f is non-constant
in Ω, and z0 ∈ Ω and r > 0 is so that D(z0, r) ⊂ Ω, then f(D(z0, r)) is an open subset of
U by Theorem 4.4. Thus there exists δ > 0 with D(f(z0), δ) ⊂ U . Since D(f(z0), δ) is simply
connected, by Corollary 5.6, there exists g ∈ H(D(f(z0), δ)) with u = Re g inD(f(z0), δ). Therefore
u ◦ f = Re(g) ◦ f = Re(g ◦ f) in the open set f−1(D(f(z0), δ)), thus u ◦ f is harmonic in that set
(as g ◦f is holomorphic). Since f−1(D(f(z0), δ)) contains a disk D(z0, ε), we have shown that u◦f
is locally harmonic in Ω, that is harmonic in Ω.

What we learnt from Corollary 6.7 can be used to solve the Dirichlet Problem for Harmonic
Functions in every Jordan domain.

Theorem 6.9 (Dirichlet’s Problem in Jordan Domains). Let Ω be open and bounded, so that ∂Ω is
a Jordan curve, and let g : ∂Ω → R be continuous. Then there exists a unique u ∈ C(Ω) ∩Har(Ω)
with u = g in ∂D.
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Proof. By Corollary 6.7, there exists a homeomorphism ψ : D → Ω with ψ : D → Ω biholomorphic.
The composition h := g ◦ ψ↾∂D: ∂D → R is continuous, and by Theorem 5.16 there exists v ∈
C(D) ∩ Har(D) with v = h in T. If we define u := v ◦ ψ−1 : Ω → R we obtain that v ∈ C(Ω) and
v ∈ Har(Ω) by virtue of Lemma 6.8. It is also clear that u = g in ∂Ω.

For the uniqueness, if two functions u1, u2 ∈ C(Ω) ∩ Har(Ω) satisfy u1 = u2 = g in ∂D, then
by Corollary 5.15 we get that u1 = u2 in Ω.

6.5 Singular Points and Natural Boundary

In this section we study analytic continuations of holomorphic functions in a disk to some neigh-
bourhood of the corresponding circles. Regular points are precisely those points in this circle on
which the function admits a holomorphic extension around the point.

Definition 6.10 (Regular and Singular Points). Let D ⊂ C be an open disk, and f ∈ H(D). A
point z ∈ ∂D is a regular point of f in ∂D if there exists an open disk D1 centered at z, and a
holomorphic function g : D1 → C with f = g on D1 ∩D.

Also, if z ∈ ∂D is said to be a singular point of f if z is not a regular point of f.

Notice that if z ∈ ∂D is a regular point of f, then the limit lim
D∋w→z

f(w) must exist. The next

theorem shows that a power series cannot be extended to a neighborhood of the closure of its disk
of convergence.

Theorem 6.11. Let D denote the open unit disk, let f ∈ H(D), whose Taylor series at 0

f(z) =
∞∑
n=0

anz
n, z ∈ D; (6.5.1)

has radius of convergence equal to 1. Then f has a singular point ξ ∈ ∂D.

Proof. For the sake of contradiction, assume that all points z ∈ ∂D are regular for f. Then, for
every z ∈ ∂D there exists Dz = D(z, rz) and a function gz ∈ H(D(z, rz)) so that gz = f on
D(z, rz). We can define

W := D ∪
⋃

z∈∂D
Dz,

and F :W → C as

F (w) =

{
f(w) if w ∈ D,
gz(w) if w ∈ D(z, rz/2), for some z ∈ ∂D.

An argument identical to the one at the end of the proof of Theorem 6.5 shows that F is well-
defined and holomorphic in the open set W, and (obviously) F = f in W. Since D ⊂ W and W is
open, there exists ε > 0 so that D(0, 1 + ε) ⊂W. Thus the Taylor Series of F at 0,

∞∑
n=0

F (n)(0)

n!
zn =

∞∑
n=0

f (n)(0)

n!
zn

has radius of convergence at least 1 + ε/2. Since the coefficients {an}n in the series (6.5.1) are
precisely {f (n)(0)/n!}n, we get a contradiction.

And when a function on an open disk does not admit an extension around any point of the
corresponding circle, we say that this circle is the natural boundary of f.

Definition 6.12. Let D be an open disk, and f ∈ H(D). We say that ∂D is the natural boundary
of f if every point ξ ∈ ∂D is a singular point of f.
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The third of the following examples is particularly interesting.

Example 6.13. Consider the functions f, g given by the series

f(z) =
∞∑
n=0

zn, g(z) =
∞∑
n=0

z2n.

The radius of convergence of both series is equal to 1, and so f, g ∈ H(D). But we can write

f(z) =
1

1− z
, g(z) =

1

1− z2
, z ∈ D,

where we see that f is holomorphic in C \ {1} and g is holomorphic in C \ {−1, 1}. The limit at
these singularities of the functions do not exist, and so we may conclude that 1 is a singular point
of f, that all ξ ∈ ∂D \ {1} is a regular point of f, that −1, 1 are singular points of g, and that all
ξ ∈ ∂D \ {−1, 1} is a regular point of g.

We next consider the following lacunary series

F (z) =

∞∑
n=0

z2
n
, z ∈ D.

The series have radius of convergence 1, and so F ∈ H(D). We claim that all points ξ ∈ ∂D are
singular points of F, and so ∂D is the natural boundary of F. To see this, consider the set of dyadic
points

S := {e2πi
k

2m : 0 ≤ k ≤ 2m, k,m ∈ N} ⊂ ∂D.
The set S is dense in ∂D. Since the set of singular points of a function is closed (see Exercise 6.6),
if we show that each ξ ∈ S is singular for F, then each ξ ∈ ∂D will be singular as well.

Let us then fix 0 ≤ k ≤ 2m with k,m ∈ N, and ξ := e2πi
k

2m . To see that ξ is a singular point
for F, it suffices to check that

the limit lim
r→1−

F (rξ) does not exist. (6.5.2)

Indeed, we can write

F (rξ) =
∞∑
n=0

(rξ)2
n

=
m−1∑
n=0

(rξ)2
n

+
∞∑

n=m

(
re2πi

k
2m

)2n
=

m−1∑
n=0

(rξ)2
n

+
∞∑

n=m

r2
n
e2πki 2

n−m

=

m−1∑
n=0

(rξ)2
n

+

∞∑
n=m

r2
n
.

Since the first sum is finite, we will show (6.5.2) as soon as we prove that

the limit lim
r→1−

∞∑
n=m

r2
n

does not exist. (6.5.3)

But note that, for all N ∈ N, we can write

∞∑
n=m

r2
n
=

∞∑
j=0

r2
m+j ≥

N∑
j=0

r2
m+j

=≥ (N + 1)r2
m+N

.

Thus, for every N ∈ N,

lim inf
r→1−

∞∑
n=m

r2
n ≥ lim inf

r→1−
(N + 1)r2

m+N
= N + 1,

showing (6.5.3), and thus (6.5.2).
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6.6 Analytic Continuation along Curves

Our next goal is to define a suitable notion of continuation of a map along a paths, and conclude
the existence of global extensions provided there are extensions along paths.

6.6.1 Direct Continuations and Chains

We need to define first the concept of element of function and direct continuation along a chain.

Definition 6.14 (Direct Continuation. Chains). A function element is a pair (D, f), where D ⊂ C
is an open disk and f ∈ H(D).

Two function elements (D0, f0), (D1, f1) are said to be a direct continuation of each other,
which we represent by (D0, f0) ∼ (D1, f1), when

D0 ∩D1 ̸= ∅ and f0 = f1 on D0 ∩D1.

Also, a chain C is a finite (ordered) collection C = {D0, . . . , Dn} of open disks with Dj∩Dj+1 ̸=
∅ for all j = 0, . . . , n−1. Given a function element (D, f) and a chain C as above, we say that (D, f)
admits an analytic continuation along C of there are function elements {(D0, f0), . . . , (Dn, fn)}
so that

(D0, f0) = (D, f) and (Dj , fj) ∼ (Dj+1, fj+1) for all j = 0, . . . , n− 1.

In such case, say that (Dn, fn) is the analytic continuation of (D, f) along the chain C

We will see in the following remark under which conditions the direct analytic continuation is
an equivalent relationship between function elements.

Remark 6.15. Concerning Definition 6.14, we observe the following.

(1) The relation ∼ between functions elements is obviously symmetric and reflexive.

(2) The relation ∼ is not transitive, that is, given function elements (D0, f0), (D1, f1), (D2, f2)
with (D0, f0) ∼ (D1, f1) and (D1, f1) ∼ (D2, f2), it is in general not true that (D0, f0) ∼
(D2, f2), even when D0 ∩D2 ̸= ∅.
An example is as follows. Let D0, D1, and D2 be respectively the open disks with radius 1
and centered at points 1, w, w2, respectively, where w = e2πi/3. Notice that the three disks are
pairwise non-disjoint, but D0∩D1∩D2 = ∅. Let f0 be the principal branch of the logarithm,
namely,

f0(z) := Log z = z + iArg(z), z ∈ C \ (−∞, 0].

Recall that Arg(z) ∈ (−π, π] for all z ∈ C \ {0}. In D1 and D2 we consider a different branch
of the logarithm:

f1(z) = f2(z) := log z + iα(z), z ∈ C \ [0,+∞),

where α : C\{0} → [0, 2π) is a continuous branch of the argument. It is clear that fj ∈ H(Dj)
for j = 0, 1, 2, and that f0 = f1 on D0 ∩ D1 and f1 = f2 in D1 ∩ D2. However, f0 ̸= f2 in
D0 ∩D2, because this intersection is contained in {z ∈ C : Re(z) > 0 > Im(z)}, where the
branches Arg and α differ.

(3) If (D0, f0), (D1, f1), (D2, f2) are function elements with

D0 ∩D1 ∩D2 ̸= ∅, D0, f0) ∼ (D1, f1), and (D1, f1) ∼ (D2, f2),

then (D0, f0) ∼ (D2, f2).

Indeed, f0 = f1 in D0 ∩ D1 and f1 = f2 in D1 ∩ D2 implies that f0 = f2 in the nonempty
open set D0∩D1∩D2. Since D0∩D2 is connected, by the Identity Principles for holomorphic
maps, f0 = f2 in D0 ∩D2.
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6.6.2 Continuation along Curves and One-Parameter Families

Analytic continuation along a curves is defined as the final element of a continuation along a chain
that covers the curve.

Definition 6.16 (Continuation along Curves). Given a continuous curve γ : [0, 1] → C and a chain
of disks C = {D0, . . . , Dn}, we say that C covers γ if γ(0) is the center of D0, γ(1) is the center
of Dn, and there exist 0 = t0 < t1 < · · · < tn−1 < tn = 1 so that

γ([tj , tj+1]) ⊂ Dj for all j = 0, . . . , n− 1.

Also, a function element (D, f) is said to admit an analytic continuation along γ if there exists
a chain C = {D0, . . . , Dn} that covers γ and (D, f) admits an analytic continuation along C. If
(Dn, fn) is such analytic continuation, we say that (Dn, fn) is the analytic continuation of
(D, f) along the chain γ.

A curve can be covered by two different chains as above and so, in order to show that the previ-
ous definition gives a consistent analytic continuation, we need to check that analytic continuations
along two different coverings yield two function elements that are direct analytic continuations of
each other.

Theorem 6.17 (Uniqueness of Continuations along Curves). Let γ : [0, 1] → C be a continuous
curve, and (D, f) a function element with D centered at γ(0). Let C = {D0, . . . , Dn} and C′ =
{B0, . . . , Bm} be two chains covering γ, and (Dn, fn), (Bm, gm) be analytic continuations of f
along C and C′ respectively. Then fn = gm on Dn ∩Bm.

Proof. There are function elements {(D0, f0), . . . , (Dn, fn)} and {(B0, g0), . . . , (Bm, gm)} with

(D0, f0) = (B0, g0) = (D, f), (6.6.1)

(Dj , fj) ∼ (Dj+1, fj+1), (Bk, gk) ∼ (Bk+1, gk+1) for all j = 0, . . . , n− 1, k = 0, . . . ,m− 1,
(6.6.2)

and partitions

0 = t0 < t1 . . . < tn−1 < tn = 1, 0 = s0 < s1 . . . < sm−1 < sm = 1

of [0, 1] such that

γ([tj , tj+1]) ⊂ Dj , γ([sk, sk+1]) ⊂ Bk for all j = 0, . . . , n− 1, k = 0, . . . ,m− 1. (6.6.3)

We claim that for all (j, k) ∈ {0, . . . , n−1}×{0, . . . ,m−1} with [tj , tj+1]∩ [sk, sk+1] ̸= ∅, we must
have (Dj , fj) ∼ (Bk, gk).

Indeed, assume that the claim does not hold, and let (j, k) be a couple as above with j + k
minimal. Note that (6.6.1) shows that it holds for j = k = 0. Thus, j + k > 0. Since [tj , tj+1] ∩
[sk, sk+1] ̸= ∅ we have (without loss of generality) that sk ≥ tj . Using (6.6.3) we get

γ(sk) ∈ Bk ∩Bk−1 ∩Dj . (6.6.4)

But clearly [tj , tj+1] ∩ [sk−1, sk] ̸= ∅, and so, by the minimality of j + k, we have that

(Bk−1, gk−1) ∼ (Dj , fj). (6.6.5)

Since, by (6.6.2), (Bk−1, gk−1) ∼ (Bk, gk), combining (6.6.5), (6.6.4) and Remark 6.15(3), we get
that (Bk, gk) ∼ (Dj , fj), contradicting that the claim fails for (j, k).

Therefore, our claim holds, in particular being valid in the trivial case j = n, k = m, which
proves the theorem.
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We define one-parameter families of curves, via certain homotopy function; compare with Def-
inition 1.25.

Definition 6.18 (One-parameter curves with common endpoints). Let Ω ⊂ C be open, and z, w ∈ Ω.
A family of continuous curves {γt : [0, 1] → Ω}t∈[0,1] in Ω so that

γt(0) = z, γt(1) = w for all t ∈ [0, 1]

is a one-parameter family of curves from z to w in Ω when there exists a continuous mapping
H : [0, 1]× [0, 1] → Ω with

H(s, t) = γt(s), for all (s, t) ∈ [0, 1]× [0, 1].

If a function elements admits analytic continuation along each curve of a one-parameter family,
then the initial and final continuations of the family are direct continuations of each other,

Theorem 6.19 (Analytic Continuation via One-Paremeter Curves). Let {γt}t∈[0,1] be a one-parameter
family of curves from z to w in C, and let (D, f) a function element with D centered at z, and so
that (D, f) admits an analytic continuation (Dt, ft) along γt for each t ∈ [0, 1]. Then f1 = f0 on
D0 ∩D1.

Proof. Given t ∈ [0, 1], there are function elements (D, f) = (Bt
0, g

t
0), . . . , (B

t
nt
, gtnt

) = (Dt, ft) so
that the chain {Bt

0, . . . , B
t
nt
} covers γt. Thus, there are points 0 = st0 < st1 < · · · < stnt

= 1 with

Kt
j := γt

(
[stj , s

t
j+1]

)
⊂ Bt

j , j = 0, . . . , nt − 1. (6.6.6)

By the compactness of each Kt
j , there exists ε > 0 with

ε < min{dist(Kt
j , ∂B

t
j) : j = 0, . . . , nt − 1}. (6.6.7)

Now, if H : [0, 1] × [0, 1] → C is a continuous map as in Definition 6.18, then H is of course
uniformly continuous in [0, 1]2, and so we can find δt > 0 (depending on ε, thus on t) so that

|γt(s)− γr(s)| < ε, for all s, r ∈ [0, 1], |r − t| ≤ δt. (6.6.8)

By (6.6.6), (6.6.6), and (6.6.8), whenever |r − t| ≤ δt, we can use the chain {Bt
0, . . . , B

t
nt
} to cover

γr. By Theorem 6.17, we have that ft = fr on Dt ∩Dr. We have shown that

For every t ∈ [0, 1], there is δt > 0 so that ft = fr on Dt ∩Dr whenever |r − t| ≤ δt. (6.6.9)

By the compactness of [0, 1], finitely many intervals Ik := (tk − δk, tk + δk), k = 0, . . . , N, as above
cover [0, 1], where 0 ∈ I0 and 1 ∈ IN . But then (6.6.9) implies that

(D0, f0) ∼ (Dt0 , ft0) ∼ (Dt1 , ft1) ∼ · · · ∼ (DtN−1 , ftN−1) ∼ (DtN , ftN ) ∼ (D1, f1).

Since all these disks have the same center w, the intersection

D0 ∩

(
N⋂
k=1

Dtk

)
∩D1

is nonempty, and by Remark 6.15(3), we may conclude that (D0, f0) ∼ (D1, f1), thus f0 = f1 on
D0 ∩D1.
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6.6.3 The Monodromy Theorem

We are now ready to show the main theorem of this section, where the domain is assumed to be
simply-connected.

Theorem 6.20 (Monodromy Theorem). Let Ω ⊂ C be open and simply connected, (D, f) a function
element with D ⊂ Ω. Assume that (D, f) admits an analytic continuation along every continuous
curve starting from the center of D and contained in Ω. Then there exists F ∈ H(Ω) with F = f
on D.

Proof. Denote by z0 the center of D, and for each z ∈ Ω, let γz : [0, 1] → Ω be a polygonal curve
with γz(0) = z0 and γz(1) = z. The element (D, f) admits an analytic continuation (Dz, Fγz)
along γz (through a chain Cz) with Dz = D(z, rz), for some rz > 0. In the case z = z0, we simply
understand that (Dz0 , Fz0) = (D, f). We define F : Ω → C by the formula

F (w) = Fγz(w) whenever w ∈ D(z, rz/2), z ∈ Ω. (6.6.10)

Let us verify that F is well-defined. Given w ∈ D(z, rz/2) ∩ D(ξ, rξ/2) for w, ξ ∈ Ω, we wish to
show that Fγz(w) = Fγξ(w). Obviously the disks Dz,w := D(w, rz/2) and Dξ,w := D(w, rξ/2) are
contained respectively in D(z, rz) and D(ξ, rξ). We extend γz and γξ to w as

Γz := γz ⋆ [z, w], Γξ := γξ ⋆ [ξ, w].

And we add the function elements (Dz,w, Fγz) and (Dξ,w, Fγξ) to the chains Cz and Cξ. We thus ob-
tain new chains covering Γz and Γξ respectively, with analytic continuations (Dz,w, Fγz), (Dξ,w, Fγξ)
of (D, f) along Γz and Γξ. Both Γz and Γξ have initial point z0 and end-point w. Because Ω is sim-
ply connected, by Exercise 6.8, there exists a one-parameter family of continuous curves {Γt}t∈[0,1]
in Ω with Γ0 = Γz and Γ1 = Γξ. By the assumption (D, f) admits an analytic continuation along
each Γt. Applying Theorem 6.19, we get that

Fγz = Fγξ on Dz,w ∩Dξ,w = D(w, rz/2) ∩D(w, rξ/2),

as desired.
Now, observe that the formula (6.6.10) for F defines a holomorphic function, as it agrees locally

with holomorphic functions. Also, note that F = Fz0 = f in D(z0, rz0/2), where D = D(z0, rz0),
and F, f ∈ H(D). Thus F = f on D, by the Identity Principles for holomorphic maps.

6.7 Approximation by Polynomials and Rational Functions

By the Weierstrass’s Approximation Theorem, any continuous function g : K → R on a compact
subset of K ⊂ R2 can be uniformly approximated by polynomials in K. These real polynomials
are functions of the form

Q(x, y) =

n∑
k,j=0

ak,jx
kyj , ak,j ∈ R.

However, in order to approximate an f : K → C by complex polynomials of the form

P (z) =
n∑

k=0

ckz
k, zk ∈ C,

it is not enough to separately approximate the real u and imaginary v parts of f by real polynomials
Qu, Qv, as the result Qu + iQv might not be a complex polynomial, and in fact not even a
holomorphic function.

On the other hand, recall that by Wierstrass Approximation Theorem 3.1 says that uniform
convergence in compact sets of holomorphic functions gives a holomorphic function. This indicates
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that the approximation problem (analogous to Weierstrass Approximation Theorem) should be
formulated as follows:

given Ω ⊂ C open, K ⊂ Ω compact, and f ∈ H(Ω), under what conditions does there exist, for
every ε > 0, a complex polynomial P so that

|f(z)− P (z)| ≤ ε for all z ∈ K ?

We will see that the answer to this questions depends heavily on the topology of Ω, and that in
many cases, the best we can achieve is an approximation by rational functions with well-localized
poles.

6.7.1 Rational Approximation with Poles inside Cycles

The first result provides approximation of Cauchy Integral Formulas along a path by rational
functions with poles contained in the path.

Proposition 6.21. Let γ : [0, 1] → C be a piecewise C1 path, and let K ⊂ C be a compact set with
γ∗ ∩ K = ∅. Then, for every continuous function f : γ∗ → C and ε > 0, there exists a rational
function R ∈ M(C∞), whose (possible) poles are contained in γ∗, so that∣∣∣∣∫

γ

f(w)

w − z
−R(z)

∣∣∣∣ ≤ ε, for all z ∈ K.

Proof. By compactness, the sets γ∗ = γ([0, 1]), f (γ∗), and K, are contained in D(0, r). Also, the
functions γ and f ◦ γ are uniformly continuous on [0, 1]. Therefore, denoting δ = dist(γ∗,K) > 0,
there are numbers

0 = t0 < t1 < · · · < tn−1 < tn = 1

so that

max{|γ(tj)− γ(t)|, |(f ◦ γ)(tj)− (f ◦ γ)(t)|} ≤ εδ2

4rℓ(γ)
, for all t ∈ [tj−1, tj ], j = 1, . . . , n.

This implies that, for all z ∈ K and t ∈ [tj−1, tj ], one has∣∣∣∣(f ◦ γ)(t)
γ(t)− z

− (f ◦ γ)(tj−1)

γ(tj−1)− z

∣∣∣∣ = |(f ◦ γ)(t)(γ(tj−1)− z)− (f ◦ γ)(t)(γ(tj−1)− z)|
|γ(t)− z||γ(tj−1)− z|

=
| ((f ◦ γ)(t)− (f ◦ γ)(tj−1)) (γ(tj−1)− z) + (f ◦ γ)(tj−1) (γ(tj−1)− γ(t))

|γ(t)− z||γ(tj−1)− z|

≤ 2r|(f ◦ γ)(t)− (f ◦ γ)(tj−1)|+ r|γ(tj−1)− γ(t)|
δ2

≤ 3εrδ2

4rℓ(γ)δ2
=

3ε

4ℓ(γ)
. (6.7.1)

We define the rational function

R(z) =

n∑
j=1

(f ◦ γ)(tj−1) (γ(tj)− γ(tj−1))
1

γ(tj−1)− z
.

This formula and (6.7.1) gives the estimates∣∣∣∣∫
γ

f(w)

w − z
−R(z)

∣∣∣∣ =
∣∣∣∣∣∣
n−1∑
j=1

∫ tj

tj−1

(f ◦ γ)(t)
γ(t)− z

γ′(t) dt−
n−1∑
j=1

∫ tj

tj−1

(f ◦ γ)(tj−1)

γ(tj−1)− z
γ′(t) dt

∣∣∣∣∣∣
≤

n−1∑
j=1

∫ tj

tj−1

∣∣∣∣(f ◦ γ)(t)
γ(t)− z

− (f ◦ γ)(tj−1)

γ(tj−1)− z

∣∣∣∣ dt
≤ 3ε

4ℓ(γ)

m−1∑
j=1

∫ tj

tj−1

|γ′(t)|dt = 3ε

4ℓ(γ)
ℓ(γ) < ε.
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Using the previous proposition and the Integral Representation Theorem 1.22, we obtain the
following.

Corollary 6.22. Let Ω ⊂ C be open, K ⊂ Ω compact and f ∈ H(Ω). Then, for every ε > 0, there
exists a rational function R ∈ M(C∞), whose poles are contained in C \K (none of them at ∞)
so that

|f(z)−R(z)| ≤ ε, for all z ∈ K.

Proof. By Theorem 1.22, we can find line segments L1, . . . , Lm with traces contained in Ω\K, and
so that

f(z) =
1

2πi

m∑
j=1

∫
Lj

f(w)

w − z
dw, for all z ∈ K. (6.7.2)

Now, given ε > 0, by Proposition 6.21 there exists, for each 0 ≤ j ≤ m, a rational function Rj ,
whose poles are contained in Lj , and so that∣∣∣∣∣ 1

2πi

∫
Lj

f(w)

w − z
dw −Rj(z)

∣∣∣∣∣ ≤ ε

m
, for all z ∈ K. (6.7.3)

Combining (6.7.2) and (6.7.2), we deduce that∣∣∣∣∣∣f(z)−
m∑
j=1

Rj(z)

∣∣∣∣∣∣ ≤ ε, z ∈ K.

The function R(z) :=
∑m

j=1Rj(z) is clearly rational with poles contained in
⋃m

j=1 γ
∗
j ⊂ C \K.

6.7.2 Runge’s Theorem: first version

Given a compact set K, denote

P(K) = {P↾K : P polynomial in C}, A(K) = P(K)
(C(K),∥·∥∞)

. (6.7.4)

That is, P(K) are restrictions of all polynomials to K, and A(K) is the closure of P(K) in the
Banach space (C(K), ∥ · ∥∞). In other words, P(K) is the collection of all (continuous) functions
in K, that can be uniformly approximated in K by polynomials.

It is easy to see that if f, g ∈ A(K), and λ ∈ C, then

λf + g ∈ A(K), f · g ∈ A(K).

In the next lemma we prove that inversions with pole outside a compact set K are in the algebra
A(K), if C \K is connected.

Lemma 6.23. Let K ⊂ C be compact, with C \ K connected. Denote, for each a ∈ C \ K, the
function

fa(z) =
1

z − a
, z ∈ C \ {a}.

Then fa ∈ A(K) for all a ∈ C \K.

Proof. Define
U := {a ∈ C \K : fa ∈ A(K)}.

Let us first verify that U is nonempty. Let R > 0 so that |z| < R for all z ∈ K. If |z0| > R, then
we have that, for all z ∈ K,

fz0(z) =
1

z − z0
= − 1

z0
· 1

1− z
z0

= − 1

z0

∞∑
n=0

(
z

z0

)n

.
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For each n ∈ N ∪ {0} and z ∈ K, we have the estimate∣∣∣∣ zz0
∣∣∣∣n ≤

(
R

|z0|

)n

;

where |z0| > R implies
∞∑
n=0

(
R

|z0|

)n

<∞.

By the Weierstrass M-test, the series (which is a limit of polynomials) converges uniformly in K.
This shows that z0 ∈ U.

We next prove that U is closed relative to C\K. Let {an}n ⊂ U convergent to some a ∈ C\K.
For n large enough, we have that dist(an,K) ≥ 1

2 dist(a,K) > 0, thus

sup
z∈K

|fa(z)− fan(z)| = sup
z∈K

∣∣∣∣ 1

z − a
− 1

z − an

∣∣∣∣ ≤ sup
z∈K

|a− an|
|z − a||z − an|

≤ 2|a− an|
dist(a,K)2

.

The last term goes to 0 as n goes to infinity, which shows that fa is approximated uniformly on
K by the functions fan . Since each fan can be uniformly approximated on K by polynomials, we
conclude that a ∈ U.

Since C \K is open and connected, we will have shown our lemma as soon as we prove that U
is an open set. To see this, let a ∈ U, and notice that then a /∈ K, whence dist(a,K) > 0. We will
prove that D(a,dist(a,K)) is contained in U. For every b ∈ D(a,dist(a,K)) with a ̸= b, one has
that

fb(z) =
1

z − b
=

1

z − a
· 1

1− b−a
z−a

=
1

z − a

∞∑
n=0

(
b− a

z − a

)n

, z ∈ K. (6.7.5)

The series converges uniformly on z ∈ K by virtue of the Weierstrass M-test, as |b−a| < dist(a,K),
and for all z ∈ K we have the bound∣∣∣∣ b− a

z − a

∣∣∣∣n ≤
(

|b− a|
dist(a,K)

)n

, with

∞∑
n=0

(
|b− a|

dist(a,K)

)n

<∞.

Therefore, from (6.7.5) we deduce that the fb is the uniform limit of functions of the form

gN (z) =
N∑

n=0

(b− a)n(fa(z))
n+1, z ∈ K, N ∈ N.

Since fa ∈ A(K), by the remark right after the definition (6.7.4), each gN ∈ A(K), and therefore
fb ∈ A(K) and b ∈ U. We conclude that U is open, which completes the proof of the lemma.

It is now easy to prove the first version of Runge’s Approximation Theorem.

Theorem 6.24 (Runge’s Theorem, v.1). Let Ω ⊂ C be open, K ⊂ Ω compact and f ∈ H(Ω). Given
ε > 0 there exists a rational function R, with poles in C \K, so that

|f(z)−R(z)| ≤ ε, for all z ∈ K.

If, in addition, C \K is connected, each R can be taken to be a polynomial.

Proof. The first part was already shown in Corollary 6.22. Assume that C\K is connected. Given
f ∈ H(Ω) and ε > 0, by the first part, there exists a rational function R with poles outside K so
that

|f(z)−R(z)| ≤ ε

2
, z ∈ K.
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But the function R can be written as

R(z) =

n∑
k=1

mk∑
j=0

ck,j
(z − ak)j

, a1, . . . , an ∈ C \K, ck,j ∈ C, 0 ≤ j ≤ mk, 1 ≤ k ≤ n,

by Corollary 2.20. Thus, by Lemma 6.23 (and the comment right after definition (6.7.4)), R ∈
A(K), and so there exists a polynomial P : C → C with

|R(z)− P (z)| ≤ ε

2
, z ∈ K.

We conclude that |f(z)−R(z)| ≤ ε for all z ∈ K.

6.7.3 Runge’s Theorem: second version

Before stating and proving a more general version of Theorem 6.24, we first need to two purely
topologycal lemmas.

Lemma 6.25. Let K ⊂ C be compact. Then W ⊂ C∞ \K is a connected component of C∞ \K if
and only if W \ {∞} is a connected component of C \K.

Proof. The set C∞ \K can be written as a disjoint union of its connected components {Wj}j∈J :

C∞ \K =Wj0 ⊎
⊎
j ̸=j0

Wj ,

where Wj0 is the connected component containing ∞. Therefore Wj is a connected open subset of
C for all j ∈ J with j ̸= j0. Setting Vj0 :=Wj0 \ {∞} and Vj :=Wj for all j ̸= j0, we can write

C \K =
⊎
j∈J

Vj ;

where each Vj is open and connected in C \ K. Observe that if a set A ⊂ C is connected in the
topology of C∞, then it is connected in the usual topology of C, as there are fewer open sets (thus
fewer possible separations) in C than in C∞. Let us show that the above implies that the {Vj}j
are precisely the connected components of C \K. Indeed, let V a connected component of C \K.
Obviously V must contain some Vk, and if we suppose that Vk ⊊ V, we have that V must intersect
another Vj . Thus we have the inclusion

V ⊂ Vk ⊎
⊎
j ̸=k

(Vj ∩ V );

where Vk and
⊎

j ̸=k Vj∩V are disjoint open sets, having non-empty intersection with V. This would
imply that V is not connected, a contradiction. Thus {Vj}j are precisely the connected components
of C \K, from which the lemma now follows immediately.

Lemma 6.26. Let Ω, U ⊂ C two open sets with U ⊂ Ω and ∂U ∩ Ω = ∅. If W is a connected
component of Ω intersecting U, then W ⊂ U.

Proof. Let z ∈ U ∩W, and let A ⊂ U be a connected component of U with z ∈ A. Since W and A
have a common point, both A andW are connected subsets of Ω, andW is a connected component
of Ω, we must have A ⊂W. Since C is locally connected (actually connected), and A is a connected
component of U, with U open, we have that ∂A ⊂ ∂W. But by the hypothesis ∂U ∩Ω = ∅ and the
fact that W ⊂ Ω, this implies that ∂A ∩W = ∅. This allows us to write

W \A =W ∩ (C \A) =W ∩
(
∂A ∪ C \A

)
=W ∩

(
C \A

)
.

Therefore W \A is both open and relatively closed in W, thus W \A = ∅, whence W = A ⊂ U as
desired.
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Consider now the following family of functions.

Definition 6.27. Let K ⊂ C be compact, and E ⊂ C∞ \K. We define

RE(K) := {R↾K : R rational with poles in E}, AE(K) = RE(K)
(C(K),∥·∥∞)

.

In other words, RE(K) is the restriction to K of all those rational functions whose poles are
exclusively in E, and AE(K) is the family of continuous functions in K that can be uniformly
approximated on K by functions of the family RE(K).

As in the previous section, it is easy to see that if K and E are as above, and f, g ∈ AE(K),
and λ ∈ C, then

λf + g ∈ AE(K), f · g ∈ AE(K).

The following lemma generalizes Lemma 6.23, since rational functions with poles only at ∞ are
precisely the polynomials.

Lemma 6.28. Let K ⊂ C be compact, and E ⊂ C∞ \K a set intersecting all connected components
of C∞ \K. Denote, for each a ∈ C \K, the function

fa(z) =
1

z − a
, z ∈ C \ {0}.

Then fa ∈ AE(K) for all a ∈ C \K.

Proof. We consider first the case where ∞ /∈ E, so that E ⊂ C \K. Denote Ω = C \K, and

U := {a ∈ Ω : fa ∈ AE(K)}.

It is obvious that E ⊂ U ⊂ Ω. Let us show that

a ∈ U =⇒ D(a,dist(z,K)) ⊂ U, (6.7.6)

which in particular implies that U is an open set. Given a ∈ U, note that a /∈ K, whence
dist(a,K) > 0. For every b ∈ D(a,dist(a,K)) with a ̸= b, one has that

fb(z) =
1

z − b
=

1

z − a
· 1

1− b−a
z−a

=
1

z − a

∞∑
n=0

(
b− a

z − a

)n

, z ∈ K. (6.7.7)

The series converges uniformly on z ∈ K by virtue of the Weierstrass M-test, as |b−a| < dist(a,K),
and for all z ∈ K we have the bound∣∣∣∣ b− a

z − a

∣∣∣∣n ≤
(

|b− a|
dist(a,K)

)n

, with
∞∑
n=0

(
|b− a|

dist(a,K)

)n

<∞.

Therefore, from (6.7.7) we deduce that the fb is the uniform limit of functions of the form

gN (z) =
N∑

n=0

(b− a)n(fa(z))
n+1, z ∈ K, N ∈ N.

Since fa ∈ AE(K), by the remark right after the definition (6.7.4), each gN ∈ AE(K), and therefore
fb ∈ AE(K) and b ∈ U. This confirms the validity of (6.7.6) and that U is open. Also, observe
that if a ∈ ∂U , then there is a sequence {an}n ⊂ U convergent to a, and by (6.7.6) we must have

|a− an| ≥ dist(an,K), n ∈ N.

Taking limits as n → ∞ in both sides we get that dist(a,K) = 0, and therefore a ∈ K. We have
shown that ∂U ∩ Ω = ∅. Since E intersects all the connected components of C∞ \K, by Lemma
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6.25, E (and so U) intersects all the connected components of Ω = C \K. By Lemma 6.26, we get
that all connected components of Ω are in U, thus showing that Ω = U, as desired.

Now, assume that ∞ ∈ E, and let {Wj}j∈J be the connected components of C∞ \K, with Wj0

being the one containing ∞. Thus Wi0 = C∞ \ L for some compact set L ⊂ C containing K. The
rest of the connected components Wj , j ̸= j0 are disjoint with Wj0 , and so Wj ⊂ L for all j ̸= j0.
We can find

a0 ∈ C \K with |a0| ≥ 2max{1 + |z| : z ∈ L} ≥ 2max{|z| : z ∈ K}. (6.7.8)

Defining E0 := (E\{∞})∪{a0} and bearing in mind that E intersects all the connected components
of C∞ \K, (6.7.8) tells us that E0 intersects all those components as well, and by the first part
of the proof of the current lemma, we obtain fa ∈ AE0(K) for all a ∈ C \K. Since each rational
function with poles in E0 can be written as a linear combination of one with poles in E and one
of the form

∑m
n=0 f

n
a0 (see e.g. Corollary 2.20), it only remains to show that fa0 ∈ AE(K). To see

this, write

fa0(z) =
1

z − a0
= − 1

a0

∞∑
n=0

(
z

a0

)n

=
∞∑
j=0

− zn

an+1
0

, z ∈ K.

By the choice of a0 in (6.7.8), the Weierstrass M-test guarantees the uniform convergence of the
series in K, thus showing that fa0 is the uniformm limit (in K) of polynomials, that is, rational
functions with poles at infinity, that is functions in RE(K). We conclude that fa0 ∈ AE(K).

We are now ready to show the announced generalization of Theorem 6.24.

Theorem 6.29 (Runge’s Theorem, v.2). Let Ω ⊂ C be open, K ⊂ Ω compact and E ⊂ C∞ \K a
set intersecting each connected component of C∞ \K. Then, for every f ∈ H(Ω) and ε > 0, there
exists a rational function R with poles in E, so that

|f(z)−R(z)| ≤ ε, for all z ∈ K.

Proof. By Corollary 6.22, there exists R rational with poles in C \K so that

|f(z)−R(z)| ≤ ε

2
, z ∈ K.

We write the function R as

R(z) =

n∑
k=1

mk∑
j=0

ck,j (fak(z))
j , a1, . . . , an ∈ C \K, ck,j ∈ C, 0 ≤ j ≤ mk, 1 ≤ k ≤ n,

by Corollary 2.20. Since E intersects all the connected components of C∞ \K, by Lemma 6.28,
each fak above belongs to AE(K), and so, R ∈ AE(K). Therefore, we can find a rational function
S with poles in E so that

|R(z)− S(z)| ≤ ε

2
, z ∈ K.

We conclude that |f(z)− S(z)| ≤ ε for all z ∈ K.

6.7.4 Approximation in the Compact-Open Topology

The next results on approximations differ a bit from those in the previous section, since now we
look for a sequence of polynomials {Pn}n or rational functions {Rn}n that approximate a given
f ∈ H(Ω) uniformly on each compact subset of Ω. Note that then the same sequence {Rn}n works
simultaneously for all compact subsets. Naturally, this follows by Runge’s Theorem 6.29, but we
first need to prove an additional topological property on the nested sequences of compact sets from
Proposition 3.3.
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Lemma 6.30. Given an open set Ω ⊂ C, there exists a nested family {Kn}n∈N of compact sets
in Ω with the property that, for every n ∈ N, every connected component of C∞ \Kn contains a
connected component of C∞ \ Ω.

Proof. In the case Ω = C, it suffices to take Kn = D(0, n) for every n ∈ N, where the only
connected component of C∞ \Kn is precisely C∞ \Kn, which obviously contains {∞} = C∞ \ C.

Consider now the case Ω ⊊ C, and define

Kn := D(0, n) ∩ {z ∈ Ω : dist(z,C \ Ω) ≥ 1/n}, n ∈ N.

As we saw in the proof of Proposition 3.3, {Kn}n∈N is a nested family of compact sets in Ω. Now,
fix n ∈ N, and

C∞ \Kn =Wj0 ⊎
⊎
j ̸=j0

Wj ,

the decomposition of C∞ \K into its connected components, where Wj0 is the one containing ∞.
If A is the connected component of C∞ \Ω that contains ∞, and Kn ⊂ Ω, the set A is a connected
subset of C∞ \Kn intersectingWj0 , thus A ⊂Wj0 . Now we need to verify that eachWj with j ̸= j0
contains a connected component of C∞ \ Ω. Notice that, since Kn ⊂ D(0, n), and C∞ \D(0, n) is
connected in C∞ and contains ∞, we have that C∞ \D(0, n) ⊂ Wj0 , and so Wj ⊂ D(0, n). If we
fix a point z ∈Wj , the inequality dist(z0,C \ Ω) < 1/n gives the existence of w ∈ C \ Ω for which
|z − w| < 1/n. By the definition of Kn, we clearly have the inclusions

z ∈ D(w, 1/n) ⊂ C∞ \Kn.

Because D(w, 1/n) is connected in C∞ (as disks are bounded and connected in C) and contains
z, this implies that D(w, 1/n) ⊂ Wj , and, in particular w ∈ Wj . Now, if A is the connected
component of C∞ \ Ω containing w, then A is also a connected subset of C∞ \Kn containing w,
and therefore A ⊂Wj , as desired.

Applying Runge’s Theorem 6.29 to each Kn of the nested sequence, we get the following.

Corollary 6.31. Let Ω ⊂ C be open and E ⊂ C∞ \Ω a set intersecting each connected component of
C∞ \ Ω. Then, for every f ∈ H(Ω) there exists a sequence of rational functions {Rn}n with poles
contained in E, and so that {Rn}n converges to f uniformly on compact subsets of Ω.

Proof. Let {Kn}n be a nested sequence of compact sets in Ω as in Lemma 6.30. Given n ∈ N, the
set E intersects all the connected components of C∞ \ Kn, and by Runge’s Theorem 6.29 there
exists Rn rational with poles in E so that

|f(z)−Rn(z)| ≤ 1/n for all z ∈ Kn.

We obtain a sequence {Rn}n of rational functions with poles in E satisfying the above estimates.
For every K ⊂ Ω compact and every ε > 0, there exists n0 ∈ N with K ⊂ Kn and 1/n < ε for all
n ≥ n0. The estimates above shows that

sup{|f(z)−Rn(z)| : z ∈ K} ≤ sup{|f(z)−Rn(z)| : z ∈ Kn} ≤ 1/n < ε, for all n ≥ n0.

6.7.5 Polynomic Approximation in Simply Connected Domains

It is immediate from Corollary 6.31 that if C∞ \ Ω is already connected, then the approximating
functions can be taken to be polynomials, as one can choose E = {∞}, so that rational functions
with poles in E are precisely polynomials. The connectedness of the C∞ \Ω (for a connected open
set Ω) is equivalent to the simple-connectedness of Ω, but this purely topological equivalence is
not very non-trivial to prove. Nevertheless, we can use a refinment of the Integral Represenatation
Theorem 1.22 to show this.

We begin with the following combinatorial lemma.
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Lemma 6.32. Let a1, . . . , am, b1, . . . , bm ∈ C be numbers satisfying the identity

m∑
j=1

P (aj) =
m∑
j=1

P (bj) for all polynomial P. (6.7.9)

Then there exists a permutation (a bijection) ϕ : {1, . . . ,m} → {1, . . . ,m} so that aϕ(j) = bj for
all j = 1, . . . ,m.

Proof. We use induction on m. The case m = 1 is trivial, because in such case we could take
P (z) = z and the hypothesis implies that a = b. Now, assume our conclusion is true for m − 1,
and let a1, . . . , am, b1, . . . , bm ∈ C be satisfying (6.7.9). Our first claim is that am ∈ {b1, . . . , bm}.
Indeed, assume that am ̸= bj for all j = 1, . . . ,m, and define the sets

J = {j ∈ {1, . . . ,m} : aj ̸= am}, I = {j ∈ {1, . . . ,m} : aj = am},

and the polynomial

P (z) :=
∏
j∈J

(z − aj) ·
m∏
j=1

(z − bj)

(understanding that the first product is constantly equal to 1 when J is empty). Then P (bj) = 0
for all j ∈ {1, . . . ,m}, P (aj) = 0 for all j ∈ J, and P (aj) = P (ak) ̸= 0 for all j ∈ I. Applying
(6.7.9), we get that

0 =
m∑
j=1

P (bj) =
∑
j∈J

P (aj) +
∑
j∈I

P (aj) = card(I)P (ak),

implying that P (ak) = 0, a contradiction.
We have shown that there exists k ∈ {1, . . . ,m} with am = ak. Using (6.7.9), we get that, for

all polynomial P,

m−1∑
j=1

P (aj) =
m∑
j=1

P (aj)− P (bk) =
m∑
j=1

P (bj)− P (bk) =
m∑

j=1, j ̸=k

P (bj).

By the induction hypothesis, there exists a bijection φ : {1, . . . ,m} \ {k} → {1, . . . , k − 1} with
aφ(j) = bj for all j ∈ {1, . . . ,m} \ {k}. We can therefore define a new bijection ϕ of {1, . . . ,m by
setting ϕ = φ on {1, . . . ,m} \ {k} and ϕ(k) := m. Clearly aϕ(j) = bj for all j ∈ {1, . . . ,m}.

The mentioned variation of Theorem 1.22 consists of replacing the line segments by closed
polygonal lines, thus obtaining a cycle.

Theorem 6.33. Let Ω ⊂ C be open, and K ⊂ Ω a nonempty compact set. There are closed polygonal
lines γ1, . . . , γN ⊂ Ω \K, such that for every f : Ω → C holomorphic, we have

f(z) =
1

2πi

N∑
j=1

∫
γj

f(w)

w − z
dw, for all z ∈ K. (6.7.10)

Proof. Let L1, . . . , Lm be the line segments from Theorem 1.22, and denote Lj := [aj , bj ], with (as
we may assume) aj ̸= bj , for all j ∈ {1, . . . ,m}. For every polynomial P and a fixed z0 ∈ K, we
can apply Theorem 6.33 (formula (1.2.8)) to the holomorphic map f(z) = P ′(z)(z − z0) to obtain
that

0 = f(z0) =
1

2πi

m∑
j=1

∫
Lj

f(w)

w − z0
dw =

1

2πi

m∑
j=1

∫
Lj

P ′(w) dw =
1

2πi

m∑
j=1

(P (bj)− P (aj)) ,
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and thus
m∑
j=1

P (aj) =
m∑
j=1

P (bj) for all polynomial P.

By Lemma 6.32, there is a permutation ϕ of {1, . . . ,m} with aϕ(j) = bj for all j ∈ {1, . . . ,m}. Note
that, since aj ̸= bj , we have that ϕ(j) ̸= j for all j ∈ {1, . . . ,m}. We can write ϕ as a composition
of disjoint cycles φ1, . . . , φN , that is,

ϕ = φN ◦ · · · ◦ φ1, φk =
(
jk ϕ(jk) · · · ϕℓk(jk) jk

)
, k = 1, . . . , N.

Each cycle φk has length at least 2, as ϕ does not have fixed points. Therefore, ℓk ≥ 1 for all
k = 1, . . . , N. For each line segment

Lj = [aj , bj ] = [aj , aϕ(j)],

there are unique (by the disjointness of the cycles) k ∈ {1, . . . , N}, jk ∈ {1, . . . ,m} and 0 ≤ l ≤ ℓk
so that

[aj , aϕ(j)] = [aϕl(jk)
, aϕl+1(jk)

],

understanding that ϕl+1(jk) = jk when l = ℓk. Conversely, each line segment [aϕl(jk)
, aϕl+1(jk)

]
formed by two consecutive indices of the cycle φk is of course of the form [aj , bj ] = Lj for some
j ∈ {1, . . . ,m}. Therefore, we can group the line segments L1, . . . , Lm using the cycles φ1, . . . , φN

as
m⋃
j=1

Lj =

m⋃
j=1

[aj , bj ] =

N⋃
k=1

γk; γk := [ajk , aϕ(jk)] ∪ · · · ∪ [aϕℓk (jk)
, ajk ], k = 1, . . . , N.

Each γk is a closed polygonal line, and for any continuous h :
⋃m

j=1 L
∗
j → C, we have that

m∑
j=1

∫
Lj

h(w) dw =

N∑
k=1

∫
γk

h(w) dw.

Together with formula (1.2.8), this implies (6.7.10).

We are now ready to prove the polynomic approximation of holomorphic functios in simply-
connected domains, showing that actually this property characterizes simple-connectedness.

Theorem 6.34. Let Ω ⊂ C be open and connected. The following statements are equivalent.

(i) Ω is simply connected.

(ii) C∞ \ Ω is connected.

(iii) For every f ∈ H(Ω) there is a sequence {Pn}n of polynomials converging to f uniformly on
compact subsets of Ω.

Proof. We begin with the implication (i) =⇒ (ii). Assume that C∞ \Ω is not connected, and let
us find a cycle Γ in Ω with Γ ̸≃ 0 in Ω. This will imply that Ω is not simply-connected by Corollary
4.44. Since C∞ \ Ω is not connected and closed, there are disjoint and nonempty closed subsets
F1, F2 ⊂ C∞ so that C∞ \Ω = F1 ∪ F2. One of them, say F1, contains ∞, and so F2, being closed
in C∞ without ∞, must be a bounded and closed subset of C, and therefore F2 is compact in C.
We define U := Ω ∪ F2, and note that

U = Ω ∪ ((C∞ \ Ω) ∩ (C∞ \ F1)) = Ω ∪ (C∞ \ F1) = C∞ \ F1,

which is an open set of C∞. By Theorem 6.33 there is a cycle Γ (union of finitely many closed
poligonal lines) in U with Γ∗ ⊂ U \ F2 ⊂ Ω and so that (taking the function f(w) = 1 for all
w ∈ U)

1 =
1

2πi

∫
Γ

dw

w − z
=W (Γ, z), for all z ∈ F2.
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Thus Γ is a cycle in Ω with W (Γ, z) ̸= 0 for all z ∈ F2 ⊂ C \Ω. Since F2 is nonempty, we get that
Γ ̸≃ 0 in Ω, giving the desired contradiction.

Let us now show (ii) =⇒ (iii). Defining E := {∞}, obviously E intersects the connected
component of C∞ \ Ω (itself), and we can apply Corollary 6.31 to f ∈ H(Ω) in order to find
rational functions {Rn}n with poles in E that approximate f uniformly on compact sets of Ω. But
rational functions with only one pole at ∞ are precisely the polynomials.

Finally, let us prove (iii) =⇒ (i). By Corollary 4.44 and Theorem 1.19, it suffices to check
that if f ∈ H(Ω) and Γ is a cycle in Ω, then

∫
Γ f(z) dz = 0. But (ii) provides us with polynomials

{Pn}n converging to f uniformly on compact sets of Ω, whence∫
Γ
f(z) dz = lim

n→∞

∫
Γ
Pn(z) dz = 0,

as polynomials always have primitives, and the Fundamental Theorem of Calculus for the Path-
Integral can be applied.

6.8 Mittag-Leffler’s Theorem

We finish this chapter with the following famous theorem of Mittag-Leffler, which tells us that one
can construct meromorphic functions choosing their poles and the correponding principal parts of
the Laurent Series.

Theorem 6.35 (Mittag-Leffler’s Theorem). Let Ω ⊂ C be open, and S ⊂ Ω a set with S′ ∩ Ω = ∅.
Given a family {Pw}w∈S of rational functions of the form

Pw(z) =
A1,w

z − w
+

A2,w

(z − w)2
+ · · ·+ Amw,w

(z − w)mw
, A1,w, . . . , Amw,w ∈ C, mw ∈ N, for all w ∈ S,

there exists a function f ∈ H(Ω \ S) whose Laurent Series centered at w has principal part equal
to Pw for all w ∈ S. In particular, f ∈ M(Ω) with a pole of order mw ∈ N at w, for all w ∈ S.

Proof. First notice that S must me countable, e.g., by Proposition 2.12. Let {Kn}n a nested
sequence of compact subsets in Ω as in Lemma 6.30. We define a partition of S into the finite sets
{Sn}n∈ given by

S1 := S ∩K1, Sn := S ∩ (Kn \Kn−1) for all n ≥ 2.

Each Sn is a bounded subset of Kn ⊂ Ω, and since S′ ∩ Ω = ∅, we have that indeed Sn is finite.
Also, since Kn−1 ⊂ int(Kn) and Sk is finite, it is clear that there exists, for every n ≥ 2, an open
set Un with

Kn−1 ⊂ Un ⊂ int(Kn) and Sn ∩ Un = ∅, (6.8.1)

Defining

fn(z) :=
∑
w∈Sn

Pw(z), n ∈ N, (6.8.2)

we get from (6.8.1) that fn is a rational function with poles in Sn, and that fn ∈ H(Un) for all n ≥ 2.
Let E ⊂ C∞ \ Ω be a set intersecting all the connected components of C∞ \ Ω. By Corollary 6.31
applied to each fn ∈ H(Un) and the compact subset Kn−1, there are rational functions {Rn}n≥2

with poles contained in E and so that

|fn(z)−Rn(z)| ≤
1

2n
, for all z ∈ Kn−1, n ≥ 2. (6.8.3)

Since the poles of Rn are outside of Ω, we have that Rn ∈ H(Ω) for all n ≥ 2. We define

f(z) := f1(z) +
∞∑
n=2

(fn(z)−Rn(z)), z ∈ Ω \ S. (6.8.4)
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This function is the pointwise limit of holomorphic functions in Ω \ S. Let us check that the
convergence of the series is uniform on compact subsets of Ω \ S. Let K ⊂ Ω \ S, and let N ∈ N
with K ⊂ KN . Then K ⊂ Kn for all n ≥ N, and so (6.8.3) leads us to

sup{|fn(z)−Rn(z)| : z ∈ K} ≤ 1

2n
, n ≥ N + 1, where

∞∑
n=N+1

1

2n
<∞.

By Weierstrass M-test, the series
∑∞

n=2(fn−Rn) converges uniformly in K. Therefore, we see from
(6.8.4) that f is the locally uniform limit of holomorphic functions in Ω \ S, thus f ∈ H(Ω \ S) by
Weierstrass Theorem 3.1. Since S has no accumulation points in Ω, f has isolated singularities at
each w ∈ S.

Finally, given w0 ∈ S, let us show that the principal part of the Laurent Series of f at w0

coincides with Pw0 for each w0 ∈ S. Indeed, since S′∩Ω = ∅ and w0 ∈ S ⊂ Ω, there exists ε > 0 so
that w /∈ D(w0, ε) \ {w0} for all w ∈ S. There exists a unique N ∈ N with w0 ∈ SN , and note that
then the functions {fn}n̸=N , {Rn}n are holomorphic in D(w0, ε). Thus, from (6.8.4), there exists
g ∈ H(D(w0, ε)) so that

f(z) = g(z) + fN (z), z ∈ D(w0, ε) \ {z0}.

But, since w /∈ D(w0, ε) for all w ∈ S \ {w0}, and w is the only singularity of Pw, the formula
(6.8.2) shows that there is h ∈ H(D(w0, ε)) with

f(z) = g(z) + fN (z) = g(z) + h(z) + Pw0(z), z ∈ D(w0, ε) \ {z0}.

Because g + h is holomorphic in H(D(w0, ε)), and the Laurent Series expansion of f is unique
around w0, the principal part of this series must be equal to Pw0 .

6.9 Exercises

Exercise 6.1. Let Ω ⊂ C be open and symmetric about the origin, and f : Ω+ → C be holomorphic.
Prove that the function g : Ω− → C given by

g(z) = f(z), for all z ∈ Ω−,

is holomorphic in Ω−.

Exercise 6.2. Let Ω ⊂ C be open, and f : Ω → C continuous in Ω and holomorphic in Ω \R. Prove
that f is holomorphic in Ω.

Exercise 6.3. Let f : R → R be real analytic. Prove that there exists Ω ⊂ C open with R ⊂ Ω and
F ∈ H(Ω) with F = f on R.

Exercise 6.4. Give an example of an open, bounded and simply connected set Ω whose boundary
∂Ω is not a Jordan curve.

Exercise 6.5. Let Ω ⊂ C be open and bounded, and f : Ω → C continuous in Ω and holomorphic
in Ω. Prove the inclusion ∂f(Ω) ⊂ f(∂Ω).

Exercise 6.6. Let D ⊂ C be an open disk, and f ∈ H(D). Prove that the set S ⊂ ∂D of singular
points of f is a closed subset of C.
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Exercise 6.7. Consider the function f : D → C given by

f(z) =

∞∑
n=0

zn!, z ∈ D.

Prove that the natural boundary of f is ∂D, that is, each ξ ∈ ∂D is a singular point for f.

Exercise 6.8. Let Ω ⊂ C be open and simply-connected, and let Γ0,Γ1 : [0, 1] → Ω two continuous
curves in Ω so that

z0 := Γ0(0) = Γ1(0), z1 := Γ0(1) = Γ1(1).

Prove that there exists a one-parameter family {γt}t∈[0,1] of continuous curves in Ω with initial
point z0, end point z1, and γ0 = Γ0, γ1 = Γ1.

Exercise 6.9. Show that there is no sequence {Pn}n of polynomials with Pn(0) = 1 for all n ∈ N
and converging uniformly to 1/2 on ∂D.

Exercise 6.10. Let K ⊂ C be compact with C \ K connected, Ω ⊂ C open containing K, and
z0 ∈ C \Ω. Show that for every N ∈ N and ε > 0, there exists a P polynomial with a zero of order
at least N at z0, and so that

|f(z)− P (z)| ≤ ε, for all z ∈ K.

Exercise 6.11. Denote

H+ := {z ∈ C : Im(z) > 0}, H− := {z ∈ C : Im(z) < 0}.

Prove that there exists a sequence {Pn}n of polynomials so that:

• {Pn}n converges to 1 uniformly on each compact subset of H+, and

• {Pn}n converges to −1 uniformly on each compact subset of H−.

Exercise 6.12. Let Ω = {z ∈ C : |z| < 2 and |z + 1| > 1}, and consider the function f(z) = 1
z+2 .

Prove that:

(i) There exists a sequence {Pn}n of polynomials converging to f uniformly on each compact
subset of Ω.

(ii) There is no sequence of polynomials converging to f uniformly on Ω.

Then, for the function g(z) = 1
z+3 , find an explicit sequence of polynomials converging to g uni-

formly on Ω.

Exercise 6.13. Prove that there exists a sequence {Pn}n of polynomials with lim
n→∞

Pn(z) = 1 if z ∈ R
and lim

n→∞
Pn(z) = 0 if z ∈ C \ R.

Exercise 6.14. Construct a meromorphic function f in C with poles P(f) = N, all of them of order
1, and so that Res(f, n) = n for all n ∈ N.

Exercise 6.15. Construct a meromorphic function f in C with poles P(f) = N, and so that the
principal part of the Laurent Series of f around n is equal to

1

(z − n)2
,

for all n ∈ N.
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Chapter 7

Products, Factorization and Interpolation

Given a sequence of numbers {zn}n ⊂ C with no accumulation points, and natural numbers
{mn}n ⊂ N, does there exist a holomorphic function f in C whose zeros is precisely the set {zn}n
and so that m(f, zj) = zj for all j ∈ N ?

If the collection is finite z1, . . . , zn the polynomial

f(z) = (z − z1)
m1 · · · (z − zn)

mn , z ∈ C,

is an example of such function.

It we consider the corresponding infinite product as the limit of these (finite) partial products,
we need to check whether the limit converges to a holomorphic function. In this chapter, we begin
by studying infinite products of numbers and functions and give criteria for their convergence or
uniform convergence. Theorem 7.8 is the main result of the chapter in that direction.

The answer to the initial question is given by an infinite product of suitableWeierstrass Factors;
see Theorem 7.11. A converse of this result is the Weierstrass Factorization Theorem 7.13, which
permits to write every entire function as the product of an exponential and an infinite product of
Weierstrass factors, based on the zeros of the function. In the Exercise section 7.5, we will use this
theorem to obtain factorizations of trigonometric functions in terms of their zeros.

Then we prove Jensen’s Formula (Theorem 7.15) on the distribution of zeros of analytic func-
tions in terms of certain averaged-logaritmic integral in a circle.

Finally, we define the Blaschke Product and show that they provide bounded analytic functions
in the unit disk prescribing zeros and multiplicities, provided the desired zeros satisfy the Blaschke
Condition; see Theorem 7.16. Using Jensen’s Formula, we show in Theorem 7.17 that the Blaschke
Condition is actually necessary.

7.1 Infinite Products

Let {zn}n≥1 be a sequence of complex numbers. The infinite product of {zn}n is the expression

∞∏
n=1

zn.

The sequence of partial products is {
N∏

n=1
zn}N∈N.

7.1.1 Convergence: Definition and Criteria

The definition of convergence of a product depends on the presence of zeros in the sequence.
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Definition 7.1 (Convergence of Infinite Products). Let {zn}n≥1 be a sequence of complex numbers.
To define the convergence or divergence of the infinite product

∞∏
n=1

zn,

we distinguish three cases

(1) Assume that zn ̸= 0 for all n ∈ N. We say that
∞∏
n=1

zn converges if

p := lim
N→∞

N∏
n=1

zn exists and p ∈ C \ {0}.

In this case, we say that p is the the product of
∞∏
n=1

zn.

Now, if the limit p above is 0 (resp. ∞), then we say that
∞∏
n=1

zn diverges to 0 (resp. to ∞).

Finally, if the limit does not exists, we of course say that
∞∏
n=1

zn diverges.

(2) Assume that there is N ∈ N so that zn ̸= 0 for all n ≥ N + 1 and that zn = 0 for at least
some n ≤ N.

We say that
∞∏
n=1

zn converges to 0 if the infinite product
∞∏

n=N+1

zn converges in the sense of

case (1).

Now, if
∞∏

n=N+1

zn diverges, then we say that
∞∏
n=1

zn diverges, even if the divergence of
∞∏

n=N+1

zn

is to 0 or ∞.

(3) Assume that zn = 0 for infinitely many n ∈ N. Then we say that
∞∏
n=1

zn diverges.

Let us give two simple criteria for convergence which are immediate from Definition 7.1.

Remark 7.2. If {zn}n ⊂ C, from Definition 7.1 we note the following.

(i) The infinite product
∞∏
n=1

zn converges if and only if there exists N ∈ N so that zn ̸= 0 for all

n ≥ N + 1 and

lim
m→∞

m∏
n=N+1

zn ∈ C \ {0}.

(ii) If
∞∏
n=1

zn converges, then lim
n→∞

zn = 1.

Indeed, by the above there exists N ∈ N so that zn ̸= 0 for all n ≥ N + 1, and

p := lim
m→∞

m∏
n=N+1

zn ∈ C \ {0}.

This allows to write, for m ≥ N + 2,

zm =

m∏
n=N+1

zn

m−1∏
n=N+1

zn

,
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whence

lim
m→∞

zm =
p

p
= 1.

The following inequalities, though elementary, are very useful when studying convergence of
products.

Lemma 7.3. Let {zn}n≥1 ⊂ C be a sequence, and denote

pn := (1 + z1) · · · (1 + zn), p∗n := (1 + |z1|) · · · (1 + |zn|), n ∈ N.

Then,

1 +
n∑

k=1

|zk| ≤ p∗n ≤ exp

(
n∑

k=1

|zk|

)
, n ∈ N; (7.1.1)

|pn − 1| ≤ p∗n − 1, n ∈ N; (7.1.2)

|pm − pn| ≤ p∗m − p∗n, m ≥ n, m, n ∈ N. (7.1.3)

Proof. The left inequality of (7.1.1) is obvious. For the right one, it suffices to recall that ex ≥ 1+x
for all x ∈ R, and so e|zk| ≥ 1 + |zk| for all k = 1, . . . , n.

Onto (7.1.2), we use induction on n. The case n = 1 is immediate, and then assume that (7.1.2)
holds for certain n ∈ N. Then,

|pn+1 − 1| = |pn(1 + zn+1)− 1| =
∣∣(pn − 1)(1 + zn+1) + zn+1

∣∣ ≤ |pn − 1||1 + zn+1|+ |zn+1|

≤ (p∗n − 1)(1 + |zn+1|) + |zn+1| = p∗n(1 + |zn+1|)− 1 = p∗n+1 − 1.

Finally, to prove (7.1.3), we use the inequality (7.1.2) for the numbers zn+1, . . . , zm to obtain

|pm − pn| =

∣∣∣∣∣
n∏

k=1

(1 + zk)

(
m∏

k=n+1

(1 + zk)− 1

)∣∣∣∣∣ ≤
n∏

k=1

(1 + |zk|)

(
m∏

k=n+1

(1 + |zk|)− 1

)

=
m∏
k=1

(1 + |zk|)−
n∏

k=1

(1 + |zk|) = p∗m − p∗n,

as desired.

One can determine the convergence of certain products by looking at a corresponding series.

Proposition 7.4. Let an ≥ 0 for all n ∈ N. Then

∞∏
n=1

(1 + an) converges ⇐⇒
∞∑
n=1

an converges.

Proof. Let pN be as in Lemma 7.3 for an’s in place of the zn’s there. We have that {pN}N is
non-decreasing with pN ≥ 1 for all N ∈ N. Therefore, there exists the limit lim

N→∞
pN ∈ [1,+∞],

and thus the convergence of the product
∞∏
n=1

(1 + an) is equivalent to proving that lim
N→∞

pN < ∞.

From this, it is clear that (7.1.1) gives the desired equivalence.

The convergence can also be characterized by the convertence of a logarithmic series, if all the
terms are in the same half-plane.
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Proposition 7.5. Let {zn}n≥1 ⊂ C be so that Re(zn) > 0 for all n ∈ N. Then,
∞∏
n=1

zn converges ⇐⇒
∞∑
n=1

Log(zn) converges.

Here Log denotes the principal branch of the logarithm.

Proof. Assume first that
∞∏
n=1

zn converges to some p ∈ C\{0}, and denote by pn the corresponding

nth-partial product. By Remark 7.2, one has that lim
n→∞

zn = 1. Let θ ∈ (−π, π] be so that p = |p|eiθ,
let α : C\ℓ→ (θ−π, θ+π] be a continuous branch of the argument (where ℓ is an appropriate half-
line starting from the origin), and the associated continuous branch of the logarithm f : C\ ℓ→ C:

f(w) = log |w|+ iα(w), w ∈ C \ ℓ.

Since lim
n→∞

pn = p, we have that pn ∈ C \ ℓ for n large enough (as p is contained in the other half

line of ℓ, that is, in −ℓ), and therefore

f(p) = lim
n→∞

f(pn). (7.1.4)

Define the partial sums

sn := Log(z1) + · · ·+ Log(zn), where clearly esn = pn, n ∈ N. (7.1.5)

Since f(pn) is a logarithm of pn, we get that esn = ef(pn), and thus there exists kn ∈ Z so that
sn = f(pn) + 2πikn, for all n ∈ N. By (7.1.5) and (7.1.4), we have that

lim
n→∞

(sn − sn−1) = lim
n→∞

Log(zn) = Log(1) = 0, and lim
n→∞

(f(pn)− f(pn−1)) = 0.

Therefore lim
n→∞

(kn − kn−1) = 0, and thus kn = k for all n ≥ n0, and some n0 ∈ N, k ∈ Z. Using
this and again (7.1.4), we conclude that the following limit exists

lim
n→∞

sn = lim
n→∞

(f(pn) + 2πik) = f(p) + 2πik.

Conversely, if the series
∑∞

n=1 Log(zn) converges to some s ∈ C, and {sn}n denotes its partial
sums, taking exponentials we see that

es = lim
n→∞

esn = lim
n→∞

n∏
k=1

eLog(zk) = lim
n→∞

n∏
k=1

zk.

Since es ̸= 0, we may conclude that
∞∏
n=1

zn converges.

Finally, we see that certain version of absolute convergence of the product implies the ordinaric
convergence.

Proposition 7.6. Let {zn}n ⊂ C be a sequence so that
∞∏
n=1

(1 + |zn|) converges. Then
∞∏
n=1

(1 + zn)

converges as well.

Proof. By Remark 7.2, the sequence {zn}n converges to 0, and thus, 1 + zn ̸= 0 except for (pos-
sibly) finitely many n ∈ N. Also, by Proposition 7.4, the series

∑∞
n=1 |zn| converges, and so the

corresponding tails {
∑

n≥N |zn|}N converge to 0 as N → ∞. Therefore, starting the sequence from

a large enough index, for the convergence of
∞∏
n=1

(1 + zn) we may and do assume that

1 + zn ̸= 0 for all n ∈ N, and exp

( ∞∑
n=1

|zn|

)
− 1 ≤ 1

2
. (7.1.6)
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Now, following the notation from Lemma 7.3, we have that

|pm − pn| ≤ p∗m − p∗n, m ≥ n.

Since
∞∏
n=1

(1 + |zn|) converges, the sequence {p∗n}n has the Cauchy property, and the previous

inequality shows that {pn}n is also a Cauchy sequence, thus convergent to some p ∈ C. But by
(7.1.6) and the inequalities (7.1.2) and (7.1.1), we obtain

|pn − 1| ≤ p∗n − 1 ≤ exp

( ∞∑
n=1

|zn|

)
− 1 ≤ 1

2
, n ∈ N.

Therefore |pn| ≥ 1/2 for all n ∈ N, and so p ̸= 0, showing that
∞∏
n=1

(1 + zn) converges.

7.1.2 Infinite Products of Functions

We are now interested in the pointwise or uniform convergence of products of functions, for which
we will look again at the corresponding series.

Theorem 7.7. Let E ⊂ C be a set, and {fn : E → C}n a sequence of bounded functions in E.
Assume that the series

∑∞
n=1 |fn| converges uniformly on E. Then the product of functions

E ∋ z 7→
∞∏
n=1

(1 + fn(z))

converges uniformly on E.

Proof. By Propositions 7.5 and 7.6, we have that

p(z) :=
∞∏
n=1

(1 + fn(z)) := lim
n→∞

pn(z) ∈ C, z ∈ E, pn :=
n∏

k=1

(1 + fk), n ∈ N.

Denoting the sums

s(z) =
∞∑
n=1

|fn(z)|, sn(z) =
n∑

k=1

|fk(z)|, z ∈ E, n ∈ N.,

the uniform convergence of {sn}n to s and the fact that the functions fk’s are bounded in E,
implies that s : E → C is a bounded function, and let C > 0 be an upper bound for |s(z)| for all
z ∈ E. Now, using first the estimate (7.1.3) and then (7.1.1), we get, for all m > n and z ∈ E that

|pm(z)− pn(z)| ≤
m∏
k=1

(1 + |fk(z)|)−
n∏

k=1

(1 + |fk(z)|) =
n∏

k=1

(1 + |fk(z)|)

(
m∏

k=n+1

(1 + |fk(z)|)− 1

)

≤ exp

(
n∑

k=1

|fk(z)|

)(
exp

(
m∑

k=n+1

|fk(z)|

)
− 1

)
≤ eC (exp (s(z)− sn(z))− 1) .

Since the last term is independent of m, letting m→ ∞ gives

sup{|p(z)− pn(z)| : z ∈ E} ≤ eC (exp (sup{|s(z)− sn(z)| : z ∈ E})− 1) ,

where the last term goes to 0 as n→ ∞, because {sn}n converges to s uniformly on E.

As concerns products of holomorphic functions, we have the following theorem, which will be
essential in the rest of the chapter.
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Theorem 7.8. Let Ω ⊂ C be open and connected, {fn : Ω → C}n ⊂ H(Ω), so that none of the
fn are identically 0 on Ω. Assume also that the series

∑∞
n=1 |1− fn| converges uniformly on each

compact subset of Ω. Then the product of functions

F (z) =

∞∏
n=1

fn(z), z ∈ Ω,

converges uniformly on compact subsets of Ω and F ∈ H(Ω). Also, the following relation between
the order of the zeros holds:

m(F, z) =
∞∑
n=1

m(fn, z), z ∈ Ω, (7.1.7)

where the sum is finite for each z ∈ Ω. Moreover, denoting by Z(F ) the zeros of F in Ω, we have
that

F ′(z)

F (z)
=

∞∑
n=1

f ′n(z)

fn(z)
, z ∈ Ω \ Z(F ); (7.1.8)

where the series of functions converges uniformly on each compact subset of Ω \ Z(F ).

Proof. By Theorem 7.7 (with fn − 1 in place of fn) we get that the product
∞∏
n=1

|fn| converges

uniformly on compact sets of Ω, thus F ∈ H(Ω) by Weierstrass Theorem 3.1. Clearly F (z) = 0 if
and only if fn(z) = 0 for some n ∈ N, that is,

Z(F ) =
⋃
n∈N

Z(fn).

The zeros of each fn are isolated, as fn ̸≡ 0 in Ω and Ω is connected. The set Z(fn) is countable
(see e.g. Proposition 2.13), and the above then implies that Z(F ) is countable, and so f ̸≡ 0
in Ω by the Identity Principles for holomorphic functions. This is turn shows that Z(F ) has no
accumulation points in Ω. We next observe that:

for each compact K ⊂ Ω there is N = N(K) with fn(z) ̸= 0 for all n ≥ N, z ∈ K. (7.1.9)

Indeed, if K ⊂ Ω, the set Z(F )∩K is finite, as Z(F )′∩Ω = ∅. Denoting those zeros by z1, . . . , zm,

the pointwise convergence of
∞∏
n=1

fn in Ω implies that, for each zj , there exist Nj ∈ N so that

fn(zj) ̸= 0 for all n ≥ Nj . If N denotes the maximum of those N1, . . . , Nm, we get that fn(zj) ̸= 0
for all j ∈ {1, . . . ,m} and all n ≥ N. Since a zero of a function fn defines automatically a zero of
F, we have shown (7.1.9).

To show (7.1.7), let z ∈ Ω with F (z) = 0 (if F (z) ̸= 0, then all the orders of zero at z are
zero, and the identity trivially holds). Since the zeros of F are isolated, there is ε > 0 so that
D(z, ε) ⊂ Ω and D(z, ε) ∩ Z(F ) = {z}. Applying (7.1.9) for K = D(z, ε), we find N = N(z) ∈ N,
so that we can factorize F around this disk as

F (z) = h(z) ·
N∏

n=1

fn(z), z ∈ D(z, ε), where h :=

∞∏
n=N+1

fn ∈ H(Ω), h(z) ̸= 0 for all z ∈ D(z, ε).

Factorizing each fn(w) = (w − z)m(fn,z)hn(w) as hn ∈ H(D(z, ε)) with hn(w) ̸= 0 for all w ∈
D(z, ε), it immediately follows that

m(F, z) =
N∑

n=1

m(fn, z) =
∞∑
n=1

m(fn, z),

where the sum is actually finite, and this shows (7.1.7).
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Let us now prove (7.1.8). For each compact K ⊂ Ω \ Z(F ), let N = N(K) ∈ N as in (7.1.9).
The partial products

Gm :=
m∏

n=N

fn, m ∈ N, m ≥ N,

define holomorphic functions converging uniformly to G :=
∞∏

n=N

fn uniformly in compact subsets

of Ω. In particular, recalling Weierstrass Convergence Theorem 3.1 for the derivatives we get that
{Gm}m and {G′

m}m converge uniformly to G and G′ on K. But since the function G does not
vanish in the compact set K (by (7.1.9)), there exists c > 0 so that |G(z)| ≥ c for all z ∈ K. Along
with the convergence to G and G′ of the mentioned sequences, we derive that

G′
m

Gm
→ G′

G
uniformly on K. (7.1.10)

A simple computation shows that

G′
m

Gm
=

m∑
n=N

f ′n
fn

on K,

which, together with (7.1.10), yields

G′

G
= lim

m→∞

m∑
n=N

f ′n
fn

=

∞∑
n=N

f ′n
fn

uniformly on K. (7.1.11)

Writing F = G ·
N−1∏
n=1

fn, (7.1.11) tells us that

F ′

F
=
G′

G
+

N−1∑
n=1

f ′n
fn

=

∞∑
n=1

f ′n(z)

fn(z)
with uniform convergence on K.

Since K is an arbitrary compact subset of Ω \ Z(F ), we have proved (7.1.8).

7.2 The Weierstrass Factorization Theorem

The key ingredient to solve the problems we discussed at the beginning of the chapter is the family
of Weierstrass Factors.

Definition 7.9 (Weierstrass Elementary Factors). The Weierstrass Factors is the sequence {En}n≥0

of functions given by the formulae

E0(z) = 1− z, En(z) = (1− z) exp

(
n∑

k=1

zk

k

)
= (1− z)ez+

z2

2
+···+ zn

n , n ∈ N, z ∈ C.

Note that En ∈ H(C), En(0) = 1 and En(1) = 0 for all n ∈ N ∪ {0}.

There is a key estimate for the Weierstrass factors in the unit disk.

Lemma 7.10. For all n ∈ N ∪ {0}, we have

|1− En(z)| ≤ |z|n+1 for all |z| ≤ 1.
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Proof. If n = 0, the inequality is trivial, and actually an identity. Assume from now that n ≥ 1.
Observe that, for each z ∈ C,

−E′
n(z) = exp

(
n∑

k=1

zk

k

)
− (1− z) exp

(
n∑

k=1

zk

k

)
·
n−1∑
k=0

zk

= exp

(
n∑

k=1

zk

k

)
− (1− zn) exp

(
n∑

k=1

zk

k

)
= zn exp

(
n∑

k=1

zk

k

)

= zn
∞∑
j=0

1

j!

(
n∑

k=1

zk

k

)j

= zn
∞∑
j=0

ajz
j =

∞∑
j=0

ajz
j+n, where aj > 0, for all j ∈ N ∪ {0}.

Integrating termwise in the series (as we may do, since the series above has radius of convergence
equal to ∞), the result is a holomorphic function in C whose derivative is −E′

n. Thus there exists
a constant w ∈ C so that

w − En(z) =
∞∑
j=0

aj
j + n+ 1

zj+n+1 = zn+1
∞∑
j=0

bjz
j , bj :=

aj
j + n+ 1

> 0, j ∈ N ∪ {0}.

Since En(0) = 1, and the last term vanishes at 0, we get that

1− En(z) = zn+1
∞∑
j=0

bjz
j , z ∈ C.

The fact that En(1) = 0 and the previous identity shows that
∑∞

j=0 bj = 1. Thus, we may conclude,
for |z| ≤ 1, that

|1− En(z)| ≤ |z|n+1
∞∑
j=0

bj |z|j ≤ |z|n+1
∞∑
j=0

bj = |z|n+1.

We are now ready to construct entire functions prescribing zeros and multiplicities.

Theorem 7.11. Let {zn} ⊂ C \ {0} be a sequence with lim
n→∞

|zn| = ∞, and {kn}n ⊂ N∪ {0} another

sequence satisfying that
∞∑
n=1

(
r

|zn|

)1+kn

, for all r > 0. (7.2.1)

Then the function

F (z) =
∞∏
n=1

Ekn

(
z

zn

)
, z ∈ C, (7.2.2)

is well-defined and holomorphic in C, with Z(F ) = {zn}n and so that the order m(F, zj) of zj as
zero of F coincides with the number of appearances of zj in the sequence {zn}n, that is,

m(F, zj) = card{n ∈ N : zn = zj}, for all j ∈ N.

Proof. Define, for each n ∈ N, the holomorphic functions fn(z) := Ekn

(
z
zn

)
, z ∈ C. Given r > 0,

let N ∈ N be so that |zn| > r for all n ≥ N. We can apply Lemma 7.10 (for each z/zn) to obtain
that, for all z ∈ D(0, r),

∞∑
n=N

|1− fn(z)| =
∞∑

n=N

∣∣∣∣1− Ekn

(
z

zn

)∣∣∣∣ ≤ ∞∑
n=N

∣∣∣∣ zzn
∣∣∣∣1+kn

.
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Estimating, for every z ∈ D(0, r) and every n ≥ N , by∣∣∣∣ zzn
∣∣∣∣1+kn

≤
(

r

|zn|

)1+kn

,

we see that the condition (7.2.1) and Weierstrass M-test guarantee the uniform convergence of the
series of functions

∑∞
n=1 |1−fn| on D(0, r). Since r > 0 is arbitrary, the series converges uniformly

on compact subsets of C, and Theorem 7.8 implies that the infinite product F as in (7.2.2) is
holomorphic in C with

Z(F ) =
∞⋃
n=1

Z(fn) = {zn}n,

as Weierstrass Factors Ep only vanish at z = 1. Moreover, Ep has a zero of order 1 at 1, and then
we can use (7.1.7) from Theorem 7.8 to conclude that, for every j ∈ N,

m(F, zj) =
∞∑
n=1

m(fn, zj) =
∞∑
n=1

X{n∈N : zn=zj}(n) = card{n ∈ N : zn = zj}.

Remark 7.12. If {zn}n ⊂ C \ {0} is a sequence with lim
n→∞

|zn| = ∞, then the condition (7.2.1) of

Theorem 7.11 is always satisfied if we take the sequence kn = n− 1, n ∈ N.
To see this, simply observe that for all r > 0 there exists N ∈ N so that that r/|zn| ≤ 1/2 for

all n ≥ N. Thus
∞∑

n=N

(
r

|zn|

)1+kn

≤
∞∑
n=1

(
1

2

)n

<∞.

Here are some concrete examples of couples {kn, zn}n satisfying the requirement (7.2.1).

(1) If {zn}n is so that
∞∑
n=1

1

|zn|
<∞,

then one can take kn = 0, for all n ∈ N, and formula (7.2.2) becomes

F (z) =
∞∏
n=1

E0(z/zn) =
∞∏
n=1

(
1− z

zn

)
, z ∈ C.

(2) If {zn}n is so that
∞∑
n=1

1

|zn|2
= ∞,

then one can take kn = 1, for all n ∈ N, and formula (7.2.2) becomes

F (z) =
∞∏
n=1

E1(z/zn) =

∞∏
n=1

(
1− z

zn

)
e

z
zn , z ∈ C.

(3) If zn =
√
n for all n, we can take kn = 2 for all n ∈ N.

Moreover, every entire function can be written as a product of an exponential function and an
infinite product of certain Weierstrass factors, based on the zeros of a function.
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Theorem 7.13 (Weierstrass Factorization Theorem). Let f ∈ H(C) and let Z(f) \ {0} = {zn}n∈N
the non-zero zeros of f , where each zn appears precisely m(f, zn) times in the sequence. Denote
by m = m(f, 0) ∈ N ∪ {0} the order of 0 as a zero of f. Then, for any sequence {kn}n ⊂ N ∪ {0}
satisfying condition (7.2.1) for {zn}n, there exists g ∈ H(C) so that

f(z) = zm · eg(z) ·
∞∏
n=1

Ekn

(
z

zn

)
, z ∈ C. (7.2.3)

Proof. If m = m(f, 0) ∈ N∪{0}, we can factorize f(z) = zm ·h(z) for all z ∈ N, for some h ∈ H(C)
with h(0) ̸= 0, and so that Z(h) = Z(f) \ {0}. This shows that, to derive a factorization like
(7.2.3), we may assume that f(0) ̸= 0.

Now, assuming that f(0) ̸= 0, first note that lim
n→∞

zn = ∞. Indeed, otherwise there would

be a bounded subsequence {wn}n of {zn}n consisting of mutually distinct points. By Bolzano-
Weierstrass theorem, there would be an accumuluation point w of {wn}n, and the continuity of
f would lead to f(w) = 0, thus showing that w would be a non-isolated zero of f, which would
imply that f is identically null in C, a contradiction.

Since lim
n→∞

zn = ∞, combining Remark 7.12 and Theorem 7.11, we find a sequence {kn}n ⊂
N ∪ {0} so that the function

C ∋ z 7→ F (z) :=

∞∏
n=1

Ekn

(
z

zn

)
is holomorphic in C and has zeros at each zj with mulitplicity equal to the number of ocurrences
of zj in the sequence {zn}n. In other words, m(F, zj) = m(f, zj). But also note that then, the
function h = f/F has a removable singularity at every zj , and thus there exists a holomorphic
extension H : C → C of h. Since C is simply-connected, by Theorem 1.29 there exists g ∈ H(C) so
that H = eg. Therefore,

f = H · F = eg · F,

which shows formula (7.2.3).

7.3 Jensen’s Formula

To prove Jensen’s formula, first we need to evaluate the following improper integral.

Lemma 7.14. We have that

pv

∫ 2π

0
log |1− eit|dt := lim

ε→0+

∫ 2π−ε

ε
log |1− eit| dt = 0.

Proof. In the simply connected open set Ω := {z ∈ C : Re(z) > 0}, the function z 7→ 1− z never
vanishes, and by Corollary 1.29 there exists h ∈ H(Ω) so that eh(z) = 1 − z for all z ∈ Ω. This
implies that eh(0) = 1, and so eh(z)−h(0) = 1− z for all z ∈ Ω. Therefore, we may assume that

eh(z) = 1− z, z ∈ Ω, h(0) = 0.

Then we have that

eRe(h(z)) =
∣∣∣eh(z)∣∣∣ = |1− z|, eRe(h(z)) cos(Im(h(z))) = Re(1− z) > 0, z ∈ Ω.

Therefore

Re(h(z)) = log |1− z| and |Im(h(z))| < π

2
, z ∈ Ω. (7.3.1)

For every 0 < ε < 1, let γε : [ε, 2π − ε] → C be the path γε(t) = eit, t ∈ [ε, 2π − ε]. Also, let
σε be the circle arc centered at 1 and with radius |1 − eiε| joining eiε to e−iε within D. Clearly
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Γε := γε ⋆ σ
−
ε is a closed piecewise C1 path. Thus, by Cauchy Integral formula (bearing in mind

that h(0) = 0),

1

2πi

∫
γε

h(z)

z
dz =

1

2πi

∫
Γε

h(z)

z
dz − 1

2πi

∫
σε

h(z)

z
dz =

1

2πi

∫
σε

h(z)

z
dz. (7.3.2)

Using (7.3.1) and (7.3.2) we obtain

1

2π

∫ 2π−ε

ε
log |1− eit|dt = 1

2π

∫ 2π−ε

ε
Re(h(eit)) dt = Re

(
1

2π

∫ 2π−ε

ε
h(eit) dt

)

= Re

(
1

2πi

∫
γε

h(z)

z
dz

)
= Re

(
1

2πi

∫
σε

h(z)

z
dz

)
.

And applying again (7.3.1) to the last integral, we get, for ε small enough,∣∣∣∣ 12π
∫ 2π−ε

ε
log |1− eit| dt

∣∣∣∣ ≤ 1

2π

∫
σε

|h(z)|
|z|

| dz| ≤
√
2

2π

∫
σε

π
2 + | log |1− z||

|z|
| dz| ≤

√
2

2π

(
π
2 + | log ε|

)
1/2

ℓ(σε).

The last term goes to 0 as ε→ 0+ because

ℓ(σε) ≤ 2π|1− eiε| = 2π|e−iε/2 − eiε/2| = 4π| sin(ε/2)| ≤ 2πε.

The following Jensen’s formula relates the zeros of a holomorphic function in a disk with the
integral of the logarithm of the function in the corresponding circle. Note that if a function
f ∈ H(D(0, R)) does not vanish, then Exercise 5.1 says that log |f | is harmonic, and thus satisfies
the Mean Value Property, from which

log |f(0)| = 1

2π

∫ 2π

0
log |f(reit)| dt, 0 < r < R.

Jensen’s formula generalize this identity to the case of functions with zeros.

Theorem 7.15 (Jensen’s Formula). Let f ∈ H(D(0, R)) with f(0) ̸= 0, and for 0 < r < R, let
w1, . . . , wN be the zeros of f in D(0, r), listed as many times as their multiplicity. Then,

N∑
n=1

log

(
r

|wn|

)
= − log |f(0)|+ 1

2π

∫ 2π

0
log |f(reit)| dt. (7.3.3)

Proof. Given 0 < r < R, we can assume (after rearranging) that w1, . . . , wm are the zeros of f in
D(0, r), and wm+1, . . . , wN the zeros in ∂D(0, r). There exists ε > 0 with r + ε < R and so that
the zeros of f in D(0, 1 + ε) are still precisely w1, . . . , wN . Thus, we can factorize

f(z) =

N∏
n=1

(z−wn) ·h(z), z ∈ D(0, r+ ε), h ∈ H(D(0, r+ ε)), h(z) ̸= 0 for all z ∈ D(0, r+ ε).

We define

g(z) = h(z) ·
m∏

n=1

r

(
wn

r
· z
r
− 1

)
·

N∏
n=m+1

wn, z ∈ D(0, r + ε). (7.3.4)

Obviously h ∈ H(D(0, r + ε)) and

|g(0)| = |h(0)| ·
m∏

n=1

r ·
N∏

n=m+1

|wn| =
|f(0)|∏N
n=1 |wn|

·
m∏

n=1

r ·
N∏

n=m+1

|wn| = |f(0)| ·
m∏

n=1

r

|wn|
. (7.3.5)
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Now observe that if |z| = r, then, for n = 1, . . . ,m,

|z − wn| = r
∣∣∣z
r
− wn

r

∣∣∣ = r

∣∣∣∣1− wn

r
· z
r

∣∣∣∣ ,
as shown for example by Proposition 4.18, if one consider φwn/r(z/r), with |wn/r| < 1 and |z/r| =
1. Using this and (7.3.4), we get that

|f(z)| =
N∏

n=1

|z − wn| · |h(z)| =
m∏

n=1

r

∣∣∣∣1− wn

r
· z
r

∣∣∣∣ · N∏
n=m+1

|z − wn| · |h(z)| = |g(z)|
N∏

n=m+1

|z − wn|
|wn|

.

For each n = m+ 1, . . . , N we write wn = reitn , and this identity together with (7.3.5) give

1

2π

∫ 2π

0
log |f(reit)|dt = 1

2π

∫ 2π

0
log |g(reit)| dt+

N∑
n=m+1

1

2π

∫ 2π

0
log |1− ei(t−tn)| dt

=
1

2π

∫ 2π

0
log |g(reit)| dt+

N∑
n=m+1

1

2π

∫ 2π

0
log |1− eit| dt.

By Lemma 7.14, the last sum is null. Moreover, since g does not vanish in D(0, r+ε), the function
log |g| is harmonic (see Exercise 5.1) in D(0, r + ε) and so satisfies the Mean Value Property
(Proposition 5.9). Thus the above and (7.3.5) show

1

2π

∫ 2π

0
log |f(reit)| dt = 1

2π

∫ 2π

0
log |g(reit)|dt = log |g(0)| = log

(
|f(0)| ·

m∏
n=1

r

|wn|

)

= log |f(0)|+
N∑

n=1

log

(
r

|wn|

)
,

from which formula (7.3.3) is proven.

7.4 The Blaschke Product

We now consider construction of holomorphic and bounded functions in the unit disk prescribing
zeros and multiplicities. The desired zeros {wn}n must satisfy a summability condition, known as
the Blaschke condition, and the functions is constructed as an infinite product of automorphisms
of the unit disk. This infinite product is called the Blaschke product.

Theorem 7.16 (Blaschke Interpolation). Let {wn}n∈N ⊂ D a sequence with wn ̸= 0 for all n ∈ N,
and so that

∞∑
n=1

(1− |wn|) <∞. (7.4.1)

Then, the function

B(z) =
∞∏
n=1

|wn|
wn

· wn − z

1− wnz
, z ∈ D, (7.4.2)

defined a holomorphic function in D, with B(D) ⊂ D with Z(B) = {wn}n∈N, and m(B, zj) is the
number of appearances of the number zj in {zn}n∈N for all j ∈ N.

Proof. Denote

fn(z) =
|wn|
wn

· wn − z

1− wnz
, z ∈ D,
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and notice that, if z ∈ D(0, r) with 0 < r < 1,

|1− fn(z)| =
∣∣∣∣1− |wn|

wn
· wn − z

1− wnz

∣∣∣∣ = ∣∣∣∣wn − |wn|2z − wn|wn|+ z|wn|
(1− wnz)wn

∣∣∣∣
=

∣∣∣∣ wn + |wn|z
(1− wnz)wn

∣∣∣∣ (1− |wn|) ≤
1 + |z|
1− |z|

(1− |wn|) ≤
1 + r

1− r
(1− |wn|).

This, together with the condition (7.4.1) and Weierstrass M-test, show that the series

∞∑
n=1

|1− fn(z)|

converges uniformly on compact subsets of D. We can therefore apply Theorem 7.8 to deduce that
the function B from (7.4.2), is holomorphic in D, and Z(B) =

⋃∞
n=1Z(fn) with

m(Ω, z) =
∞∑
n=1

m(fn, z), z ∈ D.

But each fn vanishes only at zn and with multiplicity 1, and so the claim about the zeros of B in
the present theorem holds true.

Finally, to show that B(D) ⊂ D, observe that

B(z) =

∞∏
n=1

fn(z), fn(z) =
|wn|
wn

· (−φwn(z)) , n ∈ N, z ∈ D,

where φw, w ∈ D, denotes the automorphism of D defined in Definition 4.17. By Proposition 4.18,
we have that |fn(z)| < 1 for all z ∈ D and all n ∈ N. Therefore, |B(z)| < 1 for all z ∈ D, that is,
B(D) ⊂ D.

Finally, using Jensen’s Formula, one can show that the Blaschke condition (7.4.1) is also nec-
essary for analytic and bounded interpolation in the unit disk.

Theorem 7.17. Let f ∈ H(D) with f bounded in D, f(0) ̸= 0 and f has infinitely many zeros in D.
Denote by {wn}∞n=1 the zeros of f in D, listed according to their multiplicities. Then,

∞∑
n=1

(1− |wn|) <∞. (7.4.3)

Proof. Define C = sup{|f(z)| : z ∈ D}. The function f has infinitely many zeros in D and finitely
many on each compact subset of D. For every 0 < r < 1, denote by M(r) the number of zeros
(counted with multiplicity) of f in D(0, r), and note that M(r) goes to ∞ as r → 1− by the
previous observation. Therefore, given N ∈ N, we can find 0 < rN < 1 so that

rN ≥ max

{
1− 1

N2
,
1

2

}
and M(rN ) ≥ N. (7.4.4)

Rearranging the sequence of zeros if necessary, we can assume that w1, . . . , wM(rN ) are precisely

the zeros of f in D(0, rN ). By Theorem 7.15 (taking exponentials in (7.3.3)) and the fact that
|f | ≤ C in D we have that

|f(0)| ·
M(rN )∏
n=1

rN
|wn|

= exp

(
1

2π

∫ 2π

0
log |f(rNeit)|dt

)
≤ exp

(
1

2π

∫ 2π

0
logC dt

)
= C,
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and so
N∏

n=1

rN
|wn|

≤
M(rN )∏
n=1

rN
|wn|

=
C

|f(0)|
.

Rewrite this estimate and using (7.4.4)

pN :=

N∏
n=1

|wn| ≥
rNN · |f(0)|

C
≥ max

{(
1− 1

N2

)N

,
1

2N

}
· |f(0)|

C
, N ∈ N.

This shows that the partial products above {pN}N∈N are all nonzero and converge to some p ∈
C \ {0}. Exercise 7.5 tells us that

∑∞
n=1(1− |wn|) converges. Since the terms of this series are all

positive, the rearrangement we chose in the proof does not affect the convergence, and so (7.4.3)
holds.

7.5 Exercises

Exercise 7.1. Check that
∞∏
n=1

(
1 + (−1)n+1

√
n

)
is not convergent, despite that

∑∞
n=1

(−1)n+1
√
n

is conver-

gent. Compare with Proposition 7.4.

Exercise 7.2. Check that
∞∏
n=1

(
1 + (−1)n+1

n

)
converges and that

∞∏
n=1

(
1 + 1

n

)
is not convergent. Com-

pare with Proposition 7.6.

Exercise 7.3. Let {an}n ⊂ R. Prove that

(a) If
∑∞

n=1 an <∞, then
∞∏
n=1

(1 + an) ⇐⇒
∞∑
n=1

a2n.

(b) If
∑∞

n=1 a
2
n <∞, then

∞∏
n=1

(1 + an) ⇐⇒
∞∑
n=1

an.

Exercise 7.4. Let {zn}n ⊂ C. Prove that
∞∏
n=1

zn converges if and only if

for every ε > 0 there is N ∈ N so that |zn+1 · · · zn+N − 1| ≤ ε for all n ≥ N, k ∈ N.

Exercise 7.5. Let {an}n ⊂ [0, 1). Prove that

∞∏
n=1

(1− an) converges ⇐⇒
∞∑
n=1

an converges.

Exercise 7.6. Verify the convergence of the infinite product
∞∏
n=1

(1 + z2
n
) for all z ∈ D, and show

the identity

(1− z)
∞∏
n=1

(1 + z2
n
) =

1

1 + z
, |z| < 1.
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Exercise 7.7. Verify that the infinite product

f(z) =
∞∏
n=1

(
1− z2

n2

)
, z ∈ C,

defines a holomorphic function in C so that Z(f) = C \ {0}. Then, show that

f ′(z)

f(z)
=

∞∑
n=1

2z

z2 − n2
, z ∈ C \ Z(f).

Exercise 7.8. Construct a function f ∈ H(C) to that Z(f) = {log n : n ∈ N, n ≥ 2}, and
m(f, log n) = 1 for all n ≥ 2, n ∈ N.

Exercise 7.9. Verify the following identities, showing first that the infinite products define holomor-
phic functions in C :

sin(πz) = πz ·
∞∏
n=1

(
1− z2

n2

)
, cos(πz) =

∞∏
n=1

(
1− 4z2

(2n− 1)2

)
, sinh(z) = z ·

∞∏
n=1

(
1 +

z2

π2n2

)
.

Exercise 7.10. Use the factorization of sin z from Exercise 7.9 to prove the Wallis’s Formula:

π

2
= lim

n→∞

2

1
· 2
3
· 4
3
· 4
5
· · · · · 2n

2n− 1
· 2n

2n+ 1
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
.

Exercise 7.11. Use the factorization of cos(πz) from Exercise 7.9 to show that

−π tan(πz) =
∞∑
n=1

(
1

z − n+ 1
2

+
1

z + n− 1
2

)
, z ∈ C \ {n+ 1

2 : n ∈ Z}

Exercise 7.12. Use the factorization of sinh z from Exercise 7.9 to show that

coth(z) :=
cosh(z)

sinh(z)
=

1

z
+

∞∑
n=1

2z

π2n2 + z2
, z ∈ C \ {πik : k ∈ Z}.

Use this formula to derive the identity
∞∑
n=1

1

n2 + x2
=

π

2x
· e

πx + e−πx

eπx − e−πx
− 1

2x2
, for all x > 0.

Exercise 7.13. Let f ∈ H(D(0, R)) with a zero of order m ∈ N ∪ {0} at 0. For 0 < r < R, let
w1, . . . , wN be the zeros of f in D(0, r), listed as many times as their multiplicity. Prove the
formula

N∑
n=1

log

(
r

|wn|

)
= − log

∣∣∣∣∣f (m)(0)

m!

∣∣∣∣∣−m log r +
1

2π

∫ 2π

0
log |f(reit)| dt.

Exercise 7.14. Let f ∈ H(D(0, R)) with f(0) ̸= 0, let 0 < s < r < R and denote by N(s) the
number of zeros (counted with multiplicty) of f in D(0, s). Show the estimate

N(s) ≤ log (Mr/|f(0)|)
log (r/s)

; where Mr := max{|f(z)| : |z| = r}.

Exercise 7.15. Find a function f ∈ H(D) with |f(z)| < 1 for all z ∈ D so that

f(1− 1
n3 ) = 0 and m(f, 1− 1

n3 ) = n, for all n ∈ N, n ≥ 2.

Show that there is no g ∈ H(D) bounded in D with

f(1− 1
n2 ) = 0 and m(f, 1− 1

n2 ) = n, for all n ∈ N, n ≥ 2.
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